水处理技术与环境保护

羧甲基化沙柳木粉负载纳米零价铁吸附水中 Pb²⁺

扈佳琪,王 丽*

(内蒙古农业大学 材料科学与艺术设计学院,内蒙古 呼和浩特 010018)

摘要: 以羧甲基化沙柳木粉(CMS)为载体,采用液相还原法制得羧甲基化沙柳木粉负载纳米零价铁(NZVI/CMS) 吸附剂。采用 SEM、FTIR、XRD 和 TEM 对纳米零价铁(NZVI) 和 NZVI/CMS 的微观结构进行了表征。考察 了不同吸附条件对 NZVI 和 NZVI/CMS 吸附 Pb²⁺性能的影响。结果显示:NZVI 成功负载在 CMS 上,负载后的 NZVI 分散性明显提高,团聚现象得到有效解决,CMS 起到分散 NZVI 颗粒的作用。吸附结果显示:当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 和 0.01 g,Pb²⁺初始质量浓度分别为 600 和 400 mg/L,吸附时间为 120 min,吸附温度为 30 ℃,Pb²⁺溶液 pH 分别为 4.5 和 4.0 时,NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量最大,分别为 390.3 和 535.5 mg/g。循环吸附实验表明,循环 3 次后,NZVI 的吸附量为 98.6 mg/g,而 NZVI/CMS 的吸附量可达 469.7 mg/g,NZVI/CMS 呈现出比 NZVI 更优越的循环使用性能。

关键词:沙柳;纳米零价铁;吸附;还原;Pb²⁺;水处理技术 中图分类号:X52 文献标识码:A 文章编号:1003-5214(2018)07-1227-08

Carboxymethylated Salix Psammophila Powder Supported Nanoscale Zero-Valent Iron: Preparation and Adsorption Behavior toward Pb²⁺ in Aqueous Solution

HU Jia-qi, WANG Li*

(*College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot* 010018, *Inner Mongolia, China*)

Abstract: A new adsorption agent, carboxymethylated salix psammophila (CMS) powder supported nanoscale zero-valent iron (NZVI/CMS) was prepared by liquid phase reduction method with nanoscale zero-valent iron (NZVI) as a carrier. The micro structures of NZVI and NZVI/CMS were characterized by means of SEM, FTIR, XRD and TEM. The effects of different adsorption conditions on the adsorption capabilities of NZVI and NZVI/CMS for Pb²⁺ were studied. The results showed that NZVI was successfully loaded on CMS. In addition, the introduction of CMS efficiently resolved the reunion of NZVI particles and improved the dispersibility of NZVI particles. The adsorption results indicated that the maximum adsorption capacity of NZVI/CMS for Pb²⁺ reached 535.5 mg/g when the dosage of NZVI/CMS was 0.01 g, the initial mass concentration of Pb²⁺ was 400 mg/L, the adsorption time was 120 min, the adsorption capacity of NZVI for Pb²⁺ was only 390.3 mg/g under the optimum adsorption conditions of NZVI dosage 0.05 g, initial mass concentration of Pb²⁺ 600 mg/L, adsorption time 120 min, adsorption temperature 30°C, pH value of Pb²⁺ solution experiments revealed that after recycling for three times, the adsorption capacity of NZVI was 98.6 mg/g, whereas that of NZVI/CMS was 469.7 mg/g, indicating that NZVI/CMS had better reusability than NZVI.

Key words: salix psammophila; nanoscale zero-valent iron; adsorption; reduction; Pb²⁺; water treatment technology

作者简介: 扈佳琪(1992—), 男, 硕士生。联系人: 王 丽(1978—), 女, 教授, 电话: 0471-4300240, E-mail: wl2083663@126.com。

收稿日期: 2017-07-04; 定用日期: 2017-10-26; DOI: 10.13550/j.jxhg.20170538

基金项目:内蒙古自然科学基金(2016MS0210);内蒙古农业大学优秀青年科学基金(2014XYQ-12)

Foundation items: National Natural Science Foundation of Inner Mongolia (2016MS0210); Outstanding Young Science Foundation of Inner Mongolia Agricultural University (2014XYQ-12)

重金属造成的水资源污染是一个全球性的环境 问题,重金属的毒性持久,因为它们不可生物降解^[1]。 废水中通常包括镉、铬、镍、铜、汞和铅等金属离 子,其中,铅最具有潜在性威胁,其在饮用水的质量 安全问题上更是备受关注^[2]。重金属离子大都来自 工业生产活动,诸如采矿作业、金属电镀、纺织行 业和化肥行业^[3-6]等,通过废弃物的排放重金属进入 自然环境中。目前,控制重金属污染常用的方法有 溶剂萃取法、化学沉淀法、植物提取法、反渗透法、 超滤法、电渗析法、吸附法及离子交换法^[7]等。吸 附法由于具有高效性和易操作性,因而是废水处理 中应用最广的方法之一^[4]。

