精细化工中间体

FgaPT2 酶催化合成 C-4 异戊烯基化吲哚 二酮哌嗪和定向诱变增强收率

张弘弛^{1,2},刘瑞^{1,2*},高志慧²,李慧²,杨阳²

(1. 山西大同大学 生命科学学院 山西 大同 037009; 2. 山西大同大学 应用生物技术研究所 山西 大同 037009)

摘要: 在二甲基烯丙基二磷酸存在下,通过 FgaPT2 酶催化合成了一系列 C-4 异戊烯基化吲哚二酮哌嗪,测试了 其生物活性,对生物活性最高的产物,探讨了通过定点诱变提高酶合成的可行性。结果表明,FgaPT2 酶催化合 成了 7 个 C-4 异戊烯基化吲哚二酮哌嗪,FgaPT2 对底物具有一定的选择性,环-L-色氨酸-L-酪氨酸(Ie)异戊 烯基化催化效果最好,产物环-L-4-二甲基烯丙基-色氨酸-L-酪氨酸(Ie)收率达 36.1%。C-4 异戊烯基化显著 提高了吲哚二酮哌嗪的生物活性,尤其是环-L-4-二甲基烯丙基-色氨酸-L-色氨酸(If)对 A549 和 MCF-7 细胞 达到 50%抑制效果时抑制剂的浓度(IC₅₀值)分别为 54.6 和 30.7 µmol/L,对测试细菌和真菌的最低抑制浓度(MIC 值)在 0.5~4 mg/L,1,1-二苯基-2-三硝基苯肼自由基清除活性的 IC₅₀值为 98 µmol/L。Arg-244 的定点诱变表明, 在 19 个突变体中,52.6%的 FgaPT2 突变体提高了 II f 收率,动力学参数验证了环-L-色氨酸-L-色氨酸(If)与 突变 FgaPT2 之间的相互作用,可以提高 II f 收率,其中 R244M 对 I f 的亲和力最高,Michaelis-Menten 常数(K_M) 为 0.14 mmol/L,转化数(*k*_{cat})为 0.0647 1/s, *k*_{cat}/*K*_M为 462.14 L/(s·mmol),产物收率最高,为 36.9%±1.2%。 关键词:吲哚二酮哌嗪,异戊二烯色氨酸合成酶;生物活性;定向诱变;精细化工中间体 **中图分类号**: O629.3; TQ251.3; TQ426 **文献标识码**:A **文章编号**: 1003-5214 (2022) 03-0633-11

FgaPT2 enzymatic synthesis of C-4 isopentenylated indole diketopiperazines and directed mutagenesis enhanced yield

ZHANG Hongchi^{1,2}, LIU Rui^{1,2*}, GAO Zhihui², LI hui², YANG Yang²

(1. College of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China; 2. Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, Shanxi, China)

Abstract: In the presence of dimethylallyl diphosphate, a series of C-4 isopentenylated indole diketopiperazines were synthesized by FgaPT2 enzymatic catalysis. The bioactivity of the products was tested. For the product with the highest biological activity, the feasibility of site-directed mutagenesis to increase the yield of enzyme synthesis was studied. The results showed that seven C-4 isopentenylated indole diketopiperazines were obtained. FgaPT2 exhibited certain selectivity for substrates, and had the best catalytic effect on cyclo-L-tryptophan-L-tyrosine (I e), the product cyclo-L-4-dimethylallyl-Trp-L-Tyr (II e) had a yield of 36.1%. C-4 isopentenylation significantly improved the biological activity of indoledione piperazine. Especially, for cyclo-L-4-dimethylallyl-Trp-L-Trp (II f), the IC₅₀ [half maximal (50%) inhibitory concentration] values of test bacteria and fungi were 0.5~4 mg/L, and the IC₅₀ value of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity was 98 μ mol/L. Site-directed mutagenesis of Arg-244 showed that among nineteen mutants, 52.6% of FgaPT2 mutants increased the yield of II f. Kinetic parameters verified the interaction between cyclo-L-Trp-L-Trp (I f) and mutant of FgaPT2, which

作者简介: 张弘弛(1980-), 男, 副教授, E-mail: zhanghclw@163.com。联系人: 刘 瑞(1982-), 女, 教授, E-mail: liurlw@163.com。

收稿日期: 2021-08-25; 定用日期: 2021-11-10; DOI: 10.13550/j.jxhg.20210862

基金项目:山西省应用基础研究计划(201801D221240);山西省高等学校科技创新项目(2020L0485);山西大同大学科研基金(2019K15)

could increase the yield of II f. Among them, R244M had the highest affinity to I f, the Michaelis-Menten constant ($K_{\rm M}$) was 0.14 mmol/L, conversion number ($k_{\rm cat}$) was 0.0647 1/s, $k_{\rm cat}/K_{\rm M}$ was 462.14 L/(s·mmol), and the product obtained the highest yield of 36.9%±1.2%.

Key words: indole diketopiperazines; dimethylallyl tryptotphan synthase; bioactivities; site-directed mutagenesis; fine chemical intermediates

异戊烯基化吲哚二酮哌嗪是存在于多种生物体 中的一大类天然产物^[1-2]。异戊二烯基可以通过与膜 相关蛋白质的相互作用改善生物膜的亲和力^[3],进 而提高异戊烯基化吲哚二酮哌嗪的生物活性,如抗 真菌、抗细菌、抗病毒、抗寄生虫、抗炎、抗肿瘤、 抗雌激素活性和化学预防作用等^[4]。目前,异戊烯 基化吲哚二酮哌嗪的合成方法包括:对映选择性合 成法、区域选择性合成法、氨基酸缩合法、 Pictet-Spengler 法和固相合成法,但这些合成策略涉 及无水或厌氧条件,使用对环境有害的化学物质以 及极端温度^[5-6],还需要额外的步骤来保护和脱保护 官能团^[7]。因此,需要一种更高效,更温和的合成 策略。

酶催化合成被认为是理想的途径之一, 真菌细 胞内,异戊二烯基转移酶(DMATS)参与此类天然 产物的生物合成,通过 Friedel-Crafts 烷基化反应将 异戊二烯基从不同的供体转移至各种受体[8]。迄今 为止,已报道的 DMATS 有 50 多个^[9]。DMATS 基 本都使用二甲基烯丙基二磷酸(DMAPP)作为供体, L-色氨酸或含色氨酸的环状二肽作为受体。例如, CdpC2PT^[10]、AnaPT^[11]、FgaPT2^[12]、5-DMATS^[13]、 6-DMATSSv^[14]和 7-DMATS^[15]催化区域分别在 L-色 氨酸吲哚环的 C-2、C-3、C-4、C-5、C-6 和 C-7 位。 但 DMATS 在自然条件下活性较低, 传统研究主要 集中在通过优化条件来提高酶活性[16]。近年来,酶 的位点饱和诱变成为增强或改变催化活性的研究 点,如 FtmPT1的 Tyr205 突变体与未突变 FtmPT1 相比, C-3 异戊烯基化衍生物的活性明显增加^[17]。 FgaPT2 在 Glu89, Thr102, Lys174 和 Arg-244 这 4 个位点突变后的酶对L-色氨酸和L-酪氨酸产生了差

本课题组完成了 C-7 异戊烯基化吲哚二酮哌嗪 的相关研究^[20],目前又聚焦 C-4 异戊烯基化吲哚二 酮哌嗪的酶合成。本研究拟考察 FgaPT2 对不同底 物异戊烯基化的影响,通过多种生物活性模型,拟 筛选出具有更高活性的 C-4 异戊烯基化吲哚二酮哌 嗪,采用分子模型分析 FgaPT2 中与异戊烯基化活 性相关的关键残基,基于此建立位点饱和诱变,进 而探讨突变的 FgaPT2 与底物之间相互作用的分子 影响,为深入研究异戊烯基化吲哚二酮哌嗪的生物

