水处理技术与环境保护

金刚烷胺/氧化石墨烯复合材料的制备及其吸附性能

刘迎新,梁 坚,孙卫琨,蒋 恒,黎成勇*,黄 山

(长沙学院 生物与环境工程学院,湖南 长沙 410003)

摘要: 以氧化石墨烯和金刚烷胺为原料,通过水相合成法制备了金刚烷胺功能化氧化石墨烯复合材料(A/GO), 采用 FTIR、XRD 和 XPS 对 A/GO 进行了结构表征,并考察了 A/GO 对有机染料的吸附性能。结果表明,与氧 化石墨烯相比, A/GO 对甲基蓝(AB93)表现出高效吸附性,其吸附动力学和吸附等温模型分别符合拟二级动 力学和 Langmuir 模型,最大理论吸附容量(q_m)为1250.0 mg/g。热力学分析表明,A/GO 吸附 AB93 是自发的 放热过程。A/GO 吸附 AB93 对 NaCl 和 KCl 表现出良好的耐盐性,而 CaCl₂能有效地促进 A/GO 吸附 AB93。 对于刚果红和 AB93 等的混合染料体系,A/GO 能选择性吸附 AB93。 关键词:氧化石墨烯;金刚烷胺;甲基蓝;吸附;选择性;水处理技术

中图分类号: Q644.1; X783.2 文献标识码: A 文章编号: 1003-5214 (2022) 09-1917-07

Preparation and adsorption properties of amantadine/graphene oxide composites

LIU Yingxin, LIANG Jian, SUN Weikun, JIANG Heng, LI Chengyong^{*}, HUANG Shan (College of Biological and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China)

Abstract: Amantadine functionalized graphene oxide composites (A/GO) were prepared from graphene oxide and amantadine through aqueous phase synthesis, followed by structural characterization *via* FTIR, XRD and XPS. Furthermore, the adsorption performance of A/GO for organic dyes were investigated. The results showed that A/GO exhibited higher adsorption efficiency for methyl blue (AB93) compared with control graphene oxide. Moreover, it was found that the kinetic and isothermal model of A/GO for adsorption of AB93 fitted pseudo second-order kinetics and Langmuir model with a maximum theoretical adsorption capacity (q_m) of 1250.0 mg/g. Meanwhile, thermodynamic analysis revealed that the adsorption process of A/GO for AB93 was spontaneously exothermic, displayed good resistance to NaCl and KCl salts and adsorption efficiency improvement in presence of CaCl₂. In addition, A/GO demonstrated selective adsorption for AB93 in the dye mixture of congo red and AB93.

Key words: graphene oxide; amantadine; methyl blue; adsorption; selection; water treatment technology

快速发展的现代工业排放大量工业废水,给水资源的保护与利用带来极大负担。特别是纺织、印染、造纸、印刷等行业,每年有超过100t的有机染料被排放到水体中,成为水污染的主要来源之一^[1]。 有机染料种类繁多、化学结构复杂、稳定性高、难以自然降解。进入水体中的染料会减弱入射到水体 中的阳光,阻碍水生植物的光合作用,严重影响水 生动植物的生存^[2]。此外,许多有机染料及其代谢 产物对人类及水生生物还具有较强的致突变性和致癌性。

吸附技术应用于废水中有机染料的处理具有去 除率高、易回收、易操作、低能耗和应用范围广 的优势,被认为是最有前途的水污染处理方法之 一^[3-4]。此外,实际生活的染料废水存在多种染料, 吸附技术处理多元染料体系逐渐成为热点^[5]。目前, 许多新型材料被用于吸附有机染料,主要包括生物

收稿日期: 2021-11-15; 定用日期: 2022-04-26; DOI: 10.13550/j.jxhg.20211159

基金项目:国家自然科学基金(2020JJ52073034);国家级大学生创新创业训练计划项目(S20211077004);长沙学院人才引进基金(2016SF1614, 2018SF1814);长沙学院大学生科技创新项目

作者简介:刘迎新(1970—),女,高级工程师,E-mail: 312260478@qq.com。联系人:黎成勇(1973—),男,教授,E-mail:lyong92@163.com。