近年来纳米零价铁(NZVI)作为一种新型吸附 剂在国内外受到越来越多的关注。NZVI 是指粒径在 1~100 nm, 比表面积在 10~70 m²/g 的 Fe⁰ 粒子^[8]。与 传统的铁基材料相比, NZVI 具有表面效应、小尺寸 效应、量子尺寸效应等优点,其具有更大的比表面 积、更好的反应活性、更强的还原性和吸附性^[9-10]。 NZVI 对重金属离子的作用主要包括:还原作用、吸 附作用、共沉淀作用等^[11]。由于 NZVI 优越的对重 金属离子的去除能力、高的去除效率,使其在去除 水中重金属离子方面越来越受到重视。Efecan N^[12] 等利用硼氢化钠水溶液为强还原剂制备 NZVI,考察 了 NZVI 对 Ni²⁺的吸附效果,实验结果表明, NZVI 对 Ni²⁺的吸附量较大,且吸附速率较快,但 NZVI 在水中易团聚。这是由于 NZVI 颗粒细小且本身具 有磁性,所以单独使用时极易发生团聚,从而影响 使用效率。为了克服这一缺陷,国内外一些学者选 择合适的载体作为支撑物制得负载型 NZVI,这样不 仅能保持 NZVI 固有的特性,还能降低 NZVI 的氧 化速率,增加其稳定性,提高其对重金属离子的去 除能力,并实现颗粒的重复利用[13]。常用的载体材 料有膨润土、铝土矿、树脂、活性炭、石墨烯、壳 聚糖、纤维素^[14-16]等。何元渊^[17]等用核桃壳负载 NZVI,吸附废水中 Pb²⁺,吸附剂对 Pb²⁺的最大吸附 量为 199.9 mg/g。高国振^[18]采用玉米淀粉负载纳米 零价铁(NZVI/CS)去除溶液中 Pb²⁺,结果表明, 相比 NZVI, NZVI/CS 具有更好的去除 Pb²⁺性能, 在 60 min 时, NZVI/CS 的 Pb²⁺去除率可达到 100%, NZVI 和玉米淀粉去除率仅为 83%和 51%。因此, 载体和 NZVI 的吸附以及还原协同作用是负载型 NZVI 的优势。

沙柳,属杨柳科柳属植物,在我国内蒙古、宁 夏、甘肃、陕西等省区均有分布。沙柳枝干富含纤

维素、半纤维素、木质素,具有很高的生物质材料 利用价值^[19]。沙柳木粉中纤维素的质量分数为 36.95%、综合纤维素的质量分数为71.92%、木质素 的质量分数为 24.77%, 并含有大量以羟基为代表的 活性成分^[20],这些活性基团可与重金属离子发生交 换或配位反应。纤维素作为一种天然可再生资源, 对其改性一直是研究热点。羧甲基化反应是对纤维 素改性中醚化技术的一种,其产物羧甲基化纤维素 是天然纤维素改性后生成的一种纤维素醚,由于其具 有一定的吸附性能^[21],被广泛应用于废水处理中^[22]。 宋庆平^[23]等制备了 N-羧甲基壳聚糖,证明 N-羧甲基 壳聚糖对 Pb2+、Co2+、Ni2+、Cd2+的吸附能力优于壳 聚糖。曹向宇^[24]等采用改进的氧化沉淀法在羧甲基 纤维素体系中制得以磁性纳米 Fe₃O₄ 为核心,外层 包覆羧甲基纤维素的复合磁性纳米材料,并考察了 其对 Cu²⁺的吸附性能。迄今为止,鲜见对沙柳木粉 进行羧甲基化改性,并用羧甲基化沙柳木粉负载纳 米零价铁(NZVI/CMS)进行重金属吸附的报道。

因此,本文以沙柳木粉为原料,以无水乙醇、 氢氧化钠、氯乙酸为反应试剂,制备羧甲基化沙柳 木粉(CMS),以 CMS 为载体,采用液相还原法制备 NZVI/CMS。采用 SEM、FTIR、XRD 和 TEM 等表 征手段对 NZVI 和 NZVI/CMS 的微观结构进行了表 征,考察了 NZVI 和 NZVI/CMS 投加量、Pb²⁺溶液初 始质量浓度、吸附时间、吸附温度、Pb²⁺溶液 pH 对 Pb²⁺吸附性能的影响。本文为 NZVI 的应用提供了参 考依据,也为沙柳资源的利用开辟了一条新途径。

