功能材料

g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料制备 及其可见光催化性能

赵西连,卜鑫焱,范 辉,许胜华,樊宇顺,陈丛瑾*

(广西大学 化学化工学院,广西石化资源加工及过程强化技术重点实验室,广西 南宁 530004)

摘要: 以三聚氰胺、二水合钼酸钠和五水合硝酸铋为原料,采用溶剂热法制备了 g-C₃N₄/Bi₂MoO₆前驱体,然后 通过共沉淀法将 Ag₃PO₄纳米粒子负载在前驱体上,得到 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料。以盐酸四环素(TC) 为目标降解物,分析复合材料光催化活性。通过 XRD、FTIR、XPS、SEM、UV-Vis DRS 对复合材料进行了表 征。结果表明,g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄之间形成了异质结结构,促进光生电子-空穴对的有效分离。在可 见光照射下,30 mg g-C₃N₄/Bi₂MoO₆和 Ag₃PO₄复合材料在50 min 内对 40 mL 质量浓度 10 mg/L 的 TC 溶液的降解 率达到 93%。降解速率常数为 0.046 min⁻¹,分别为 g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄的 25.6、3.9 和 1.5 倍。复合材 料对 TC 进行降解循环利用 4 次后,对 TC 的降解率为 71%,说明复合材料具有较好的稳定性。自由基捕获实验 结果表明,g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料光催化降解 TC 的主要活性物种为•OH 和•O₂。 关键词:光催化;盐酸四环素;降解;复合材料;g-C₃N₄/Bi₂MoO₆/Ag₃PO₄;功能材料 **中图分类号:** X703; TQ426; O643.3 **文献标识码:**A **文章编号:** 1003-5214 (2022) 03-0533-08

Preparation of g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ composite and its visible light catalytic performance

ZHAO Xilian, BU Xinyan, FAN Hui, XU Shenghua, FAN Yushun, CHEN Congjin^{*}

(Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China)

Abstract: $g-C_3N_4/Bi_2MoO_6$ precursor was prepared by solvothermal method with melamine, sodium molybdate dihydrate and bismuth nitrate pentahydrate as raw materials, then loaded Ag₃PO₄ nanoparticles by coprecipitation method to obtain $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ composite. Its photocatalytic activity of tetracycline hydrochloride (TC) was analyzed. The composite was characterized by XRD, FTIR, XPS, SEM and UV-Vis DRS. The results showed that heterojunction structures were formed between $g-C_3N_4$, Bi_2MoO_6 and Ag_3PO_4 , which promoted the effective separation of photoelectron-hole pairs. The degradation rate of 30 mg $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ composite to 40 mL 10 mg/L TC reached 93% within 50 min under visible light irradiation. The corresponding rate constant was 0.046 min⁻¹, which was higher than $g-C_3N_4$, Bi_2MoO_6 and Ag_3PO_4 with 25.6 times, 3.9 times and 1.5 times, respectively. The degradation rate of TC was 71% after four cycles of $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$, indicating that $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ composite had better stability. The experimental result of free radical capture suggested that the main active species in the process of $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ composite for TC degradation were •OH and $•O_2^-$.

Key words: photocatalysis; tetracycline hydrochloride; degradation; composites; g-C₃N₄/Bi₂MoO₆/Ag₃PO₄; functional materials

盐酸四环素(TC)是最早发现的广谱抗生素。

由于现在 TC 被广泛应用于家畜饲养, 使得部分 TC

收稿日期: 2021-08-01; 定用日期: 2021-12-03; **DOI**: 10.13550/j.jxhg.20210775 基金项目: 国家自然科学基金(31660183); 广西石化资源加工及过程强化技术重点实验室开放基金(2020k003) 作者简介: 赵西连(1997—), 女, 硕士生。联系人: 陈丛瑾(1970—), 女, 教授, E-mail: gxdxccj@163.com。 被排放到环境中,进而产生耐抗生素的病菌,对生态系统和人类健康带来危害^[1-2]。TC浓度较低时传统的去除方法,如吸附法,只能将其从废水中转移到固体吸附剂上,难以将其彻底除去^[3-4]。半导体光催化技术是一种高效去除水中污染物的技术,其光催化过程可以简单概括为半导体材料受光激发后产生电子-空穴对,电子和空穴分别迁移到半导体表面,与电子供体和受体发生氧化还原反应^[5]。但是单一半导体催化剂存在太阳光利用效率低和光生电子-空穴对复合率高等问题,严重制约了光催化技术在实际中的应用^[5-6]。