异性的酶催化活性[18-19]。

合成提供理论支撑。

1 实验部分

1.1 试剂与仪器

各种氨基酸,国药集团化学试剂有限公司; Ni-NTA 琼脂糖树脂、pGEM-T、pQE60、pIU18(用 作 FgaPT2 过量生产的载体,并用作定点诱变的 DNA 模板),德国 Qiagen 公司;高效液相色谱 (HPLC)的所有化学药品,上海星可生化有限公司; 烟曲霉 Aspergillus fumigatus B5233(ATCC 13073) 的 UniZAP XR 预制文库,美国 Stratagene 公司;大 肠杆菌 BL21 (DE3) pLysS 和大肠杆菌 XL1-Blue MRF',德国 Invitrogen 公司,分别用于克隆和表达 实验; PCR 长模板链(用作 PCR 扩增反应),德国 罗氏有限公司;测试微生物,革兰氏阳性细菌: Bacillus subtilis Staphylococcus aureus Staphylococcus epidermis, Staphylococcus simulans; 革兰氏阴性细菌: Escherichia coli、Klebsiella pneumoniae Proteus mirabilis Pseudomonas aeruginosa; 医学真菌: Aspergillus flavus、Candida albicans Cryptococcus gastricus Trichophyton rubrum;农业真菌:Fusarium oxysporum、Rhizoctonia solani, Penicillium expansum, Alternaria brassicae, 中国普通微生物菌种保藏管理中心(CGMCC); HeLa 和 HepG2 细胞, 第四军医大学(西安)细胞 中心; A549 和 MCF-7 细胞, 中国科学院 (上海)。

LCQ Fleet 型离子阱液质联用仪,美国 Thermo Fisher Scientific 公司; AVANCE Ⅲ 500 MHz 核磁 共振波谱仪,德国 Bruker 公司; Agilent 1200 型高 效液相色谱仪,美国 Hewlett-Packard 公司;BIO-RAD 680 型酶标仪,美国 Bio-Rad 公司。

1.2 制备方法

1.2.1 酶催化合成

1.2.1.1 DMAPP 和底物的合成

按照文献[21]合成二甲基烯丙基二磷酸 (DMAPP),经HPLC测定,纯度为96%;按照文 献[22]合成反应底物(Ia~Ig),结构如下所示, 纯度为81%~92%。

1.2.1.2 FgaPT2 的表达和纯化

如文献[23]所述,进行 FgaPT2 在大肠杆菌中过

量生产,将 pLysS 转化至大肠杆菌 XL1-Blue MRF'中,重组子形成后,接种于含液态 LB 培养基中,补充羧苄青霉素(终质量浓度 50 mg/L),37 ℃下 生长至在波长 600 nm 处的吸光度(OD₆₀₀)达 0.6。 加异丙基- β -D-硫代半乳糖苷(IPTG)至终浓度为 0.8 mmol/L,37 ℃将细胞再培养 16 h。离心收集菌 体,沉淀以 2~5 g/mL 的质量浓度重悬浮于裂解缓冲 液中,加溶菌酶(终质量浓度 1 g/L),冰浴孵育 30 min,以 200 W 的频率超声处理 6 次,每次 10 s, 裂解液在 4 ℃以 1.4×10⁴ r/min 离心 30 min。用 Ni-NTA 琼脂糖树脂进行亲和层析,纯化重组融合蛋白,经聚 丙烯酰胺凝胶电泳(SDS-PAGE)收集得 FgaPT2。 1.2.1.3 C-4 异戊烯基化吲哚二酮哌嗪的酶催化合成 C-4 异戊烯基化吲哚二酮哌嗪的酶催化合成如 下所示。以环-L-4-二甲基烯丙基-色氨酸-L-甘氨酸 (Ⅱa)的合成为例。在微量反应瓶中分别加入1mL DMAPP(1mmol/L去离子水溶液),8mL1mmol/L 环-L-色氨酸-L-甘氨酸(Ia)水溶液,100 µg 纯化 FgaPT2,0.5 µg MgCl₂,充分溶解后,加入0.5 mL 三 羟甲基氨基甲烷(Tris)-HCl(50 mmol/L)缓冲溶 液调解 pH 至 7.5,在 37 ℃下反应 12 h后,添加 2mL 甲醇终止反应。离心(1.3×10⁴ r/min, 20 min,4 ℃) 去除蛋白质后,经真空冷冻干燥器(-20 ℃)干燥 6 h,得到酶反应产物,收率 23.2%。其余酶催化产 物的制备方法同上,只需加入对应的底物,设置反 应时间 6~16 h。

1.2.1.4 酶产物的 HPLC 分析、分离和结构鉴定

使用 Multospher 120 RP-18 色谱柱 (250 mm× 4 mm×5 µm), 1 mL/min 流速, 通过 HPLC 分析酶 产物,流动相由水和甲醇组成。线性梯度洗脱 20 min,甲醇体积分数从 30%升至 100% (每4 min 甲醇体积分数提高 20%),甲醇洗脱 5 min,体积分 数 30%甲醇水溶液再平衡 5 min。酶反应产物的收率 通过产物的峰面积与在 277 nm 处检测到的产物和 底物峰面积总和之比计算得出。酶产物分离使用 COSMOSIL 5C₁₈ MS-II 反相柱 (250 mm×10 mm× 5 µm),流速 2.5 mL/min,在 50~80 min 内,甲醇体 积分数的线性洗脱梯度从 60%到 100% (每 10 min 甲醇体积分数提高 20%),甲醇洗涤 10 min 后,体 积分数 60%甲醇水溶液平衡色谱柱 10 min。¹HNMR 鉴定其结构,电喷雾离子化质谱 (ESI-MS)鉴定其 相对分子质量。

1.2.2 生物活性测试

1.2.2.1 抗肿瘤活性测试

噻唑蓝溴化四唑(MTT)测定法^[24]用于确定底

物 I a~ I g 和 C-4 异戊烯基化产物 II a~ II g〔设置浓 度范围 12.5~100 μmol/L,溶于二甲基亚砜(DMSO)〕 的抑制作用,HeLa,HepG2,A549 和 MCF-7 作为 测试细胞系。酶标仪测量 570 nm 处的吸光度,测定 达到 50%抑制效果时抑制剂的浓度(IC₅₀值),根据 式(1)计算抑制率:

抑制率 / % =
$$\frac{A_{\text{control}} - A_{\text{test}}}{A_{\text{control}}} \times 100$$
 (1)

式中: A_{control}和 A_{test}分别为对照组(只含有 MTT, 未加测试样品的细胞培养体系)和测试组的吸光度, 测定重复3次,取平均值。

1.2.2.2 抗细菌活性测试

按照文献[25]所述的方法,设置 I a~ I g 和 II a~ II g 质量浓度范围为 0.5~1024 mg/L,细菌浓度为 1.5×10⁶ CFU/mL,采用微孔板测定细菌的生长状况。 含有细菌细胞和 DMSO 而不含任何测试化合物的样 品作为对照(生长对照)和仅含有生长培养基的样 品用作对照(无菌对照),氨苄西林和环丙沙星用作 阳性对照,测试重复3次,通过肉眼和在 630 nm 处 测量吸光度来观察生长,没有观察到浑浊的测试化 合物的最低浓度记录为 MIC。 1.2.2.3 抗真菌活性测试

1.2.2.3 加美困伯匡倾风

按照文献[26-27]所述的方法,设置 I a~ I g 和 II a~II g 质量浓度范围为 0.5~1024 mg/L,真菌浓度 为(0.5~2.5)×10⁴ CFU/mL。含有真菌细胞和 DMSO 而不含任何测试化合物的样品作为对照(生长对照) 和仅含有生长培养基的样品用作对照(无菌对照), 两性霉素 B 和多菌灵分别用作医学真菌和农业真菌 的阳性对照,测试重复 3 次,通过肉眼和在测量吸 光度观察生长,没有观察到浑浊的测试化合物的最 低浓度记录为 MIC。