1 实验部分

1.1 试剂及仪器

沙柳:采购于内蒙古鄂尔多斯新街治沙站,将 沙柳刨花粉碎过 200 目筛,120 ℃干燥得沙柳木粉, 放置于密封袋备用;氢氧化钠、冰乙酸:AR,天津 市风船化学试剂科技有限公司;氯乙酸、硼氢化钠: AR,天津市北联精细化学品开发有限公司;无水乙 醇:AR,天津市河东区红岩试剂厂;六水合三氯化 铁、硝酸铅、硝酸:AR,国药集团化学试剂有限公 司;六次甲基四胺:AR,天津市盛奥化学试剂有限 公司。

扫描电子显微镜: 6701F 型, 日本 JSM; 傅里 叶变换红外光谱仪: Tensor27 型, 德国 Bruker 公司; X 射线衍射仪: XRD-6000 型, 日本 Shimadzon 公司; 透射电子显微镜: JEM-2100 型, 日本电子; 高速多 功能粉碎机:浙江省永康市金穗机械制造厂; 双光束紫外-可见分光光度计:TU-1901型,北京普 析通用仪器有限责任公司。

1.2 方法

1.2.1 NZVI 的制备

称取 9.66 g FeCl₃·6H₂O 溶于装有 40 mL 无水乙 醇和 10 mL 蒸馏水的三口烧瓶中,电动搅拌 20 min, 然后将配制好的 100 mL 浓度为 2 mol/L 的 NaBH₄ 水溶液逐滴滴入三口烧瓶中,待 NaBH₄溶液滴加完 毕,再搅拌 30 min,使溶液中的铁离子充分还原。 在整个反应过程中一直通入氮气保护。反应完毕后 进行抽滤分离,并用无水乙醇进行洗涤,分离出来 的 NZVI 在 50 ℃真空干燥箱中干燥 6 h,制得 NZVI 2.0 g,装袋备用。反应方程式如下所示。

4Fe³⁺+3BH₄+9H₂O→4Fe⁰↓+3H₂BO₃+6H₂↑+12H⁺ 1.2.2 CMS 的制备

将 2.0 g 沙柳木粉浸泡在质量分数为 15%的氢 氧化钠水溶液中 12 h, 过滤抽干后移入三口烧瓶中, 向烧瓶中加入 20 mL 无水乙醇并搅拌均匀, 将 2.0 g 氯乙酸分三批加入 3 口烧瓶中, 室温下反应 30 min 后, 在 60 ℃下反应 2 h, 抽滤,将产物溶于 10 mL 蒸馏水中,用醋酸与水体积比为 1:1 的醋酸水溶液 将体系 pH 调至 7.0 后,将其倒入 100 mL 无水乙醇中, 在布氏漏斗中浸泡 15 min 后抽滤,于 85 ℃真空干燥 箱中干燥 2 h 后,粉碎研磨,得到 CMS 1.8 g。 1.2.3 NZVI/CMS 的制备

称取 9.66 g 的 FeCl₃·6H₂O 溶于装有 40 mL 无水 乙醇和 10 mL 蒸馏水的三口烧瓶中,加入 2.0 g 制 备好的 CMS,电动搅拌 30 min 使之混合均匀,然 后将配制好的 100 mL 浓度为 2 mol/L 的 NaBH₄水溶 液逐滴滴入三口烧瓶中,待 NaBH₄溶液滴加完毕, 再搅拌 30 min,整个制备过程一直通入氮气保护。 反应完毕后进行抽滤分离,并用无水乙醇进行洗涤, 分离出来的 NZVI/CMS 在 50 ℃真空干燥箱中干燥 6 h,制得 NZVI/CMS 3.8 g,装袋备用。

1.2.4 吸附实验

Pb²⁺标准曲线的线性方程为: ρ=7.35802*A*+C (ρ为 Pb²⁺的质量浓度,mg/L;*A* 为吸光度;C 为 常数。线性相关系数为 0.9990)。

用移液管分别移取 50 mL 初始质量浓度为 600 和 400 mg/L 的 Pb²⁺溶液于两个锥形瓶中,分别将 pH 调至 4.5 和 4.0,分别加入 0.05 g 的 NZVI 和 0.01 g 的 NZVI/CMS,将锥形瓶盖紧后放入 30 ℃水浴恒 温振荡器中(120 r/min)振荡 120 min,吸附结束后 用离心机(4000 r/min)将吸附剂和 Pb²⁺溶液分离, 用双光束紫外-可见分光光度计测量吸附后溶液中 Pb²⁺的质量浓度,按下式计算吸附量 $Q_{e\circ}$