g-C₃N₄和 Bi₂MoO₆都是窄带隙半导体,具有可 见光吸收能力强、无毒、高化学稳定性等优点,成 为光催化领域的研究热点,但是 g-C₃N₄较低的导电 率和 Bi₂MoO₆较高的光生载流子复合效率抑制了两 者的光催化活性^[7-8]。对于常见半导体来说,形成异质 结是最有效的提高其光催化降解能力的方法之一^[9]。 g-C₃N₄(-1.22 eV)具有比 Bi₂MoO₆(-0.38 eV)更负的 导带,而Bi₂MoO₆(2.34 eV)具有比g-C₃N₄(1.57 eV) 更正的价带。从理论上来说,g-C₃N₄和 Bi₂MoO₆可 以形成异质结^[10]。ZHEN 等^[11]制备了 S型的 g-C₃N₄/ Bi_2MoO_6 异质结,研究指出,对于 S 型的 g-C₃N₄/ Bi₂MoO₆在g-C₃N₄和Bi₂MoO₆之间形成内建电场, 能促进电子和空穴的有效分离。除了构建异质结外, 引入助催化剂也是很好的提升光催化能力的方法, 常见的助催化剂有 Pt、Pd、Ag等^[12]。但是这些贵金 属的价格比较昂贵,因此,科研人员主要采用以下 两种策略来满足实际应用的需要:一种是采用非金 属材料如石墨烯或者活性炭等代替贵金属^[13],本课 题组前期采用活性炭作为助催化剂,提高了光生载 流子分离效率的同时还提供了更多活性位点[14];另 外一种策略为降低贵金属的含量,采用含贵金属的 金属氧化物或者硫化物来代替,如 Ag₃PO₄和 MoS₂^[15-17]。Ag₃PO₄作为常见的半导体催化剂,光催 化能力强并且量子产率高,但是又由于自身光化学 稳定性差,在缺乏合适的电子清除剂时容易还原成 银单质而限制了其应用[18]。为了获得更好的光催化 性能,本研究将构建异质结和引入助催化剂两种方 法结合起来制备复合光催化剂。目前,鲜见将g-C₃N₄、 Bi_2MoO_6 和 Ag_3PO_4 复合制得复合材料的报道。

本研究先通过溶剂热法制备得到 g-C₃N₄/Bi₂MoO₆ 前驱体,再通过共沉淀法将 Ag₃PO₄ 负载在前驱体 上,合成 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ 复合物并进行表 征,其活性和稳定性通过降解 TC 来进行评估,最 后根据降解 TC 的活性物种和 TC 降解的中间产物提 出了在可见光下降解 TC 的可能机理和降解路径。

1 实验部分

1.1 试剂与仪器

硝酸银、乙二胺四乙酸二钠(EDTA-2Na)、异 丙醇(IPA)、无水乙醇,AR,广东光华科技有限公 司;盐酸四环素、二水合钼酸钠、磷酸氢二钠,AR, 国药集团化学试剂有限公司;对苯醌(BQ,质量分 数 97%)、三聚氰胺(质量分数 99%),阿拉丁试剂 (上海)有限公司;乙二醇,AR,成都金山化学试 剂有限公司;五水合硝酸铋,AR,天津市大茂化学 试剂厂。

SU8220 型扫描电子显微镜,牛津能谱公司; Ultima IV型 X 射线衍射仪,日本理学公司;UV-2600 型紫外-可见漫反射光谱仪,上海天美仪器有限公 司;K-Alpha 型 X 射线光电子能谱仪,美国 Carl Zeiss 公司;ORBITRAP ELITE 型组合式质谱仪,美国 Thermo Fisher 公司。

1.2 方法

1.2.1 g-C₃N₄的制备

称取 10g三聚氰胺置于坩埚中,带盖在马弗炉 中处理,以5 ℃/min 的升温速度升至 550 ℃,恒温 4h,降温至室温后取出,研磨称重,获得约 5.1g g-C₃N₄粉末样品。

1.2.2 g-C₃N₄/Bi₂MoO₆的制备

称取 0.2289 g (0.0024 mol) g-C₃N₄ 溶于 20 mL 无水乙醇中,搅拌下超声 30 min;同时,另一烧杯 中分别称取 0.8433 g (0.0017 mol)五水合硝酸铋和 0.2103 g (0.0008 mol)二水合钼酸钠,加入 10 mL 乙二醇,搅拌 30 min,然后将其倒入上述装有 g-C₃N₄ 的烧杯中,搅拌 1 h,转入 50 mL 高压反应釜中,置 于烘箱中 160 ℃下恒温 12 h。降至室温后取出,离 心洗涤,60 ℃烘干,获得 g-C₃N₄/Bi₂MoO₆ 样品。 Bi₂MoO₆ 的制备过程如上,不添加 g-C₃N₄。