质材料^[6]、碳材料^[7]、金属有机框架化合物(MOFs)^[8]、 金属氧化物纳米材料[2]、天然矿物[9]等。在众多碳材 料中,氧化石墨烯(GO)展现出独特的研究与应用 前景,不仅是由于氧化石墨烯具有大的比表面积, 同时其表面和边缘还含有大量的含氧官能团如羟 基、羰基和羧基,这些基团对各种污染物具有一定 的吸附能力^[10],也是氧化石墨烯用于接枝改性的主 要反应位点。研究者通过氧化石墨烯接枝改性的方 法来提升其吸附性能,如:NEVESA 等^[11]制备了壳 聚糖/季铵盐氧化石墨烯化合物,其对碱性棕的吸附 容量为 650 mg/g; WU 等^[12]制备的 NH₂-MIL-68(Al)/GO 对刚果红的吸附容量达 474 mg/g; ZHAO 等[13]报道的含镍金属有机框架/氧化石墨烯材料对 刚果红的吸附容量高达 2489 mg/g。通过化学或物理 方法可以提升氧化石墨烯的吸附性能,但是也存在 制备周期长等局限性。

金刚烷胺是饱和三环葵烷的氨基衍生物,广泛 应用于生物医学领域^[14-18]。本文通过水相反应过程, 利用金刚烷胺的氨基与氧化石墨烯的羧基进行反 应,制备得到金刚烷胺接枝改性的氧化石墨烯 (A/GO)复合材料。相比氧化石墨烯,A/GO能快 速、高效吸附甲基蓝,考察了A/GO对甲基蓝的吸 附性能和选择性吸附性能,研究了不同吸附条件(温 度、初始浓度、接触时间等)对吸附效果的影响规律。

1 实验部分

1.1 试剂与仪器

氧化石墨烯、金刚烷胺、甲基蓝(AB93)、刚 果红、甲基橙、亚甲基蓝、罗丹明 B,分析纯,国 药集团化学试剂有限公司;氯化钠(NaCl)、氯化钾 (KCl)、氯化钙(CaCl₂)、氢氧化钠(NaOH)、无 水乙醇,分析纯,天津市天力化学试剂有限公司。

UPT-I-20T型台式超纯水机,四川优普超纯科 技有限公司;数显冷冻气浴恒温振荡器,常州市万 丰仪器制造有限公司;Nicolet iS5型傅里叶变换红 外光谱仪、Thermo Scientific K-Alpha+型 X 射线光 电子能谱分析仪,美国赛默飞世尔科技公司; Bruker D8A A25型 X 射线衍射仪,德国 Bruker 公 司;UV-2450型紫外-可见分光光度计,日本岛津 公司。

1.2 吸附剂 A/GO 的合成

称取 200 mg 氧化石墨烯加入到 250 mL 烧杯中,接着加入 100 mL 去离子水,将混合物超声分散 30 min 制得悬浮液。再在悬浮液中加入 200 mg 金刚 烷胺,并常温搅拌 4 h。将反应后的悬浮液离心分离,收集固体,去离子水洗涤滤液至 pH 为中性,洗涤

后的固体冷冻(-40 ℃)干燥4h,得到黑色粉末 固体,即为金刚烷胺功能化氧化石墨烯(A/GO)。 图1为A/GO复合材料的合成示意图。

图 I A/GO 的合成小息图 Fig. 1 Synthesis diagram of A/GO

1.3 吸附剂结构表征

FTIR:采用 KBr 压片法。XRD 测试条件:Cu K_α 为铜靶线,入射波长 0.1542 nm。XPS 测试条件:单 色 Al-K_α辐射(hv=1486.6 eV),工作电压 12.5 kV, 灯丝电流 16 mA。

1.4 吸附等温线及吸附动力学测定

准确量取 25 mL 不同浓度的甲基蓝溶液(质量 浓度 0.01~0.4 g/L)置于 50 mL 离心试管中, 批量称 取 10 mg A/GO 并分别加入系列离心试管中, 控制 温度分别为 25、35 和 45 °C,于 150 r/min 恒温振 荡 3 h,测定离心清液在 580 nm 处的吸光度,绘制 吸附等温线;测定吸附剂与甲基蓝(质量浓度 0.2 g/L)不同接触时间的吸光度,进行吸附动力学研究。

1.5 吸附剂对甲基蓝的选择性吸附

配制质量浓度各为 0.1 g/L 的甲基蓝和刚果红、 甲基橙、亚甲基蓝及罗丹明 B 的二元染料溶液,准 确量取 25 mL 二元染料溶液加入离心试管中,加入 10 mg A/GO,于 25 ℃、150 r/min 恒温振荡 30 min 后取出,离心分离,考察吸附剂对甲基蓝混合染料 的选择性吸附性能。