$Q_{\rm e} = (\rho_0 - \rho_{\rm e}) \times V/m$

式中: Q_e —吸附量 (mg/g); ρ_0 —Pb²⁺溶液的初始质 量浓度 (mg/L); ρ_e —吸附后溶液中剩余 Pb²⁺的质量 浓度 (mg/L); V—Pb²⁺溶液的体积 (L); m—吸附剂 的用量 (g)。

1.2.5 脱附实验

将吸附 Pb²⁺饱和的吸附剂置于 100 mL 锥形瓶 中,加入浓度为 0.05 mol/L 的 HNO₃溶液 50 mL, 将锥形瓶盖紧后放入水浴恒温振荡器中(30 ℃, 120 r/min)振荡 60 min,进行脱附实验。

1.2.6 循环吸附实验

为了考察 NZVI 和 NZVI/CMS 的循环使用性, 对 NZVI 和 NZVI/CMS 进行循环吸附脱附实验。向 两个含有 50 mL Pb²⁺初始质量浓度分别为 600 和 400 mg/L、溶液 pH 分别为 4.5 和 4.0 的 Pb²⁺溶液的 锥形瓶中分别加入 0.05 g 的 NZVI 和 0.01 g 的 NZVI/ CMS,在 30 ℃下吸附 120 min。吸附结束后,将吸 附剂和 Pb²⁺溶液分离,测定溶液中 Pb²⁺的质量浓度, 并计算吸附量。然后,将吸附完成后的吸附剂干燥 后分别进行脱附实验,脱附结束后,将吸附剂从溶 液里分离出来并再次对其进行干燥,干燥结束后进 行下一次吸附--脱附实验,吸附--脱附条件与第 1 次 一致,计算每一次吸附剂的吸附量。

1.3 表征

1.3.1 扫描电镜(SEM)分析

使用场发射扫描电子显微镜对 NZVI 和 NZVI/CMS 进行微观结构分析。将导电胶贴紧在样品台上,取适量的 NZVI 和 NZVI/CMS 于导电胶上,将未固定好的样品用吸耳球清理干净,然后对样品做干燥、喷金处理。在加速电压为 5 kV,放大倍数为 40000 的条件下进行观察。

1.3.2 红外光谱 (FTIR) 分析

使用傅里叶变换红外光谱仪对 NZVI 和 NZVI/CMS 进行红外光谱分析,试样做 KBr 压片处 理,分辨率为4 cm⁻¹,波数范围为 500~4000 cm⁻¹, 扫描次数 160 次。

1.3.3 X射线衍射(XRD)分析

使用 X 射线衍射仪对 NZVI 和 NZVI/CMS 进行 XRD 分析,将样品置于空白的载玻片上,压实后送 入样品室,入射波长为 0.514 nm,扫描范围为 10°~90°,扫描速度为 4(°)/min,扫描间隔为 0.02°, Cu 靶 Ka 射线。

1.3.4 透射电镜(TEM)分析

使用透射电镜对 NZVI 和 NZVI/CMS 进行 形貌分析,将样品固定于样品室中,在加速电压 100 kV 下对样品形貌进行观察。

2 结果与讨论

2.1 NZVI 和 NZVI/CMS 的微观结构分析

2.1.1 SEM 分析

NZVI(a)和NZVI/CMS(b)的SEM照片见图 1。由图 1a可以看出,NZVI颗粒呈球状或椭球状且大量的颗粒聚集成堆;由图 1b可以看出,NZVI 负载在 CMS 上后,NZVI颗粒的分散性较好,团聚现象明显降低,表明 CMS 能够有效阻止 NZVI的团聚。

2.1.2 FTIR 分析

NZVI(a)与 NZVI/CMS(b)的红外光谱图见图 2。 由图 2 可以看出,NZVI 在 3400 cm⁻¹ 处是羟基的伸 缩振动峰^[17],1643 cm⁻¹ 处是表面吸附水 O—H 的弯 曲振动吸收峰^[25],1410 cm⁻¹ 处是制备过程中加入 B 元素而产生的 B—O 的伸缩振动峰^[26],1021 cm⁻¹ 处 是 Fe₂O₃的特征吸收峰^[26]。NZVI/CMS 中,3400 cm⁻¹ 处 羟基的伸缩振动峰变宽变大,并向高波数 3500 cm⁻¹ 处移动,说明 NZVI/CMS 上羟基数目明 显增多,3190^[27]及 1685 cm^{-1[28]}处分别出现 CMS 中—CH₂—和—C = O 伸缩振动吸收峰,1643 cm⁻¹ 处的表面吸附水 O—H 的弯曲振动吸收峰较 NZVI 有所增强,1130、946、823 cm⁻¹ 处出现氢氧化铁中 羟基的特征吸收峰^[29],618 cm⁻¹ 处为 Fe₂O₃的特征 峰^[26]。上述分析表明,NZVI 和 NZVI/CMS 都受到 了不同程度的氧化,且 NZVI 成功负载在了 CMS 上。