1.2.3 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的制备

称取 0.2667 g g-C₃N₄/Bi₂MoO₆溶于 30 mL 去离 子水中,超声 30 min,加入 0.2378 g (0.0013 mol) 硝酸银,搅拌 2 h。称取 0.1704 g (0.0014 mol)磷酸 氢二钠溶于 10 mL 去离子水中,将其滴加到上述混 合液中,避光搅拌 4 h,转入 40 mL 离心管,离心洗 涤,60 °C烘干,获得黄色粉末状的 g-C₃N₄/Bi₂MoO₆/ Ag₃PO₄样品;Ag₃PO₄的制备过程同上,不加入 g-C₃N₄/Bi₂MoO₆;按照同样比例制备 g-C₃N₄/Ag₃PO₄ 催化剂,步骤同上,将 g-C₃N₄/Bi₂MoO₆换成 g-C₃N₄; 按照制备 g-C₃N₄/Bi₂MoO₆和 Ag₃PO₄ 混合在一起,得到 g-C₃N₄+Bi₂MoO₆+Ag₃PO₄混合物。

1.3 结构表征与性能测试

XRD 测试:采用原位 X 射线衍射仪探测样品晶型,室温下,Cu 靶,加速电压 40 kV,扫描范围 10°~ 80°; XPS 测试:采用 X 射线光电子能谱仪探测样品元素价态,Al 靶 K_α激发,能量 150 eV; SEM 测试:采用扫描电子显微镜测试样品表面形貌;FTIR 测试:采用傅里叶变换红外光谱仪对样品进行 FTIR 测试。

1.4 光催化降解实验

称取 30 mg 样品放入 40 mL TC 水溶液(10 mg/L) 中,在黑暗中搅拌 30 min,使溶液达到吸附平衡。 然后,在 500 W 模拟太阳光照射下开始降解。每 10 min 收集 2 mL 溶液并用 0.22 μm 滤膜过滤,滤液 用紫外-可见分光光度计在 TC 最大吸收波长 (357 nm)处测定 TC 的吸光度。TC 的降解率按下 式进行计算。

$\eta/\% = (1 - \rho_t/\rho_0) \times 100$

式中: η 为 TC 的降解率,%; ρ_t 为 TC 在光照射 *t* 时的质量浓度, mg/L; ρ_0 为 TC 的初始质量浓度, mg/L。

将降解后的 TC 溶液置于 40 mL 离心管中, 4000 r/min 下离心 5 min,倒掉上清液,分别用水和 乙醇洗涤 3 次,将洗涤后的光催化剂置于 60 ℃烘 箱干燥,得到回收的光催化剂,并将其用于下一次 光催化实验。

1.5 光催化降解 TC 可能机制分析方法

活性物种分析:分别添加 2 mmol/L BQ、IPA 和 EDTA-2Na 到上述光催化降解 TC 的体系中,用于捕 获反应体系中的超氧自由基(\cdot O₂)、羟基自由基 (\cdot OH)和空穴(h^+),探索 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ 复合材料降解 TC 过程中主要活性物种的作用机制。 UV-Vis DRS 测试:采用紫外-可见漫反射光谱仪探 测样品光吸收性能,扫描范围 200~800 nm。UPLC-MS 测试:探测 TC 降解产物,扫描范围为 *m*/*Z*=50~ 400,操作温度 180 °C,干燥气流速 0.2 L/min,喷 雾器电压和压力分别为 3000 V 和 40 kPa。

2 结果与讨论

2.1 结构与形貌表征

2.1.1 XRD 分析

不同催化剂的 XRD 谱如图 1 所示。

对于纯 Ag₃PO₄, 较明显的特征峰分别位于 20.88°、29.69°、33.29°、36.58°、52.69°、55.02°、 57.24°、61.64°和 71.89°处,分别对应 Ag₃PO₄的 (110)、(220)、(210)、(211)、(222)、(320)、(321)、 (400)和(421)晶面,与立方晶系 Ag₃PO₄的标准 卡片(PDF#06-0505)对应^[19]。而纯 Bi₂MoO₆的主 要特征衍射峰分别位于 28.25°、32.61°、47.15°和 55.55°,分别对应 Bi_2MoO_6 的(131)、(200)、(260) 和(331)面,与斜晶方 Bi_2MoO_6 的标准卡片(PDF#71-2086)一致^[20]。在 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的 XRD 图中,可以清晰地看到 Ag₃PO₄和 Bi₂MoO₆的特征峰,并且特征峰的位置没有发生变化,说明复合材料的形成没有破坏 Ag₃PO₄和 Bi₂MoO₆的晶格结构^[21]。复合材料 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的 XRD 图中没有出现 g-C₃N₄的衍射峰,可能是由于 g-C₃N₄结晶度不高,并且在复合物的表面分布比较分散,这与文献[22] 报道一致。