1.2.2.4 抗氧化活性测试

按文献[28]测量样品对 1,1-二苯基-2-三硝基苯 肼自由基(DPPH•)的清除活性, DPPH•清除率(*R*)按式(2)进行计算:

$$R / \% = 1 - \frac{A_j - A_i}{A_o} \times 100$$
 (2)

式中: *A*。为等体积 DPPH 溶液和溶剂的吸光度; *A*_j 为等体积测试样品和溶剂的吸光度; *A*_i 为等体积 DPPH 溶液和测试样品的吸光度,测试重复 3 次, 取平均值。

1.2.3 饱和位点诱变提高酶催化效率

1.2.3.1 分子对接的方法

FgaPT2(蛋白质数据库 PDB 编号:3I4X)的 高级结构用作分子对接的模板,考虑底物结合袋中 的氢键网络,在模型构建过程中还包括了两种底物 分子。LeDock(http://www.Lephar.com)软件因其 高速度和准确性而用于对接研究^[29]。在优化过程中, 产物分子和结合位点周围的侧链原子被视为柔性, 具有最低对接能量的结合姿势用作预测的结合模 式。使用 PyMOL 1.5(http://www.pymol.org)分析 和可视化对接结果。

1.2.3.2 定点诱变的操作

含有 FgaPT2 的质粒用作 PCR 诱变的 DNA 模板,为了在所需基因位点获得特定或全部突变体(变性),根据文献[18-19]中所述的定点诱变方案设计引物,并由杰顿生物科技有限公司(中国上海)合成。 PCR 扩增程序中, FgaPT2 的退火温度为 62 ℃,延伸时间为 8 min 以适应热曲线。

1.2.3.3 动力学参数测定

将 100 μg 纯化重组 FgaPT2 或突变体与 0.5 μg
CaCl₂、1 mL DMAPP(浓度 2 mmol/L)和 4 mL I f
(浓度梯度 0.01、0.025、0.05、0.10、0.25、0.50、
1.0、2.5 和 5.0 mmol/L)混合,在 37 ℃下进行培养
60~120 min,实验重复 3 次,通过每 mg 重组蛋白每
min 异戊烯基化吲哚二酮哌嗪的形成量来评估酶活

性。根据 Lineweaver-Burk, Hanes-Woolf 和 Eadie-Hofstee 图^[30]计算出 Michaelis-Menten 常数(K_M , mmol/L),转化数(k_{cat} , 1/s)和 k_{cat}/K_M 。

2 结果与讨论

2.1 C-4 异戊烯基化吲哚二酮哌嗪的酶催化合成

FgaPT2 酶催化合成了7个 C-4 异戊烯基化吲哚 二酮哌嗪, 合成收率和 HPLC 分析表明, FgaPT2 对 底物具有一定的选择性。根据 ESI-MS 数据分析, 产物的相对分子质量均比各自底物的相对分子质量 大 68, 而单异戊烯基相对分子质量为 68, 因此表明 其结构中存在单异戊烯基团。Ⅱ系列产品(Ⅱa~Ⅱg) 的保留时间都比其底物(Ia~Ig)长,证明单异戊 二烯取代了非极性基团。从酶合成产物的¹HNMR 数据可以发现,异戊烯基氢的信号,δ:3.76~3.65 (d 或 dd, H-1'), 5.33~5.29 (t, H-2'), 1.84~1.72 (s, 3H, H-4')和 1.82~1.70 (s, 3H, H-5'); 而 H-1'的化学位移 证明了异戊烯基与芳族 C 原子的连接^[31-32];同时吲 哚环的氢信号中可以发现3个耦合质子,比无取代 的吲哚氢信号少了1个耦合质子,表明异戊烯基化 发生在吲哚部分。所有产物的¹HNMR 与其底物的 ¹HNMR 比较, 明显发现, 吲哚环 H-4 信号消失了, 证明异戊烯基取代位置在吲哚的 C-4 位^[31-33], 产物 的结构表征如下:

环-L-4-二甲基烯丙基-色氨酸-L-甘氨酸(Ⅱa): 白色固体,收率 23.2%; ¹HNMR (500 MHz, CDCl₃), δ : 8.21 (s, 1H, 1-NH), 7.10 (d, J = 2.5 Hz, 1H, H-2), 6.95 (d, J = 7.5 Hz, 1H, H-5), 7.16 (t, J = 7.5 Hz, 1H, H-6), 7.27 (d, J = 7.5 Hz, 1H, H-7), 3.84 (dd, J =14.7、3.0 Hz, 1H, H-10a), 3.15 (dd, J = 14.7、10.0 Hz, 1H, H-10b), 4.23 (d, J = 10.0 Hz, 1H, H-11), 5.92 (s, 1H, 12-NH), 3.92 (d, J = 17.4 Hz, 1H, H-14a), 3.79 (d, J =17.4 Hz, 1H, H-14b), 5.72 (s, 1H, 15-NH), 3.76 (d, J =7.2 Hz, 2H, H-1'), 5.32 (t, J = 7.2、1.4 Hz, 1H, H-2'), 1.75 (s, 3H, H-4'), 1.72 (d, J = 1.0 Hz, 3H, H-5'); ESI-MS $[M+H]^+$, m/Z: 实测值 (计算值) 312.4 (312.2)。

环-L-4-二甲基烯丙基-色氨酸-L-丙氨酸(IIb): 白色固体,收率 3.6%; ¹HNMR (500 MHz, CDCl₃), δ : 8.21 (s, 1H, 1-NH), 7.10 (d, J = 2.5 Hz, 1H, H-2), 6.95 (d, J = 7.5 Hz, 1H, H-5), 7.16 (t, J = 7.5 Hz, 1H, H-6), 7.27 (d, J = 7.5 Hz, 1H, H-7), 3.84 (dd, J = 14.7、3.0 Hz, 1H, H-10a), 3.15 (dd, J = 14.7、10.0 Hz, 1H, H-10b), 4.24 (d, J = 10.0 Hz, 1H, H-11), 5.99 (s, 1H, 12-NH), 3.96 (dd, J = 7.0 Hz, 2H, H-14), 5.75 (s, 1H, 15-NH), 0.36 (d, J = 7.0 Hz, 3H, H-17), 3.74 (d, J = 7.2 Hz, 2H, H-1'), 5.33 (t, J = 7.2、1.4 Hz, 1H, H-2'), 1.76 (s, 3H, H-4'), 1.73 (s, 3H, H-5'); ESI-MS [M+H]⁺, m/Z: 实测 值 (计算值) 326.5 (326.2)。

环-L-4-二甲基烯丙基-色氨酸-L-亮氨酸(Ⅱc):

• 637 •

自色固体,收率 22.8%; ¹HNMR (500 MHz, CDCl₃), δ : 8.17 (s, 1H, 1-NH), 7.12 (d, J = 2.5 Hz, 1H, H-2), 6.95 (d, J = 7.5 Hz, 1H, H-5), 7.20 (d, J = 7.5 Hz, 1H, H-6), 7.22 (d, J = 7.5 Hz, 1H, H-7), 3.88 (dd, J = 15.0、 3.0 Hz, 1H, H-10a), 3.05 (dd, J = 15.0、 10.5 Hz, 1H, H-10b), 4.23 (d, J = 10.5 Hz, 1H, H-11), 6.02 (s, 1H, 12-NH), 4.01 (d, J = 10.0 Hz, 1H, H-14), 5.88 (s, 1H, 15-NH), 1.85 (m, 1H, H-17a), 1.54 (m, 1H, H-17b), 1.81 (m, 1H, H-18), 0.99 (d, J = 6.6 Hz, 3H, H-19), 0.94 (d, J = 6.6 Hz, 3H, H-20), 3.82 (dd, J = 15.5、 6.6 Hz, 1H, H-1'a), 3.72 (dd, J = 15.5、 6.6 Hz, 1H, H-1'b), 5.36 (t, J = 6.5 Hz, 1H, H-2'), 1.77 (s, 3H, H-4'), 1.75 (s, 3H, H-5'); ESI-MS [M+H]⁺, m/Z: 实测 值 (计算值) 368.5 (368.2)。