图 2 NZVI(a)和NZVI/CMS(b)的红外光谱图 Fig. 2 FTIR spectra of NZVI(a) and NZVI/CMS(b)

2.1.3 XRD 分析

NZVI(a)与 NZVI/CMS(b)的 XRD 谱图见图 3。 由图 3 可以看出, NZVI 和 NZVI/CMS 在 2θ =44.7° 处均有一个衍射峰, 对应于 α -Fe 特征衍射峰^[30-31], 即合成样品中铁的主要形式为 α -Fe。与 NZVI 相比, NZVI/CMS 在 2θ =15.5°、18.0°、31.5°、35.0°等处出 现了一些较强的衍射峰,它们归属于 CMS,说明 NZVI 成功负载在 CMS 上。

图 3 NZVI(a)和NZVI/CMS(b)的XRD谱图 Fig. 3 XRD patterns of NZVI(a) and NZVI/CMS(b)

2.1.4 TEM 分析

NZVI(a)与NZVI/CMS(b)的TEM照片见图4。由图4可以看出,NZVI颗粒呈链状,且团聚在一起,这是由于颗粒之间相互吸引造成的^[32],而NZVI/CMS的分散性明显优于NZVI,说明CMS起到分散NZVI颗粒的作用。

图 4 NZVI (a)和 NZVI/CMS (b)的 TEM 照片 Fig. 4 TEM images of NZVI (a) and NZVI/CMS (b)

2.2 吸附条件对 NZVI 和 NZVI/CMS 吸附 Pb²⁺性能 的影响

2.2.1 吸附剂的投加量对吸附量的影响

在 Pb²⁺溶液初始质量浓度分别为 600 和 400 mg/L,吸附时间为 120 min,温度为 30 ℃,Pb²⁺ 溶液 pH 分别为 4.5 和 4.0 条件下,NZVI 和 NZVI/CMS 的投加量对吸附 Pb²⁺性能的影响见图 5, 实验方法同 1.2.4 节。由图 5 可见,随着投加量的增加,NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量都呈现先上升后下降的趋势。当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 和 0.01 g 时,NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量达到最大,分别为 390.3 和 535.5 mg/g。

这是由于,随着 NZVI 和 NZVI/CMS 投加量的增加, NZVI 和 NZVI/CMS 的有效比表面积也相对增大, Pb²⁺与 NZVI 和 NZVI/CMS 上的吸附位点能够充分 接触,有助于 Pb²⁺被 NZVI 还原^[33],但是溶液中 Pb²⁺ 的质量浓度是一定的,达到吸附平衡后,由吸附量 的计算公式可知,吸附剂投加量的增大必然会导致 吸附量持续下降。NZVI/CMS 的投加量为 0.01 g时 吸附量最大,而 NZVI 投加量为 0.05 g时吸附量最 大,这也说明将 NZVI 负载在 CMS 上吸附效率提高, 有效减弱了 NZVI 的团聚现象。

图 5 吸附剂投加量对 NZVI 和 NZVI/CMS 吸附 Pb²⁺吸附 量的影响

Fig. 5 Effect of dosage of NZVI # NZVI/CMS on the adsorption capacity for Pb²⁺

2.2.2 Pb²⁺溶液初始质量浓度对吸附量的影响

当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 和 0.01 g、吸附时间为 120 min、温度为 30 ℃、Pb²⁺ 溶液 pH 分别为 4.5 和 4.0 时, Pb²⁺溶液的初始质量 浓度对 NZVI 和 NZVI/CMS 吸附 Pb2+性能的影响见 图 6,实验方法同 1.2.4 节。由图 6 可见,随着 Pb²⁺ 溶液初始质量浓度的增大,NZVI和 NZVI/CMS 对 Pb²⁺的吸附量均呈现先增大后略有下降的趋势。当 Pb²⁺溶液初始质量浓度达到 600 和 400 mg/L 时, NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量达到最大,分 别为 390.3 和 535.5 mg/g。最初吸附量上升是因为, 随着溶液中 Pb²⁺的增多,与 NZVI 和 NZVI/CMS 表 面吸附位点接触的 Pb²⁺相应增多,而且随着 Pb²⁺质 量浓度的增加, 增大了金属离子的传质推动力, 减 少了吸附阻力^[34]。当 Pb²⁺质量浓度过高时,溶液中 的金属离子会发生水解,与H2O形成配合,所以吸 附量会略有下降^[35]。