图 1 不同催化剂的 XRD 谱图 Fig. 1 XRD patterns of different catalysts

2.1.2 FTIR 分析

图 2 为不同催化剂的 FTIR 图。在 g-C₃N₄的 FTIR 图中,位于 3600~2800 cm⁻¹处的宽峰是 N—H 的伸 缩振动峰,1628 和 1238 cm⁻¹处分别为 C—N 和 C—N 的伸缩振动峰,803 cm⁻¹属于 g-C₃N₄内部三嗪结构 的伸缩振动峰^[22-23]。

Fig. 2 FTIR spectra of different catalysts

纯 Bi₂MoO₆在 839、738 和 439 cm⁻¹ 处分别出
现 Mo—O 的伸缩振动、Mo—O 的弯曲振动和 Bi—O 的伸缩振动峰^[24], 3300~3500 和 1400 cm⁻¹ 处为样
品表面吸附水分子的特征峰, 2400 cm⁻¹ 处较弱的峰
为空气中 CO₂ 的不对称伸缩振动峰^[25]。Ag₃PO₄ 在

1025 和 535 cm⁻¹处出现 P—O—P 的不对称伸缩振动 以及 O==P—O 的弯曲振动峰^[25]。在 g-C₃N₄/Bi₂MoO₆/ Ag₃PO₄ 的 FTIR 图谱中观察到, Bi₂MoO₆(1025 cm⁻¹) 和 Ag₃PO₄ (535 cm⁻¹)的峰有轻微红移,这可能是由 于 g-C₃N₄、Bi₂MoO₆ 和 Ag₃PO₄之间形成异质结,使 得彼此之间形成电子耦合作用导致^[10]。g-C₃N₄、 Bi₂MoO₆ 和 Ag₃PO₄ 的主要特征峰的存在表明, g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料的成功制备。 2.1.3 SEM 表征

图 3 为制备催化剂的 SEM 图。

- 图 3 $g-C_3N_4(a)$ 、 $Bi_2MoO_6(b)$ 、 $g-C_3N_4+Bi_2MoO_6+Ag_3PO_4$ (c)及 $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ 复合材料(d)的 SEM 图; $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ 的EDS 图(e)
- Fig. 3 SEM images of $g-C_3N_4$ (a), Bi_2MoO_6 (b), $g-C_3N_4$ + Bi_2MoO_6 +Ag₃PO₄ (c) and $g-C_3N_4$ /Bi₂MoO₆/Ag₃PO₄ composite (d); EDS spectrum (e) of $g-C_3N_4$ / Bi₂MoO₆/ Ag₃PO₄ composite

从图 3a 可见, g-C₃N₄ 呈现层状堆积结构。 Bi₂MoO₆为绣花球状结构(图 3b),可为反应提供 更多的活性位点。图 3c 为混合催化剂 g-C₃N₄+ Bi₂MoO₆+Ag₃PO₄ 的 SEM 图,可以看出样品比较分 散,g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄之间关联少,而在 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ 的 SEM 图中(图 3d), g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄之间紧密相连,为 3 个 半导体材料之间形成异质结提供了前提条件^[26]。从 图 3e 观察到,g-C₃N₄/Bi₂MoO₆/Ag₃PO₄中存在 N、 Bi、Ag、P、Mo、C和O元素,其中P、O、Ag 的 信号峰源于 Ag_3PO_4 的存在, Bi 和 Mo 的信号峰源于 Bi_2MoO_6 , C 和 N 源于 g- C_3N_4 , 说明所制备的复合 材料中存在着 g- C_3N_4 、 Bi_2MoO_6 和 Ag_3PO_4 , 这与 FTIR 与 XRD 的分析结果一致。