环-L-4-二甲基烯丙基-色氨酸-L-苯丙氨酸(Ⅱd): 白色固体, 收率 15.5%; ¹HNMR (500 MHz, CDCl₃), δ: 8.16 (s, 1H, 1-NH), 6.92 (d, J = 2.5 Hz, 1H, H-2), 6.97 (dd, J = 7.5, 1.0 Hz, 1H, H-5), 7.15 (d, J = 7.6 Hz, 1H)H-6), 7.28 (d, J = 7.6 Hz, 1H, H-7), 3.68 (dd, J =15.0, 2.5 Hz, 1H, H-10a), 2.30 (dd, J = 15.0, 11.0 Hz, 1H, H-10b), 4.12 (m, 1H, H-11), 5.89 (s, 1H, 12-NH), 4.29 (m, 1H, H-14), 5.74 (s, 1H, NH-15), 3.27 (dd, J = 13.8, 4.2 Hz, 1H, H-17a), 2.94 (dd, J = 13.8, 8.4 Hz, 1H, H-17b), 7.20 (d, J = 7.0 Hz, 1H, H-19), 7.38 (m, 1H, H-20), 7.32 (m, 1H, H-21), 7.36 (m, 1H, H-22), 7.22 (m, 1H, H-23), 3.74 (dd, J = 17.0, 6.0 Hz, 1H, H-1'a), 3.71 (dd, J = 13.5, 7.0 Hz, 1H, H-1'b), 5.30 (t, J = 6.8, 1.5 Hz, 1H, H-2'), 1.76 (s, 3H, H-4'), 1.74 (s, 3H, H-5'); ESI-MS [M+H]⁺, *m*/Z: 实测值(计算值) 402.5 (402.2).

环-L-4-二甲基烯丙基-色氨酸-L-酪氨酸(Ⅱe): 白色粉末, 收率 36.1%; ¹HNMR (500 MHz, CDCl₃), δ : 10.88 (d, J = 2.0 Hz, 1H, 1-NH), 6.86 (d, J = 2.5 Hz, 1H, H-2), 6.72 (dd, J = 7.6, 1.0 Hz, 1H, H-5), 6.96 (t, J = 7.6 Hz, 1H, H-6), 7.18 (dd, J = 7.6, 1.0 Hz, 1H, H-7), 3.10 (dd, J = 14.6, 3.5 Hz, 1H, H-10a), 2.03 (dd, J = 14.6, 9.0 Hz, 1H, H-10b), 3.82 (t, J = 8.5, 3.0 Hz, 1H, H-11), 7.93 (s, 1H, 12-NH), 4.01 (dd, J = 7.0, 4.5 Hz, 1H, H-14), 7.51 (s, 1H, 15-NH), 2.70 (dd, J =13.5, 4.5 Hz, 1H, H-17a), 2.56 (dd, J = 13.5, 5.5 Hz, 1H, H-17b), 6.90 (d, J = 8.5 Hz, 1H, H-19), 6.72 (d, *J* = 8.5 Hz, 1H, H-20), 6.72 (d, *J* = 8.5 Hz, 1H, H-22), 6.86 (d, J = 8.5 Hz, 1H, H-23), 3.65 (d, J = 7.0 Hz, 2H, H-1'), 5.29 (t, *J* = 7.0 1.5 Hz, 1H, H-2'), 1.72 (s, 3H, H-4'), 1.70 (s, 3H, H-5'); ESI-MS [M+H]⁺, m/Z: 实测 值(计算值)418.3(418.2)。

环-L-4-二甲基烯丙基-色氨酸-L-色氨酸(Ⅱf): 白色粉末,收率 20.5%;¹HNMR (500 MHz, CDCl₃), δ: 8.23 (s, 1H, 1-NH), 7.08 (d, *J* = 2.5 Hz, 1H, H-2), 6.92 (d, *J* = 7.5 Hz, 1H, H-5), 7.11 (d, *J* = 7.5 Hz, 1H, H-6), 7.20 (d, J = 7.5 Hz, 1H, H-7), 3.54 (dd, J = 14.5、3.0 Hz, 1H, H-10a), 1.82 (dd, J = 14.5、11.0 Hz, 1H, H-10b), 4.04 (d, J = 11.0 Hz, 1H, H-11), 5.97 (s, 1H, 12-NH), 4.35 (m, 1H, H-14), 5.67 (s, 1H, 15-NH), 3.30 (d, J = 6.0 Hz, 1H, H-17a), 3.29 (d, J = 3.5 Hz, 1H, H-17b), 6.03 (d, J = 2.0 Hz, 1H, H-19), 8.03 (s, 1H, 20-NH), 7.41 (d, J = 8.0 Hz, 1H, H-22), 7.24 (t, J = 7.5 Hz, 1H, H-23), 7.25 (t, J = 7.5 Hz, 1H, H-24), 7.73 (d, J = 8.0 Hz, 1H, H-25), 3.70 (dd, J = 11.5、5.5 Hz, 2H, H-1'), 5.30 (t, J = 6.5、1.5 Hz, 1H, H-2'), 1.84 (s, 3H, H-4'), 1.82 (s, 3H, H-5') ; ESI-MS [M+H]⁺, m/Z: 实测值 (计算值) 441.3 (441.2)。

环-L-4-二甲基烯丙基-色氨酸-L-脯氨酸(Ⅱg): 白色针状晶体,收率 27.3%;¹HNMR (500 MHz, CDCl₃), δ : 8.18 (s, 1H, 1-NH), 7.08 (d, J = 2.5 Hz, 1H, H-2), 6.92 (dd, J = 7.7、1.0 Hz, 1H, H-5), 7.15 (t, J = 7.7 Hz, 1H, H-6), 7.26 (dd, J = 7.7、1.0 Hz, 1H, H-7), 3.99 (dd, J = 15.4、3.5 Hz, 1H, H-10a), 3.00 (dd, J = 15.4、11.5 Hz, 1H, H-10b), 4.31 (dd, J = 11.5、2.0 Hz, 1H, H-11), 5.84 (s, 1H, 12-NH), 4.10 (t, J = 8.0 Hz, 1H, H-14), 3.67 (m, 2H, H-17), 2.11 (m, 2H, H-18), 2.35 (m, 1H, H-19a), 1.95 (m, 1H, H-19b), 3.76 (dd, J = 16.5、6.8 Hz, 1H, H-1'a), 3.73 (dd, J = 16.5、6.8 Hz, 1H, H-1'b), 5.33 (t, J = 6.8、1.5 Hz, 1H, H-2'), 1.77 (s, 3H, H-4'), 1.75 (d, J = 1.0 Hz, 3H, H-5'); ESI-MS [M+H]⁺, m/Z: 实测值 (计算值) 352.2 (352.2)。