2.2.3 吸附时间对吸附量的影响

当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 和 0.01 g、Pb²⁺溶液初始质量浓度分别为 600 和 400 mg/L、温度为 30 ℃、Pb²⁺溶液 pH 分别为 4.5 和 4.0 时,吸附时间对 NZVI 和 NZVI/ CMS 吸附 Pb²⁺ 性能的影响见图 7,实验方法同 1.2.4 节。由图 7 可

见,随着吸附时间的延长,NZVI和 NZVI/CMS 对 Pb²⁺的吸附量均呈现先增加后趋于稳定的趋势。在 120 min 时,NZVI和 NZVI/CMS 对 Pb²⁺的吸附量均 达到最大,分别为 390.3 和 535.5 mg/g。由于在吸附 初期 Pb²⁺可以在 NZVI 表面、CMS 表面以及 CMS 的内部被吸附,而且 NZVI 的还原作用也能极大提 高吸附量,所以,随着吸附时间的延长,吸附达到 饱和后,吸附量逐渐趋于平衡。

图 6 Pb²⁺溶液初始质量浓度对 NZVI 和 NZVI/CMS 吸附 Pb²⁺吸附量的影响

Fig. 6 Effect of initial mass concentration of Pb^{2+} on the adsorption capacity of NZVI and NZVI/CMS for Pb^{2+}

图 7 吸附时间对 NZVI 和 NZVI/CMS 吸附 Pb²⁺吸附量的 影响

Fig. 7 Effect of adsorption time on the adsorption capacity of NZVI and NZVI/CMS for Pb²⁺

2.2.4 吸附温度对吸附量的影响

当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 和 0.01 g、Pb²⁺溶液初始质量浓度分别为 600 和 400 mg/L、吸附时间为 120 min、Pb²⁺溶液 pH 分别 为 4.5 和 4.0 时,吸附温度对 NZVI 和 NZVI/CMS 吸附 Pb²⁺性能的影响见图 8,实验方法同 1.2.4 节。 由图 8 可见,吸附温度从 20 ℃上升至 30 ℃时,NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量明显提高,这表明在 一定温度范围内 NZVI 和 NZVI/CMS 对 Pb²⁺的吸附 和还原为吸热过程,温度升高有助于吸附和还原的 进行^[36]。当温度大于 30 ℃后,NZVI 对 Pb²⁺的

图 8 吸附温度对 NZVI 和 NZVI/CMS 吸附 Pb²⁺吸附量的 影响

Fig. 8 Effect of adsorption temperature on the adsorption capacity of NZVI and NZVI/CMS for Pb^{2+}

吸附量逐渐趋于平衡,说明升至一定温度后,NZVI 对 Pb²⁺的吸附受温度影响很小^[37]。当温度大于 30 ℃ 后,NZVI/CMS 对 Pb²⁺的吸附量略有下降,这可 能是因为吸附在 CMS 及 CMS 内部孔径的 Pb²⁺随 着温度升高热运动会加快,有可能导致脱附的加 剧,致使吸附量略有下降。所以,最佳吸附温度为 30 ℃。

2.2.5 Pb²⁺溶液 pH 值对吸附量的影响

当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 和 0.01 g、 Pb²⁺溶液初始质量浓度分别为 600 和 400 mg/L、吸附时间为 120 min、吸附温度为 30 °C 时, Pb²⁺溶液 pH 对 NZVI 和 NZVI/ CMS 吸附 Pb²⁺性能的影响见图 9,实验方法同 1.2.4 节。由图 9 可 见,在所选取的 pH 范围内,NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量均呈现先上升后下降的趋势,当 Pb²⁺溶液 pH分别为 4.5 和 4.0 时,NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量最大,分别为 390.3 和 535.5 mg/g。当 Pb²⁺溶液 pH 过低时,零价铁与水会在强酸的条件下发生反应,从而影响其吸附能力^[38];随着 Pb²⁺溶液 pH 增大,溶液中 OH 增多,会有氢氧化铁或碳酸铁钝化层在 NZVI 表面生成,降低 NZVI 反应 活性^[39],吸附量也会随之下降。

图 9 pH 对 NZVI 和 NZVI/CMS 吸附 Pb²⁺吸附量的影响 Fig. 9 Effect of pH value on the adsorption capacity of NZVI and NZVI/CMS for Pb²⁺