2.1.4 XPS 分析

图 4 为 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的 XPS 全谱图 和 Ag 3d、Bi 4f、C 1s、Mo 3d、N 1s、O 1s、P 2p 的高分辨 XPS 图谱。由图 4a(XPS 全谱图)可知, $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4 \pm Ag_Bi_C_MO_N_O$ 和 P 组成。图 4b 中出现了 367.6 和 373.6 eV 两个 特征峰, 分别对应 Ag 3d5/2 和 Ag 3d3/2, 表明 g-C3N4/ Bi₂MoO₆/Ag₃PO₄中 Ag 以 Ag⁺的形式存在^[21]。图 4c Bi 4f 的高分辨率 XPS 图分为 4 个峰。其中, 158.4 和 163.6 eV 两个峰分别对应 Bi 4f7/2 和 Bi 4f5/2, 说明 样品中 Bi 以 Bi³⁺的形式存在^[27], 而另外两个峰归属 于 g-C₃N₄和 Bi₂MoO₆之间形成的 Bi-O-C^[20]。在 图 4d 中, 位于 284.2 eV 处的峰归属于 g-C₃N₄ 中以 sp²杂化的 C==C, 而位于 287.8 eV 处的特征峰归属 于 N-C==N^[27]。图 4e 为 Mo 3d 的高分辨率 XPS 图, 位于 231.6 和 234.7 eV 的两个峰分别对应 Bi₂MoO₆ 中 Mo⁶⁺的 Mo 3d_{5/2} 和 Mo 3d_{3/2}^[28-29], 而 232.2 和 235.7 eV 处的峰归属于 g-C₃N₄ 和 Bi₂MoO₆ 之间形成 的 Mo-O-C。图 4f 中将 N 1s 分为两个峰, 398.5 eV 处峰归属于芳香环中以 sp² 杂化的 N(C-N=C), 而 400.9 eV 处归属于氨基 N(C-NH)^[27]。图 4g 中, O 1s 在 529.8 eV 处的峰归属于 Bi2MoO6表面的 Bi-O, 530.8 eV 处峰归属于 Mo-O, 而 532.4 eV 处峰可能 归属于复合材料表面吸收的氧或者是羟基中的氧[27]。 图 4h 为 P 2p 的高分辨率 XPS 图。图 4h 中出现一个结 合能为 132.6 eV 的峰, 归属于 PO₄⁻中的磷^[30]。Bi 4f 和 Mo 3d 中 Bi-O-C 和 Mo-O-C 的存在进一步证实 了材料之间形成了电子耦合作用[10]。综合上述结果, 证明g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料是形成异质结而 不是单一物理混合。

2.2 光催化性能评价

图 5 为不同催化剂光催化降解 TC 的实验结果, 通过测量可见光下不同催化剂光催化降解 TC 的效 率来考察材料的光催化降解能力。

开灯进行光催化反应前,所有反应先避光搅拌 30 min,使其达到吸附平衡。在可见光照射 50 min 后,g-C₃N₄/Bi₂MoO₆/Ag₃PO₄光催化降解 TC 的降解 率达到 93%(包含避光),说明 Bi₂MoO₆和 Ag₃PO₄ 引入后,g-C₃N₄对 TC 的光催化降解效果明显增强, 高于 g-C₃N₄/Bi₂MoO₆和 g-C₃N₄/Ag₃PO₄催化剂。这是 由于 Bi₂MoO₆的绣花球状结构为反应增加了活性位 点,同时 g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄之间异质结的 形成,降低了光生电子-空穴对的复合,提高了光催 化性能。混合催化剂 g-C₃N₄+Bi₂MoO₆+Ag₃PO₄对 TC 的降解率为 58%, 远远低于复合材料 g-C₃N₄/ Bi₂MoO₆/Ag₃PO₄,说明 g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄ 之间构建异质结形成复合材料而不是单一混合。为了 进一步了解反应的动力学,对 g-C₃N₄/Bi₂MoO₆/ Ag₃PO₄降解 TC 的过程进行了动力学模拟,如图 6 所示。由图 6 可知,g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的-ln(ρ_t/ρ_0) 与时间 t 呈线性关系,说明催化剂降解 TC 的过程符 合拟一级动力学模型。g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的反 应动力学速率常数(k, 0.046 min⁻¹)分别是 g-C₃N₄、 Bi₂MoO₆ 和 Ag₃PO₄ 的 25.6、3.9 和 1.5 倍。证实 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料具有较高催化性能。

为进一步探讨 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的循环 利用性,将 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄和 Ag₃PO₄进行 了 4 次循环降解 TC 的实验,结果如图 7 所示。由

图 7 可知, Ag₃PO₄循环利用 4 次后对 TC 的降解率

显示出明显的下降趋势。 $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ 在循环利用 4 次后对 TC 的降解率为 71%, 而 Ag_3PO_4 循环利用 4 次后对 TC 的降解率降为 15.7%, 说明 $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ 具有比 Ag_3PO_4 更好的稳定性。

- 图 7 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料和Ag₃PO₄的循环 利用性能
- Fig. 7 Cycle-stability of $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ composite and Ag_3PO_4

2.3 UV-Vis DRS 表征

为了分析复合催化剂的光学吸收情况,采用 UV-Vis DRS 对 g-C₃N₄、Bi₂MoO₆、Ag₃PO₄和 g-C₃N₄/ Bi₂MoO₆/Ag₃PO₄进行测试,结果如图 8 所示。