2.2 C-4 异戊烯基化吲哚二酮哌嗪的生物活性 2.2.1 抗肿瘤结果分析

如表 1 所示,在<100 µmol/L 时, I a~ I g 没有显示出抗肿瘤细胞的增殖活性。而 II a~ II g 对 4 种癌细胞系均显示出较高的毒性,推测可能的原因是, 吲哚环上的 C-4 位置被单异戊烯基取代,增加了吲哚二酮哌嗪的疏水性,提高了 II a~ II g 与肿瘤细胞膜蛋白质的亲和作用,继而影响细胞增殖。对 MCF-7 细胞, II a~ II g 的 IC₅₀ 值处于较低至中等的微浓度范围,对 A549 细胞,其 IC₅₀ 值处于中等的微浓度范围,对 HeLa 和 HepG2 细胞,其 IC₅₀ 值处于较高的微浓度范围。II a~ II g 对 MCF-7 细胞具有最高的抑制活性,IC₅₀ 值为 30.7~50.9 µmol/L。其中, II f 对所有测试癌细胞系都展现了最高活性,尤其是对 A549 和 MCF-7 细胞,其 IC₅₀ 值分别为 54.6 和 30.7 µmol/L。II f 活性较高,可能与其双吲哚环结构有关。

如图 1 所示,评估了不同浓度 II a~ II g 对人癌 细胞 HeLa、HepG2、A549 和 MCF-7 的增殖抑制率。 化合物 II f 在不同浓度下,都显示出对 4 种癌细胞的 最显著的抗癌活性。在 100 μmol/L 下, II f 对 HeLa、 HepG2、A549 和 MCF-7 细胞的抑制率分别为 81.06%、75.57%、87.92%和 99.20%。

Ē	表 1]	[a~]	g 和	∏ a⁄	~ II g	;对]	HeLa、	HepG2、	A549	和 MCF	-7 细胞	的 IC:	50值	
Table 1	I	C ₅₀ ·	value	s of	I a-	-Ig	and	∏ a~	II g agains	st HeLa	, HepG2	, A549	and M	1CF-7	cells

							IC50 值/(µmol/L)								
	Не	eLa		HepG2				A549					MCF-7			
底	物	产	物	底物 产物		物	底物 产物			物	底	物	产	物		
Ιa		∏ a	91.4	I a		∏ a	97.3	I a		∏ a	70.9	I a		∏ a	43.2	
Ιb	—	∏ b	85.4	Ιb		∏ b	91.5	Ιb		∏ b	77.3	Ιb		∏ b	50.9	
Ιc	—	∏ c	90.7	Ιc		∏ c	91.9	Ιc		∏ c	85.1	Ιc		∏ c	41.4	
Ιd	—	∏ d	83.5	I d		∏ d	80.4	I d		∏ d	73.4	I d		∏ d	36.5	
Ιe	—	∏ e	74.6	Ιe	—	∏ e	82.0	Ιe		∏ e	60.8	Ιe	—	∏ e	47.4	
Ιf	—	∏ f	70.8	Ιf	_	∏ f	74.8	Ιf	_	∏ f	54.6	Ιf	_	∏ f	30.7	
Ιg		∏ g	81.1	Ιg		∏ g	85.3	Ιg		∏ g	67.2	Ιg		II g	41.5	

注:"一"为没有显示出抗肿瘤细胞的增殖活性。

图 1 II a~II g 对 HeLa (a)、HepG2 (b)、A549 (c)和 MCF-7 (d)细胞的抑制率 Fig. 1 Inhibition rates of II a~II g to HeLa (a), HepG2 (b), A549 (c) and MCF-7 (d) cells

2.2.2 抗细菌测试结果分析

如表 2、3 所示,底物和 C-4 异戊烯基化产物对 革兰式阳性菌和阴性菌的 MIC 值呈现一定差异性。 除 I c 和 II c 对 *Staphylococcus epidermis* 没有活性, 制备的 C-4 异戊烯基化产物都显示出比其底物更高 的抗菌活性。大多数底物的抑菌活性与标准抗生素 氨苄西林相当,但远低于环丙沙星,II d 和 II f 的活 性高于或者相当于丙沙星。C-4 位置取代单异戊烯 基提高了 II a~ II g 对细菌扩增关键酶的作用,继而 影响细菌的扩增。革兰氏阳性菌株均对合成产物表 现出较高的敏感性,MIC 值为 0.5~64 mg/L, II f 对 *Bacillus subtilis*、*Staphylococcus aureus*、*Staphylococcus epidermis*和 *Staphylococcus simulans*表现出显著活性, MIC 值分别为 0.5、0.5、2 和 2 mg/L。革兰氏阴性菌 株对合成产物的敏感性不同,MIC 值为 1~256 mg/L, Ⅱ f 对 Escherichia coli、Klebsiella pneumoniae、 Proteus mirabilis 和 Pseudomonas aeruginosa 表现出 显著活性,MIC 值分别为 2、2、4 和 2 mg/L,活性 数据值明显高于或者等于对照环丙沙星的。特别地, Ⅱ f 的抗菌活性比底物 I f 大大提高,其对 Bacillus subtilis、Staphylococcus aureus、Staphylococcus simulans、Escherichia coli、Klebsiella pneumoniae 和 Pseudomonas aeruginosa 的 MIC 值分别为 I f 的 1/16、1/32、1/64、1/128、1/128 和 1/128。 I f 对 Staphylococcus epidermis 和 Proteus mirabilis 没有活 性,而 Ⅱ f 对其的 MIC 值为 2 和 4 mg/L。 Ⅱ f 与 I f 抑制细菌活性的巨大差异性,验证了 C-4 异戊烯基 对于吲哚二酮哌嗪生物活性提高的关键性。

							MIC 值	(mg/L)							
	Bacillus	subtilis		Staphylococcus aureus Staphylococcus epidermis						Staphylococcus simulans					
底	物	产	物	底	物	产	物	底	物	产	物	底	物	产	物
Ιa	32	∏ a	16	Ιa	32	∏ a	16	Ιa	128	∏ a	46	Ιa	32	∏ a	8
Ιb	16	∏ b	8	Ιb	8	∏ b	8	Ιb	32	∏ b	16	Ιb	32	∏ b	8
Ιc	256	∏ c	32	Ιc	128	∏ c	16	Ιc	_	∏ c	_	Ιc	128	∏ c	32
Ιd	4	∏ d	1	I d	8	∏ d	2	I d	4	∏ d	1	I d	16	∏ d	2
I e	32	∏ e	16	I e	64	∏ e	8	I e	8	∏ e	2	I e	32	∏ e	4
Ιf	8	∏ f	0.5	Ιf	16	∏ f	0.5	Ιf	—	∏ f	2	Ιf	128	∏ f	2
Ιg	32	∏ g	8	Ιg	16	∏ g	2	Ιg	—	∏ g	64	Ιg	64	∏ g	8
	氨苄西	林 64			12	28			6	4			_	_	
	环丙沙星 2			2			2				4				

表 2 I a~ I g 和 II a~ II g 对革兰氏阳性菌的 MIC 值 Table 2 MIC values of I a~ I g and II a~ II g against Gram-positive bacteria

注:"一"为没有显示出抑制细菌的活性。

表 3 I a~ I g 和 II a~ II g 对革兰氏阴性菌的 MIC 值 Table 3 MIC values of I a~ I g and II a~ II g against Gram-negative bacteria

							MIC 值	/(mg/L)								
	Escherichia coli K					neumoni	ae	Proteus mirabilis				Pse	seudomonas aeruginosa			
底	物	产	物	底	物	产	物	底	物	产	物	底	物	产	物	
Ιa	16	∏ a	4	I a	16	∏ a	8	I a	32	∏ a	16	Ιa	128	∏ a	32	
Ιb	4	∏ b	1	Ιb	16	∏ b	4	Ιb	16	∏ b	4	Ιb	32	∏ b	8	
Ιc	512	∏ c	64	Ιc	_	∏ c	128	Ιc	—	∏ c	256	Ιc	_	∏ c	256	
Ιd	8	∏ d	1	Ιd	16	∏ d	4	I d	16	∏ d	4	Ιd	16	∏ d	2	
I e	32	∏ e	2	I e	64	∏ e	4	I e	64	∏ e	16	Ιe	16	∏ e	4	
Ιf	256	∏ f	2	Ιf	256	∏ f	2	Ιf	_	∏ f	4	Ιf	256	∏ f	2	
Ιg	512	∏ g	64	Ιg	256	∏ g	32	Ιg	—	∏ g	128	Ιg	128	∏ g	64	
	氨苄西林 128						64					256				
	环丙沙星1			4			4				2					