2.3 NZVI/CMS 吸附 Pb²⁺的机理考察

实验表明, CMS、NZVI 和 NZVI/CMS 在相同 的吸附条件下,即吸附剂的投加量为 0.01 g、Pb²⁺ 初始质量浓度为 400 mg/L、吸附时间为 120 min、 吸附温度为 30 ℃、Pb²⁺溶液 pH 为 4.0 时, CMS、 NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量分别为 35.2、 150.1 和 535.5 mg/g。由此可见,载体 CMS 对 NZVI/CMS 吸附 Pb²⁺吸附量的提升是有一定作用 的,主要为载体 CMS 表面的吸附位点的吸附及所带 活性基团的配位吸附。NZVI/CMS 对 Pb²⁺的吸附量 最大的最主要原因是,NZVI负载到 CMS 上后,有 效阻止了 NZVI 的团聚现象, NZVI 的分散性有了明 显的提高, 使得 NZVI 的比表面增大, NZVI 的吸 附能力和反应活性增强,从而导致 Pb²⁺被还原的效 率提高,所以 NZVI/CMS 对 Pb²⁺的吸附既有吸附作 用也有还原作用。综上所述, NZVI/CMS 对 Pb²⁺ 的吸附为载体 CMS 的吸附、NZVI 的吸附和还原的 共同作用,其中,载体 CMS 的吸附所做的贡献相 对较小。

2.4 NZVI 和 NZVI/CMS 的循环使用性能测定

按 1.3.6 节的方法对 NZVI 和 NZVI/CMS 进行 吸附-脱附实验。循环吸附次数对 NZVI 和 NZVI/ CMS 吸附 Pb²⁺性能的影响见图 10。由图 10 可见, 在 3 次循环吸附实验中,NZVI 对 Pb²⁺的吸附量从第 1 次的 390.3 mg/g 下降到第 4 次的 98.6 mg/g, NZVI/CMS 对 Pb²⁺的吸附量从第 1 次的 535.5 mg/g 下降到第 4 次的 469.7 mg/g。由此可见,NZVI/CMS 对 Pb²⁺的吸附量的下降幅度明显小于 NZVI, NZVI/CMS 的循环使用性要优于 NZVI。这是由于 CMS 作为载体,能够增强 NZVI 的稳定性,NZVI 还原 Pb²⁺的产物能从 NZVI 表面转移到载体上,延 缓了 NZVI 的钝化进程^[40]。因此,NZVI/CMS 较 NZVI 具有更优越的循环使用性能。

图 10 循环吸附次数对 NZVI 和 NZVI/CMS 吸附 Pb²⁺吸 附量的影响

3 结论

(1)采用 SEM、FTIR、XRD 和 TEM 对 NZVI 和 NZVI/CMS 的微观结构进行了表征。结果显示, NZVI 成功负载在 CMS 上,负载后的 NZVI 分散性 明显提高,团聚现象得到有效解决,CMS 起到分散 NZVI 颗粒的作用。

(2)考察了不同吸附条件(吸附剂投加量、Pb²⁺ 初始质量浓度、吸附时间、吸附温度、Pb²⁺溶液 pH) 对 NZVI 和 NZVI/CMS 吸附 Pb²⁺性能的影响。结果 显示:当 NZVI 和 NZVI/CMS 的投加量分别为 0.05 g 和 0.01 g、Pb²⁺初始质量浓度分别为 600 和 400 mg/L、吸附时间为 120 min、吸附温度为 30 ℃、Pb²⁺ 溶液 pH 分别为 4.5 和 4.0 时, NZVI 和 NZVI/CMS 对 Pb²⁺的吸附量最大,分别为 390.3 和 535.5 mg/g。

(3) NZVI/CMS 对 Pb²⁺的吸附依靠载体 CMS 的吸附、NZVI 的吸附以及 NZVI 还原 Pb²⁺的共同作用,载体 CMS 的吸附所做的贡献相对较小。

(4)将 NZVI 负载在 CMS 上, 重复使用效率提高,增强了 NZVI 在处理重金属废水过程中的循环 使用性能。

(5)本文在进行吸附实验时,并未完全模拟受 污染的重金属废水,而实际环境中的重金属废水成 分肯定会更复杂,可能会对吸附剂的吸附能力有一 定影响,下一步实验中可采用含 Pb²⁺、Cr²⁺的工业 废水作为研究对象。

参考文献:

- Acheampong M A, Meulepas R J W, Lens P N L. Removal of heavy metals and cyanide from gold mine wastewater[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(5): 590-613.
- [2] Gao Bo (高博), Li Qiang (李强), Zhou Huaidong (周怀东), et al. Application of ICP-MS in the health risk assessment of heavy metals for drinking water sources in reservoirs[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2014, 34(5): 1398-1402.
- [3] Sharma G, Pathania D, Naushad M, et al. Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water[J]. Chemical Engineering Journal, 2014, 251(5): 413-421.
- [4] Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell[J]. Journal of Colloid & Interface Science, 2004, 279(2): 307-313.
- [5] Al-Othman Z A, Inamuddin, Naushad M. Determination of ion-exchange kinetic parameters for the poly-o-methoxyaniline Zr(IV) molybdate composite cation-exchanger[J]. Chemical Engineering Journal, 2011, 166(2): 639-645.
- [6] Nabi S A, Bushra R, Naushad M, et al. Synthesis, characterization and analytical applications of a new composite cation exchange material poly-o-toluidine stannic molybdate for the separation of toxic metal ions[J]. Chemical Engineering Journal, 2010, 165(2): 529-536.
- [7] Alothman Z A, Alam M M, Naushad M. Heavy toxic metal ion

exchange kinetics: Validation of ion exchange process on composite cation exchanger nylon 66 Zr(IV) phosphate[J]. Journal of Industrial & Engineering Chemistry, 2013, 19(3): 956-960.