1.6 吸附剂吸附容量和去除率的计算

吸附剂对甲基蓝的吸附容量由式(1)计算:

$$q_{\rm e} = (\rho_0 - \rho_{\rm e}) V/m \tag{1}$$

式中: q_e 为吸附平衡的吸附容量(mg/g); ρ_0 和 ρ_e 分别为初始和吸附平衡时的染料质量浓度(g/L);V为染料的体积(mL);m为吸附剂的质量(mg)。

吸附剂对染料的去除率用式(2)计算:

$$R/\% = (\rho_0 - \rho_e)/\rho_0 \times 100 \tag{2}$$

式中: R 为染料去除率 (%); ρ_0 和 ρ_e 分别为初始和 吸附平衡时的染料质量浓度 (g/L)。

1.7 A/GO 吸附剂的重复使用性能考察

将 0.01 mo/L NaOH 与无水乙醇按照体积比 1: 5 配制混合溶液。按 1.5 节条件完成吸附实验后,通 过离心分离对吸附剂进行有效回收。加入 25 mL 该 混合溶液对回收后的吸附剂进行脱附,脱附条件为 25 ℃、150 r/min 恒温振荡 2 h 后离心分离,测定脱 附液中染料质量浓度,考察吸附剂重复使用性能。 吸附剂的脱除率由式(3)计算:

$$R'/\% = \rho_1/\rho_0 \times 100 \tag{3}$$

式中: R'为吸附剂脱除率(%); ρ_1 和 ρ_0 分别为脱附 平衡和吸附初始的染料质量浓度(g/L)。

2 结果与讨论

2.1 FTIR 表征

氧化石墨烯、金刚烷胺和 A/GO 的红外光谱如 图 2 所示。由图 2a 可知,3411(—OH)、1732(C=O)、 1617(C—OH)、1063(C—O) cm⁻¹出现了氧化石 墨烯的伸缩振动特征峰。图 2b 中,3435、1633 cm⁻¹ 和 2920、2860 cm⁻¹处的吸收峰分别归属于金刚烷胺 分子结构中—NH₂—和—CH₂—的特征吸收峰;从图 2c 可以看出,1732 cm⁻¹处氧化石墨烯羰基特征峰消 失,在 2920 和 2860 cm⁻¹出现金刚烷胺亚甲基和次 甲基反对称和对称伸缩振动吸收峰,在 3429 cm⁻¹ 出现酰胺特征峰,1635 cm⁻¹处出现酰胺 C=O 键的 伸缩振动峰,表明氧化石墨烯利用其—COOH 与金 刚烷胺的—NH₂作用生成酰胺化合物,说明金刚烷胺 已经成功接枝到氧化石墨烯上。

图 2 氧化石墨烯(a)、金刚烷胺(b)和 A/GO(c)的 FTIR 谱图

Fig. 2 FTIR spectra of GO (a), amantadine (b) and A/GO (c)

2.2 XRD 表征

图 3 为氧化石墨烯和 A/GO 的 XRD 谱图。由图 3 可见,氧化石墨烯在 2*θ*=10.13°出现(002)晶面 强的衍射峰,计算得氧化石墨烯的平均层间距约为 0.87 nm;而金刚烷胺接枝后的 A/GO 在 2*θ*=17.40°、 20.90°、28.60°、35.10°出现了金刚烷胺的典型衍射 峰,且氧化石墨烯(002)晶面偏移至 2*θ*=6.97°,计算 得接枝后的氧化石墨烯平均层间距增大到 1.28 nm^[19]。 氧化石墨烯层间距的增加说明金刚烷胺已经成功接 枝到氧化石墨烯上,独特的金刚烷胺六元环结构在 增大氧化石墨烯层间距方面作用非常明显。

2.3 XPS 表征

氧化石墨烯和 A/GO 的 XPS 图如图 4 所示。

图 4 氧化石墨烯和 A/GO 的 XPS 谱图(a), 金刚烷胺和 A/GO 的 N 1s 谱图(b)

Fig. 4 XPS spectra of GO and A/GO (a) and N 1s spectra of amantadine and A/GO (b)

由图 4a 可见,相比氧化石墨烯,A/GO 在 401.0 eV 处出现了 N 1s 的特征峰,这归因于氧化石 墨烯接枝金刚烷胺以后 N 元素含量的提高。由图 4b 可见,相比金刚烷胺,A/GO 在 399.1 eV 出现新的 特征峰,这属于金刚烷胺和氧化石墨烯形成的酰胺 键(C=O-N)^[13]。XPS 结果与 XRD 和 FTIR 表征 结果吻合。