注:"一"为没有显示出抑制真菌的活性。

2.2.3 抗真菌测试结果分析

如表 4 和 5 所示,底物和 C-4 异戊烯基化产物 对 8 种真菌的 MIC 值有很大差异性,所有制备的 C-4 异戊烯基化产物均显示出比底物更高的抗真菌 活性。大部分底物对医学真菌的活性远低于标准杀 菌剂两性霉素 B,而测试的 II a、II b、II d和 II f的 活性高于或者与两性霉素 B相当。II f对 Aspergillus flavus、Candida albicans、Cryptococcus gastricus 和 Trichophyton rubrum 表现出极其显著的活性,MIC 分别为 4、4、1 和 2 mg/L。对农业真菌,大部分产 物的抗真菌活性高于多菌灵,II f 对 Fusarium oxysporum、Rhizoctonia solani、Penicillium expansum 和 Alternaria brassicae 表现出突出的活性,MIC 值 分别为 2、0.5、1 和 4 mg/L。II f 的抗真菌活性显著 提高,其对 Aspergillus flavus、Candida albicans、 Cryptococcus gastricus 、Trichophyton rubrum、 Fusarium oxysporum、Rhizoctonia solani、Penicillium expansum 和 Alternaria brassicae 的 MIC 值为 I f 的 1/16、1/32、1/64、1/32、1/32、1/32、1/32、1/16 和 1/64。 与抗细菌活性类似, II f 与 I f 抑制真菌活性的巨大 差异性,再次证明了 C-4 异戊烯基化对吲哚二酮哌 嗪生物活性提高的关键性。

2.2.4 抗氧化测试结果分析

如表 6 所示, ||| a~||| g 均显示出增强的 DPPH•清除活性。对照 V_C 的 IC₅₀ 值为 116 µmol/L, 与其相比, <math>||| e、||| b 和 ||| f 具有很强的抗氧化活性, IC₅₀ 值分别为 25、89 和 98 µmol/L。C-4 异戊烯基化产 物的 DPPH•清除能力的大小顺序为 ||| e> ||| b> ||| f>V_C> ||| c> ||| d> ||| g> || a。如图 2 所示,梯度实验中,这些化合物抗氧化活性呈现出浓度依赖性,随着每个样品浓度的增加,抗氧化活性也随之增强。在浓度<640 µmol/L 时, <math>||| e、||| b 和 ||| f的清除作用高于 V_C。

		Ta	able 4	MIC va	lues of	I a~ I g	g and I	I a∼ II g :	against	medical	ly impor	tant fun	gi			
							MIC 值	/(mg/L)								
	Aspergill	lus flavus			Candida	albicans		Cr	yptococc	us gastri	cus	T	richophy	ton rubru	ım	
底	物	产	物	底	物	产	物	底	物	产	物	底	物	产	物	
Ιa	32	∏ a	8	Ιa	16	∏ a	8	Ιa	64	∏ a	8	Ιa	16	∏ a	8	
Ιb	32	∏ b	16	Ιb	8	∏ b	4	Ιb	8	∏ь	4	Ιb	16	∏b	4	
Ιc	16	II c	16	Ιc	16	II c	8	Ιc	64	II c	16	Ιc	_	∏ c	256	
Ιd	32	∏ d	4	Ιd	16	∏ d	4	Ιd	8	∏ d	2	Ιd	4	∏ d	2	
Ιe	256	∏ e	64	I e	256	∏ e	64	I e	_	∏ e	128	Ιe	512	∏ e	64	
Ιf	64	∏ f	4	Ιf	128	∏ f	4	Ιf	64	∏ f	1	Ιf	64	∏ f	2	
Ιg	32	∏ g	16	Ιg	64	II g	32	Ιg	32	∏ g	4	Ιg	64	∏ g	16	
	两性霉素 B 512				16				8				5	8		

表 4 Ⅰ a~Ⅰg 和 Ⅱ a~ Ⅱ g 对医学重要真菌的 MIC 值 Table 4 MIC values of Ⅰ a~Ⅰg and Ⅱ a~Ⅱg against medically important fungi

表 5 I a~ I g 和 II a~ II g 对农业重要真菌的 MIC 值 Table 5 MIC values of I a~ I g and II a~ II g against agriculturally important fungi

							MIC 值	/(mg/L)								
Fi	usarium	oxysporu	т	Rhizoctonia solani				Pe	enicilliun	n expansu	m	Alternaria brassicae				
底	物	产	物	底物		产物		底	底物		物	底	物	产	物	
Ιa	32	∏ a	32	Ιa	8	∏ a	4	Ιa	16	∏ a	2	Ιa	16	∏ a	8	
Ιb	32	∏ b	16	Ιb	4	∏ b	0.5	Ιb	4	∏ b	1	Ιb	8	∏ b	2	
Ιc	8	∏ c	4	Ιc	32	II c	8	Ιc	32	∏ c	4	Ιc	64	∏ c	16	
Ιd	2	∏ d	1	Ιd	2	∏ d	1	Ιd	4	∏ d	1	Ιd	8	∏ d	4	
I e	64	∏ e	64	I e	64	∏ e	16	Ιe	32	∏ e	16	Ιe	512	∏ e	128	
Ιf	64	∏ f	2	Ιf	16	∏ f	0.5	Ιf	16	∏ f	1	Ιf	256	∏ f	4	
Ιg	16	∏ g	2	Ιg	16	∏ g	8	Ιg	8	∏ g	4	Ιg	128	∏ g	32	
多菌灵 8				16					32				32			

表 6 I a~ I g 和 II a~ II g 的 DPPH•清除活性 Table 6 Scavenging activity of I a~ I g and II a~ II g against

DPPH•

			IC50 值/(µmol/L)	1		
底	物	产	物	底	物	产	物
Ιa	6900	∏ a	1349	I e	400	∏ e	25
Ιb	700	∏ b	89	Ιf	800	∏ f	98
Ιc	1800	∏ c	185	Ιg	5300	∏ g	829
Ιd	3900	∏ d	472			$V_{\rm C}$	116

根据上述研究,吲哚环上的 C-4 位置取代单异 戊烯基,其生物活性明显增加。吲哚二酮哌嗪是一 种天然特殊结构的化合物,具有与多种受体结合的 能力。它们可以以高亲和力结合各种受体,并显示 出广泛的生物学活性。在Ⅱa~Ⅱg 中,异戊烯基与 吲哚环 C-4 连接增加了吲哚二酮哌嗪的疏水性。与 未异戊烯基化分子相比,异戊烯基化提高了它们对 生物膜的亲和力,同时也增强了与蛋白质的相互作 用。因此,吲哚二酮哌嗪的 C-4 异戊烯基化显著提 高了其抗肿瘤,抗细菌,抗真菌和抗氧化活性。

图 2 不同浓度的 I a~ I g 和 II a~ II g 的 DPPH•清除活性

Fig. 2 Scavenging activities of I a~ I g and Π a~ Π g with different concentrations against DPPH•