- [8] Zhang W X. Nanoscale iron particles for environmental remediation: an overview[J]. J Nanopart Res, 2003, 5(3/4): 323-332.
- [9] Kuiken T. Cleaning up contaminated waste sites: Is nano- technology the answer[J]. Nano Today, 2010, 5(1): 6-8.
- [10] Liu Junfeng (刘俊峰), Zhu Yibin (祝怡斌), Li Qing (李青), et al. Study on adsorption of Cr²⁺ by chitosan nanoscale zero-valent iron[C]//Chinese Society for Environmental Science (中国环境科学 学会学术年会). Beijing (北京): China Environmental Press (中国环 境出版社), 2015: 4425-4429.
- [11] Zhang Xin (张鑫). Research progress on removal of heavy metal ions from aqueous solution by nanoscale zero-valent iron[J]. Chemical Research (化学研究), 2010, 21(3): 97-100.
- [12] Efecan N, Shahwan T, Eroğlu A E, *et al.* Characterization of the uptake of aqueous Ni²⁺ ions on nanoparticles of zero-valent iron (NZVI)[J]. Desalination, 2009, 249(3): 1048-1054.
- [13] Yan Changcheng (晏长成), Chen Weifang (陈维芳), Pan Ling (潘玲), et al. Removal of lead in water by nano zero valent iron loaded on bentonite[J]. Journal of Water Resources & Water Engineering (水资源与水工程学报). 2013, 24(6): 20-24.
- [14] Zhang Yuling (张玉岭). Study on the removal of Cr(II) by zero-valent iron enhanced by pillared bentonite[D]. Hangzhou (杭 州): Zhejiang Sci-Tech University (浙江理工大学), 2011.
- [15] Xiao R, Wazne M. Assessment of aged biodegradable polymercoated nano-zero-valent iron for degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-riazine(RDX)[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(4): 711-718.
- [16] Yang Lingfang (杨灵芳). Research status of U(VI) removal by supported nanoscale zero-valent iron composite material[J]. Jiangxi Chemical Industry (江西化工), 2016, 32(3): 20-25.
- [17] He Yuanyuan (何元渊), Qi Caiju (祁彩菊), Zhong Wanjun (仲万军), et al. A study on the adsorption of Pb²⁺ in wastewater by walnut shell supported-Fe⁰[J]. Fine Chemicals (精细化工), 2014, 31(4): 480-485.
- [18] Gao Guozhen (高国振). Research on performance and mechanism of removing Pb(II) from aqueous solution by loaded nanoscale zero-valent iron[D]. Shanghai (上海): East China Institute of Technology (东华理工大学),2014.
- [19] Zhou Fengli (周锋利). Research on salix psammophila sawdust cultivation of pleurotus eryngii and utilization of fungus chaff[D]. Yangling (杨凌): Northwest A & F University (西北农林科技大学), 2013.
- [20] Huang Mingxing (黄明星). Study on the preparation process of microcrystalline cellulose from salix psammophila[D]. Zhengzhou (郑州): Zhengzhou University (郑州大学), 2014.
- [21] Crini G, Morin N, Rouland J C, et al. Adsorption de béta- naphtolsur des gels de cyclodextrine-carboxyméthylcelluloseréticulés[J]. European Polymer Journal, 2002, 38(6): 1095-1103.
- [22] Feng-Guo M A. The preparation of anionic super absorbent resin and its absorbing ability to copper ion[J]. Polymer Materials Science & Engineering, 2008, 24(6): 46-49.
- [23] Song Qingping (宋庆平), Wang Chongxia (王崇侠), Gao Jiangang (高建纲). Study on preparation of *N*-carboxymethyl chitosan and its adsorption to heavy metal ions[J]. Ion Exchange and adsorption (离 子交换与吸附), 2010, 26(6): 559-564.
- [24] Cao Xiangyu (曹向宇), Li Lei (李全), Chen Hao (陈灏). Preparation, characterization and adsorbability of magnetic carboxymethyl cellulose/Fe₃O₄ nano-composite particles[J]. Acta Chimica Sinica (化 学学报), 2010, 68(15): 1461-1466.

(下转第1239页)