图 8 不同催化剂的 UV-Vis 吸收谱图 Fig. 8 UV-Vis absorbance spectra of different catalysts

由图 8 可知,所有催化剂都具有可见光吸收能力,纯g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄的光吸收边缘分别在 450、475 和 520 nm 左右,而g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的吸收边缘在约 510 nm,相比于g-C₃N₄和 Bi₂MoO₆有明显红移。并且g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ 具有比g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄3个材料更大的吸收强度,说明材料复合后能吸收更多的可见光光子,从而增强可见光催化性能^[31-32]。根据 Kubelta-Munk 法来计算样品的禁带宽度^[25,32],结果如图 9 所示。g-C₃N₄/Bi₂MoO₆/Ag₃PO₄的禁带宽度 (2.51 eV)比g-C₃N₄ (2.63 eV)、Bi₂MoO₆ (2.75 eV)小,说明 Ag₃PO₄、g-C₃N₄和 Di₂MoO₆ 复合后, g-C₃N₄/Bi₂MoO₆/Ag₃PO₄对可见光的吸收效率提高, 光生电子-空穴对的产生速率加快[33]。

2.4 活性物种捕捉实验

为了进一步探索 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ 催化 降解 TC 反应体系中的主要活性物质,在反应体系 中添加了不同的捕获剂^[17],结果如图 10 所示。

- 图 10 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ 复合材料的自由基捕捉 实验
- Fig. 10 Trapping experiment of $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ composite

由图 10 可知,在加入 EDTA-2Na 后,g-C₃N₄/ Bi₂MoO₆/Ag₃PO₄复合材料对 TC 的降解率并没有较 大改变,说明在降解 TC 过程中,h⁺几乎没有起作用; 而加入 IPA 和 BQ 后,TC 的降解率分别减小到 61.2% 和 45.5%,证明加入 IPA 和 BQ 后,•OH 和•O₂被捕 获,导致 TC 的降解受到影响,说明在 g-C₃N₄/Bi₂MoO₆/ Ag₃PO₄降解 TC 的过程中,•OH 和•O₂起主要作用。

2.5 光催化机理讨论

基于以上分析,提出了一种可见光照射下 g-C₃N₄/ Bi₂MoO₆/Ag₃PO₄降解 TC 的可能机理,如图 11 所示。

在可见光照射下, g-C₃N₄/Bi₂MoO₆/Ag₃PO₄中的 Bi₂MoO₆、g-C₃N₄和 Ag₃PO₄均被激发产生电子-空穴 对,由于电子和空穴之间的静电吸引^[25],Bi₂MoO₆ 和 Ag₃PO₄导带(CB)上的电子转移到 g-C₃N₄价带 (VB)上,并与 g-C₃N₄ 价带上的空穴发生有效复

合,导致 g-C₃N₄导带上富集电子而 Bi₂MoO₆和 Ag₃PO₄ 价带上富集空穴,导致光生电子-空穴对在 空间上的分离。g-C₃N₄导带上富集的电子与水中溶 解的 O2 反应生成的•O2直接与 TC 发生氧化还原反 应,而Bi₂MoO₆和Ag₃PO₄价带上累积的空穴与H₂O 反应生成•OH,•OH 降解催化剂表面的 TC 分子,生 成 CO_2 和 H_2O 等小分子。综上所述, 制备的 g-C₃N₄/ Bi₂MoO₆/Ag₃PO₄复合材料增加了光生电子空穴对 的分离,使得更多的•OH和•O2产生并且参与了TC 的降解,大大提高了催化剂的光催化降解效果。

2.6 TC 降解可能的路径探讨

采用组合式质谱仪 UPLC-MS 对复合材料 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄光催化降解 TC 过程中的产 物进行分析,提出 TC 降解过程中可能存在的一些 中间体,并根据这些中间体提出了降解 TC 可能的 路径图,如图12所示。

首先, 溶液中的 TC 分子失去 CI-形成质子化的 TC (TC-H⁺, m/Z=445), 两个环中的共轭双键被打

开(m/Z=481); 随后,季铵基上的甲基脱离(m/Z= 453)。随着反应时间的延长,还检测到其他低 m/Z 值的峰, 表明 TC 降解过程中产生的中间体将会被 矿化氧化成小分子 (m/Z=274、162 和 136), 最终 被降解为NH⁺、CO₂和H₂O等。

- 图 11 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料光催化降解 TC 的可能机理示意图
- Possible mechanism of photocatalytic degradation Fig. 11 of TC by g-C₃N₄/Bi₂MoO₆/Ag₃PO₄ composite

Fig. 12 Possible photodegradation pathways of TC

结论 3

(1)采用共沉淀法将 Ag3PO4 负载在 g-C3N4/ Bi_2MoO_6 前驱体上,制备了一种复合材料 $g-C_3N_4/Bi_2MoO_6/Ag_3PO_4$ \circ