2.3 饱和位点诱变提高 FgaPT2 酶催化效率的研究

2.3.1 对 Arg-244 进行定点诱变,增加对环-L-色氨酸-L-色氨酸(If)的 C-4 异戊烯基化活性

上述研究发现,Ⅱf 在体外具有最佳的生物活 性,但IIf在酶催化合成反应中产量却不高,前期以 Ⅱf的产量为指标,对FgaPT2 酶催化条件进行了优 化,但产量增量效果并不明显(在27~37℃之间, 收率差异只有 3.1%。在反应缓冲液的 pH 范围 4.0~6.0、6.0~8.0、7.0~9.0 和 10.0~11.0 体系中,收 率差异只有 2.4%, 不同的二价阳离子对终产物的收 率差异只有 4.2%)。因此,本研究集中于 FgaPT2 酶 位点突变以实现提高产物产量。为了解 FgaPT2 对 环-L-色氨酸-L-色氨酸(If)的催化机制,建立了 包括 FgaPT2、DMAPP 和 I f 的分子模型(图 3)。 根据该模型分析, Tyr-189、Thr-102、Glu-89、Ser-91、 Arg-100、Try-345、Try-261 (绿色) 通过氢键参与结 合磷酸基团, Leu-81 和 Ile-80(红色)趋于稳定侧链, Met-328 和 Ieu-263 (黄色)参与了与二甲基烯丙基部 分的相互作用,这一结果与已有的研究结果一致[34]。 已有关于 FgaPT2 酶位点突变的研究表明, Lys-174 (蓝色)和 Arg-244 (红色)都参与提取 C-4 质子的 中间体的构建, 该中间体用于在 C-4 攻击异戊烯基 阳离子, 而 ZHENG 等^[34]选择了 3 个相关氨基酸残 基 Thr-102、Lys-174 和 Arg-244 作为定点诱变的热 点,结果表明, Arg-244 是影响 FgaPT2 酶活性的关 键位点,其定点诱变可以大大提高 L-色氨酸的异戊 烯基化产量。因此,结合已有研究,本文也选择 Arg-244 作为增加 FgaPT2 酶催化活性的突变位点。

2.3.2 FgaPT2 中 244 位的位点饱和诱变导致对 I f 的不同催化能力

FgaPT2 以及 19 个突变体(R244A、R244N、 R244D, R244C, R244Q, R244E, R244G, R244H, R244I、R244L、R244K、R244M、R244F、R244P、 R244S、R244T、R244W、R244Y 和 R244V)在预 设的研究条件下的表达水平相当,说明单一位点的 突变,对异戊烯基转移酶的表达水平几乎没有影响, 这为研究 FgaPT2 及其突变体对 If 的催化能力提供 稳定的基础条件。在1mL DMAPP(2 mmol/L)存 在的情况下,将 If分别与 20 μg FgaPT2 以及 19个 突变体混合,在 100 µL 酶体系中于 37 ℃下进行 16h反应,反应混合物经 HPLC 分析表明,不同突 变的重组 FgaPT2 对 If 的催化活性有很大的差异 性,结果见图 4。如图 4 所示,在 19 个 Arg-244 突 变体中,有10个比FgaPT2对If有更强的接受能 力(占比 52.6%), R244M 催化的产物收率为 36.9%± 1.2%, 约是 FgaPT2 的 1.8 倍。R244G 催化的产物收 率为 33.1%±1.6%, 其次是 R244Y 为 32.5%±1.4%, 约是 FgaPT2 的 1.7 倍和 1.6 倍。4 个突变体对 I f 的异戊烯基化能力与 FaPT2 相似,产物收率在 20.6%~21.3%之间。5个突变体显示对 If 催化活性 低于 FgaPT2, 产品收率在 18.8%~13.4%范围内。通 过 Arg-244 的定点诱变后产生系列的突变 FgaPT2 酶,与原酶比较,52.6%的突变体显示出高于 FgaPT2 的催化活性。

图 3 FgaPT2 催化模型〔使用 DMAPP 将 I f 建模为 FgaPT2 的晶体结构(PDB 编号: 3I4X)〕 Fig. 3 Model of FgaPT2 catalysis [I f was modelled into the crystal structure of FgaPT2 (PDB entry: 3I4X) with DMAPP]

2.3.3 动力学参数的分析

通过动力学参数分析(表7)FgaPT2和R244X 突变酶的 K_M, k_{cat}和 k_{cat}/K_M。

表 7 FgaPT2 和 R244X 突变蛋白的动力学参数

Table 7	Kinetic parameters of FgaPT2 and R244X mutated	l
	proteins	

酶	$K_{\rm M}/({\rm mmol/L})$	$k_{\rm cat}/(1/{\rm s})$	$k_{\text{cat}}/K_{\text{M}}/[\text{L}/(\text{s}\cdot\text{mmol})]$	(相对 k _{cat} /K _M)/%
FgaPT2	0.42	0.0045	10.17	2.20
R244A	0.26	0.0394	151.54	32.79
R244N	0.48	0.0127	26.46	5.73
R244D	0.73	0.0036	4.93	1.07
R244C	0.38	0.0227	59.74	12.93
R244Q	0.41	0.0098	23.90	5.17
R244E	0.48	0.0073	15.21	3.29
R244G	0.17	0.0551	324.12	70.13
R244H	0.41	0.0188	45.85	9.92
R244I	0.62	0.0045	7.26	1.57
R244L	0.47	0.0116	24.68	5.34
R244K	0.59	0.0051	8.64	1.87
R244M	0.14	0.0647	462.14	100.00
R244F	0.54	0.0044	8.15	1.76
R244P	0.32	0.0233	72.81	15.76
R244S	0.24	0.0347	144.58	31.29
R244T	0.39	0.0205	52.56	11.37
R244W	0.29	0.0318	109.66	23.73
R244Y	0.19	0.0528	277.89	60.13
R244V	0.45	0.0112	24.89	5.39

其中,相对 k_{cat}/K_{M} 为其他 k_{cat}/K_{M} 值与最大 k_{cat}/K_M值(设为 100)的比值。发现 R244X 突变酶 对于 I f 的 K_M 在 0.17~0.73 mmol/L 范围内, 与 FgaPT2 的 $K_{\rm M}$ 相当。但是,与 FgaPT2 相比,突变 酶的 k_{cat} 在 0.0036~0.0647 1/s, 约是 FgaPT2 的 0.8~14.4 倍。在测试的 R244X 突变酶中, R244M 对 If的亲和力最高, K_M为 0.14 mmol/L, k_{cat}为 0.0647 1/s, k_{cat}/K_M为462.14 L/(s·mmol),产物收率最高, 为 36.9%±1.2%。接下来活性较好的是 R244G、 R244Y、R244S、R244A 和 R244W。对应的产物收 率分别为 33.1%±1.6%、32.5%±1.4%、28.6%±1.0%、 25.6%±0.9%和 25.1%±1.8%。这些数据表明, 通过 Arg-244 的位点饱和诱变,与 FgaTP2 相比,对 If 催化能力增强的酶占 FgaTP2 突变体的 52.6%, 对 I f具有相似催化能力的酶占FgaTP2突变体的21.1%, 根据本研究的结果,可以将 Arg-244 视为提高 FgaPT2对 If催化效率的突变位点。

3 结论

在 FgaPT2 的作用下,利用二甲基烯丙基二磷 酸,将7个含色氨酸的环二肽转换为C-4 异戊烯基 化产物。HPLC分析,发现FgaPT2 对底物具有一定 的选择性。生物活性测定表明,所制备的C-4 异戊 烯基化产物显示出比底物更高的活性。因而,吲哚 二酮哌嗪的C-4 异戊烯基化可以显著提升其抗肿 瘤、抗细菌、抗真菌和抗氧化活性。其中,环-L-4-二甲基烯丙基-色氨酸-L-色氨酸表现出最高的综合 生物学活性。基于分子模型和关键残基,确定 Arg-244为FgaPT2的异戊烯基化活性的饱和诱变位 点。诱变结果显示,52.6%的FgaPT2_R244X 突变体 可以增强对环-L-色氨酸-L-色氨酸的催化能力,而 21.1%的突变体具有与FgaPT2 相似的催化能力。环-L-色氨酸-L-色氨酸和突变的氨基酸之间的动力学 参数分析也支持这一结论。这意味着所获得的具有 较高催化效率的突变体可以作为生产 C-4 异戊烯基 化吲哚二酮哌嗪的有效催化剂。

参考文献:

- LI S M. Prenylated indole derivatives from fungi: Structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis[J]. Natural Product Reports, 2010, 27: 57-78.
- [2] RUIZ-SANCHIS P, SAVINA S A, ALBERICIO F, et al. Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b] indole[J]. Chemistry, 2011, 17: 1388-1408.
- [3] HAYNES S W, GAO X, TANG Y, et al. Complexity generation in fungal peptidyl alkaloid biosynthesis: A two-enzyme pathway to the hexacyclic MDR export pump inhibitor ardeemin[J]. ACS Chemical Biology, 2013, 8: 741-748.
- [4] HAARMANN T, ROLKE Y, GIESBERT S, et al. Ergot: From witchcraft to biotechnology[J]. Molecular Plant Pathology, 2009, 10: 563-577.
- [5] JAIN H D, ZHANG C C, ZHOU S, et al. Synthesis and structureactivity relationship studies on tryprostatin A, a potent inhibitor of breast cancer resistance protein[J]. Bioorganic and Medicinal Chemistry, 2008, 16: 4626-4651.
- [6] ZHAO L, MAY J P, HUANG J, *et al.* Stereoselective synthesis of brevianamide E[J]. Organic Letters, 2012, 14: 90-93.
- [7] DE BRUIJN W J C, LEVISSON M, BEEKWILDER J, et al. Plant aromatic prenyltransferases: Tools for microbial cell factories[J]. Trends in Biotechnology, 2020, 38: 917-934.
- [8] MORI T, ZHANG L H, AWAKAWA T, *et al.* Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases[J]. Nature Communications, 2016, 7: 10849.
- [9] NAGIA M, GAID M, BIEDERMANN E, et al. Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from *Hypericum* sp.[J]. New Phytologist, 2019, 222: 318-334.
- [10] MUNDT K, LI S M. CdpC2PT, a reverse prenyltransferase from *Neosartorya fischeri* with distinct substrate preference from known C2-prenyltransferases[J]. Microbiology, 2013, 159: 2169-2179.
- [11] YIN W B, XIE X L, MATUSCHEKA M, *et al.* Reconstruction of pyrrolo[2,3-*b*] indoles carrying an α-configured reverse C3dimethylallyl moiety by using recombinant enzymes[J]. Organic and Biomolecular Chemistry, 2010, 8: 1133-1141.
- [12] UNSÖLD I A, LI S M. Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from *Aspergillus fumigatus*[J]. Microbiology, 2005, 151: 1499-1505.
- [13] YU X, LIU Y, XIE X L, et al. Biochemical characterization of indole prenyltransferases: Filling the lastgapofprenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus[J]. Journal of Biological Chemistry, 2012, 287: 1371-1380.
- [14] WINKELBLECH J, LIEBHOLD M, GUNERA J, et al. Tryptophan C5-, C6- and C7-prenylating enzymes displaying a preference for C-6 of the indole ring in the presence of unnatural dimethylallyl diphosphate analogues[J]. Advanced Synthesis and Catalysis, 2015, 357: 975-986.
- [15] WUNSCH C, ZOU H X, LINNE U, et al. C7-prenylation of tryptophanyl and O-prenylation of tyrosyl residues in dipeptides by

an *Aspergillus terreus* prenyltransferase[J]. Applied Microbiology and Biotechnology, 2015, 99: 1719-1730.

- [16] LIU R, ZHANG H C, WU W Q, et al. C7-prenylation of tryptophancontaining cyclic dipeptides by 7-dimethylallyl tryptophan synthase significantly increases the anticancer and antimicrobial activities[J]. Molecules, 2020, 25: 3676.
- [17] ZHOU K, ZHAO W, LIU X Q, et al. Saturation mutagenesis on Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results in mutants with strongly increased C3-prenylating activity[J]. Applied Microbiology and Biotechnology, 2016, 100: 9943-9953.
- [18] FAN A L, ZOCHER G, STEC E, *et al.* Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme[J]. Journal of Biological Chemistry, 2015, 290: 1364-1373.
- [19] FAN A L, LI S M. Saturation mutagenesis on Arg-244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides[J]. Applied Microbiology and Biotechnology, 2016, 100: 5389-5399.
- [20] LIU R (刘瑞), ZHANG H C (张弘弛), LI H (李慧), et al. C-7 prenylation of indole diketopiperazine alkaloids by 7-dimethylallyl tryptophan synthase[J]. Acta Agriculturae Boreali-occidentalis Sinica (西北农业学报), 2021, 30(3): 413-421.
- [21] WOODSIDE A B, HUANG Z, POULTER C D. Trisammonium geranyl diphosphate[J]. Organic Syntheses, 1988, 66: 211-215.
- [22] JEEDIGUNTA S, KRENISKY J M, KERR R G. Diketopiperazines as advanced intermediates in the biosynthesis of ecteinascidins[J]. Tetrahedron, 2000, 56: 3303-3307.
- [23] MAI P, ZOCHER G, STEHLE T, et al. Structure-based protein engineering enables prenyl donor switching of a fungal aromatic prenyltransferase[J]. Organic and Biomolecular Chemistry, 2018, 16: 7461-7469.
- [24] LIU J Y, PANG Y, CHEN J, et al. Hyperbranched polydiselenide as a selfassembling broad spectrum anticancer agent[J]. Biomaterials, 2012, 33: 7765-7774.
- [25] National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial susceptibility testing; Document M100-S12[S]. NCCLS: Wayne, PA, USA, 2002.
- [26] Clinical and Laboratory Standards Institute (CLSI). Reference method for brothdilution antifungal susceptibility testing of filamentous fungi; Documentis M38-A2[S]. CLSI: Wayne, PA, USA, 2008.
- [27] Clinical and Laboratory Standards Institute (CLSI). Reference method for brothdilution antifungal susceptibility testing of yeasts; Document M27-S4[S]. CLSI: Wayne, PA, USA, 2012.
- [28] LIU Z Q. Chemical methods to evaluate antioxidant ability[J]. Chemical Reviews, 2010, 110: 5675-5691.
- [29] WANG Z, SUN H Y, YAO X J, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power[J]. Physical Chemistry Chemical Physics, 2016, 18: 12964-12975.
- [30] RAASAKKA A, MYLLYKOSKI M, LAULUMAA S, et al. Determinants of ligand binding and catalytic activity in the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase[J]. Scientific Reports, 2015, 5: 16520.
- [31] WOLLINSKY B, LUDWIG L, HAMACHER A, et al. Prenylation at the indole ring leads to a significant increase of cytotoxicity of tryptophan-containing cyclic dipeptides[J]. Bioorganic and Medicinal Chemistry Letters, 2012, 22: 3866-3869.
- [32] WINKELBLECH J, LI S M. Biochemical investigations of two 6-DMATS enzymes from *Streptomyces* reveal new features of Ltryptophan prenyltransferases[J]. ChemBioChem, 2014, 15: 1030-1039.
- [33] POCKRANDT D, SACK C, KOSIOL T, et al. A promiscuous prenyltransferase from Aspergillus oryzae catalyses C-prenylations of hydroxynaphthalenes in the presence of different prenyl donors[J]. Applied Microbiology and Biotechnology, 2014, 98: 4987-4994.
- [34] ZHENG L J, MAI P, FAN A L, et al. Switching a regular tryptophan C4-prenyltransferase to a reverse tryptophancontaining cyclic dipeptide C3-prenyltransferase by sequential site-directed mutagenesis[J]. Organic and Biomolecular Chemistry, 2018, 16: 6688-6694.