(2) 与纯 g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄相比, g-C₃N₄/Bi₂MoO₆/Ag₃PO₄表现出更高的光催化性能。 30 mg g-C₃N₄/Bi₂MoO₆/Ag₃PO₄在可见光照射 50 min 后,对 40 mL 初始质量浓度为 10 mg/L TC 的降解率 达到 93%,并且在循环利用 4 次后表现出比纯 Ag₃PO₄更好的稳定性。

(3)在 g-C₃N₄/Bi₂MoO₆/Ag₃PO₄复合材料降解 TC 体系中,•OH 和•O₂起主要作用。

(4)g-C₃N₄/Bi₂MoO₆/Ag₃PO₄光催化活性高主要 归因于 g-C₃N₄、Bi₂MoO₆和 Ag₃PO₄之间形成异质结, 促进了光生电子和空穴的有效分离。

参考文献:

- GOMEZPACHECO C V, SANCHEZPOLO M, RIVERA J, et al. Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation[J]. Chemical Engineering Journal, 2013, 178: 115-121.
- [2] CETECIOGLU Z, LNCE B, GROS M, *et al.* Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions[J]. Water Research, 2011, 47(9): 2959-2969.
- [3] KUMMERER K. Antibiotics in the aquatic environment—A review-Part I[J]. Chemosphere, 2009, 75(4): 417-434.
- [4] HU M, MENG Q, WANG X, et al. Ti⁺₃ self-doped mesoporous black TiO₂/SiO₂/g-C₃N₄ sheets heterojunctions as remarkable visible-light driven photocatalysts[J]. Applied Catalysis B Environmental, 2018, 226: 499-508.
- [5] MARSCHALL R. Semiconductor composites: Trategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Advanced Functional Materials, 2014, 24(17): 2420-2440.
- [6] MAO D J, DING S S, MENG L J, et al. One-pot microemulsionmediated synthesis of Bi-rich Bi₄O₅Br₂ with controllable morphologies and excellent visible-light photocatalytic removal of pollutants[J]. Applied Catalysis B Environmental, 2017, 207: 153-165.
- [7] IWASE A, YUN H N, ISHIGURO Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light[J]. Journal of the American Chemical Society, 2011, 133(29): 11054-11057.
- [8] XIAO X P, WEI J H, YANG Y, *et al.* Photoreactivity and mechanism of g-C₃N₄ and Ag co-modified Bi₂WO₆ microsphere under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3017-3023.
- [9] LEEJ Y, JO W K. Heterojunction-based two-dimensional N-doped TiO₂/WO₃ composite architectures for photocatalytic treatment of hazardous organic vapor[J]. Journal of Hazardous Materials, 2016, 314(15): 22-31.
- [10] MENG Q Q (孟庆强). Preparation and study of Bi₂MoO₆ based photocatalyst[D]. Harbin: Harbin Institute of Technology (哈尔滨工 业大学), 2020.
- [11] ZHEN Y Z, YANG C M, SHEN H D, et al. Photocatalytic performance and mechanism insights of a S-scheme g-C₃N₄/Bi₂MoO₆ heterostructure in phenol degradation and hydrogen evolution reactions under visible light[J]. Physical Chemistry Chemical Physics, 2020, 22(45), 26278-26288.
- [12] LEE S Y, JUNG N, SHIN D Y, et al. Self-healing Pd₃Au@Pt/C coreshell electrocatalysts with substantially enhanced activity and durability towards oxygen reduction[J]. Applied Catalysis B Environmental, 2017, 206: 666-674.
- [13] TSANG C A, TOBIN J, JIN X, et al. BTZ-copolymer loaded graphene aerogel as new type green and metal-free visible light photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 240: 50-63.
- [14] BU X Y (卜鑫焱), HUANG Q L (黄权龙), ZHAO X L (赵西连), et al. Photocatalytic degradation of bisphenol A by WO₃/C/Ag₃PO₄ composites[J]. Fine Chemicals (精细化工), 2021, 38(3): 496-503.
- [15] ZHENG Z, MENG J, AO X G, et al. Few-layer MoS₂ nanosheetsdeposited on Bi₂MoO₆ microspheres: A Z-scheme visible-light photocatalyst with enhanced activity[J]. Catalysis Today, 2018, 315: 67-78.
- [16] MENG X Y, HAO M J, SHI J Z, et al. Novel visible light response

Ag₃PO₄/TiP₂O₇ composite photocatalyst with low Ag consumption[J]. Advanced Powder Technology, 2017, 28(3): 1047-1053.

- [17] ZHANG H S, YU D, WANG W, *et al.* Multiple heterojunction system of Bi₂MoO₆/WO₃/Ag₃PO₄ with enhanced visible-light photocatalytic performance towards dye degradation[J]. Advanced Powder Technology, 2019, 30(9): 1910-1919.
- [18] ALHOKBANY N S, MOUSA R, MU N, et al. Fabrication of Z-scheme photocatalysts g-C₃N₄/Ag₃PO₄/chitosan for the photocatalytic degradation of ciprofloxacin[J]. International Journal of Biological Macromolecules, 2020, 164: 3864-3872.
- [19] LI T F, WEI H R, JING H Z, et al. Mechanisms for highly-efficient mineralization of bisphenol A by heterostructured Ag₂WO₄/Ag₃PO₄ under simulated solar-light[J]. ACS Sustainable Chemistry & Engineering, 2019,7(4): 4177-4185.
- [20] TIAN J, CHEN D, CHEN C, et al. Novel Z-Scheme g-C₃N₄/ C@Bi₂MoO₆ composite with enhanced visible-light photocatalytic activity for beta-naphthol degradation[J]. Separation and Purification Technology, 2017, 183: 54-65.
- [21] ZHU P F, CHEN Y H, DUAN M, et al. Construction and mechanism of a highly efficient and stable Z-scheme Ag₃PO₄/reduced graphene oxide/Bi₂MoO₆ visible-light photocatalyst[J]. Catalysis Science & Technology, 2018, 8(15): 3818-3832.
- [22] YU J G, WANG S H, LOW J X, *et al.* Enhanced photocatalytic performance of direct Z-scheme g-C₃N₄-TiO₂ photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics, 2013, 15(39): 16883-16890.
- [23] ZHU C Z, WANG Y T, JANG Z J, et al. CeO₂ nanocrystal-modified layered MoS₂/g-C₃N₄ as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H₂O reactant adsorption[J]. Applied Catalysis B: Environmental, 2019, 259: 118072.
- [24] SUN Y Y, WU J, MA T J, et al. Synthesis of C@Bi₂MoO₆ nanocomposites with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2017, 403: 141-150.
- [25] LIU Y, YANY Z H, SONG P P, et al. Facile synthesis of Bi₂MoO₆/ ZnSnO₃ heterojunction with enhanced visible light photocatalytic degradation of methylene blue[J]. Applied Surface Science, 2018, 430: 561-570.
- [26] XU Y S, ZHANG W D. Monodispersed Ag₃PO₄ nanocrystals loaded on the surface of spherical Bi₂MoO₆ with enhanced photocatalytic performance[J]. Dalton Transactions, 2013, 42(4): 1094-1101.
- [27] LI H P, LIU J Y, HOU W G, et al. Synthesis and characterization of g-C₃N₄/Bi₂MoO₆ heterojunctions with enhanced visible light photocatalytic activity[J]. Applied Catalysis B Environmental, 2014, 160: 89-97.
- [28] DAN Y, WANG W F, PENG C, et al. Multiple heterojunction system of Bi₂MoO₆/WO₃/Ag₂WO₄ with enhanced visible-light photocatalytic performance towards dye degradation[J]. Advanced Powder Technology, 2019, 30(9): 1910-1919.
- [29] LI J Y, YU X, ZHU Y, et al. 3D-2D-3D BiOI/porous g-C₃N₄/graphene hydrogel composite photocatalyst with synergy of adsorptionphotocatalysis in static and flow systems[J]. Journal of Alloys and Compounds, 2021, 850: 156778.
- [30] SHEN K, GONDAL M A, SIDDIQUE R G, et al. Preparation of ternary Ag/Ag₃PO₄/g-C₃N₄ hybrid photocatalysts and their enhanced photocatalytic activity driven by visible light[J]. Chinese Journal of Catalysis, 2014, 35(1): 78-84.
- [31] LIU X W, XU J J, LI Z Y, et al. Adsorption and visible-light-driven photocatalytic properties of Ag₃PO₄/WO₃ composites: A discussion of the mechanism[J]. Chemical Engineering Journal, 2019, 356: 22-33.
- [32] LI Y F, JIN R X, FANG X, et al. In situ loading of Ag₂WO₄ on ultrathin g-C₃N₄ nanosheets with highly enhanced photocatalytic performance[J]. Journal of Hazardous Materials, 2016, 313: 219-228.
- [33] HUANG Y C, FAN W J, LONG B, et al. Visible light Bi₂S₃/Bi₂O₃/ Bi₂O₂CO₃ photocatalyst for effective degradation of organic pollutions[J]. Applied Catalysis B: Environmental, 2016, 185: 68-76.