2.4 吸附等温模型分析

图 5a 为 A/GO 在 25、35、45 ℃下吸附 AB93 的等温曲线。整体而言,升温并不利于提升 A/GO

对 AB93 的吸附能力。图 5b、c 为以 A/GO 吸附 AB93 的等温线进行 Langmuir 模型和 Freundlich 模型的线 性拟合结果,相关模型参数列于表 1 中。

图 5 A/GO 吸附 AB93 的等温线(a)、Langmuir 模型(b) 和 Freundlich 模型(c) 拟合结果

Fig. 5 Isotherms (a), Langmuir model (b) and Freundlich model (c) of A/GO for the adsorption of AB93

表 1 A/GO 吸附 AB93 的 Langmuir 和 Freundlich 模型参数 Table 1 Langmuir and Freundlich model parameters of A/GO for the adsorption of AB93

温度/ ℃	La	ngmuir 模	運	Freundlich 模型		
	$q_{ m m}/$ (mg/g)	<i>K</i> _L / (L/mg)	R^2	$\frac{K_{\rm F}/[(\rm mg/g)}{\rm (L/mg)^{1/n}}]$	1/ <i>n</i>	R^2
25	1250.0	0.08	0.9947	147.85	0.52	0.9468
35	909.1	0.11	0.9969	186.40	0.34	0.8284
45	1123.5	0.06	0.9927	142.16	0.47	0.9886

注: q_m 为最大理论吸附容量; K_L 为 Langmuir 吸附速率常数; K_F 为 Freundlich 吸附速率常数; 1/n为吸附难易相关系数; R^2 为线性相关系数。

可知, Langmuir 模型的 *R*² 为 0.9927~0.9969, 高于 Freundlich 模型的 *R*² (0.8284~0.9886), 表明 Langmuir 模型比 Freundlich 模型能更好地描述吸附过程,最大理论吸附容量 (q_m)为 1250.0 mg/g。这一现象也证实了 AB93 在 A/GO 界面上的单层均匀覆盖。

2.5 吸附动力学模型分析

A/GO 对 AB93 的吸附容量随接触时间的变化 情况如图 6 所示。由图 6 可知,氧化石墨烯对 AB93 的吸附不明显,而 A/GO 对 AB93 表现出较好的吸 附性能,在 2.5 h 左右吸附容量达到稳定。当 AB93 的质量浓度增大到 0.2 g/L 时,也不影响吸附容量达 到平衡的时间。采用拟一级和拟二级动力学模型对 A/GO 吸附 AB93 的动力学过程进行拟合(图 7), 相应拟合参数列于表 2 中。

图 6 吸附容量(q_t)与接触时间的关系

图 7 A/GO 吸附 AB93 的拟一级动力学方程和拟二级动力 学方程拟合结果

Fig. 7 Pseudo-first-order and pseudo-second-order kinetics equation of A/GO for the adsorption of AB93

- 表 2 A/GO 吸附 AB93 的拟一级动力学和拟二级动力学 参数
- Table 2Pseudo-first-order and pseudo-second-order kinetics
data of A/GO for the adsorption of AB93

拟一级动力学				拟二级动力学		
$q_{ m e,exp}/\ (m mg/g)$	$k_1 \times 10^{-3} / \min^{-1}$	$q_{ m e}/$ (mg/g)	R^2	$\frac{k_2 \times 10^{-3}}{[g/(mg \cdot min)]}$	$q_{ m e}/$ (mg/g)	R^2
222.5	4.61	31.6	0.7628	1.26	227.3	0.9999

注: q_e平衡最大吸附容量; k₁为拟一级动力学的吸附速率 常数; k₂为拟二级动力学的吸附速率常数; R²为线性相关系数。 由图 7 和表 2 可见, 拟二级动力学模型的 R² (0.9999)高于拟一级动力学模型的 R²(0.7628), 且拟二级动力学模型计算的 q_e与实验值(q_{e,exp})更 接近。A/GO 对 AB93 的吸附动力学过程更符合拟二 级动力学模型,表明吸附过程的限速步骤受化学吸 附控制。

通过颗粒内扩散模型对吸附过程进行拟合,结 果如图 8 所示。可见其拟合直线不经过原点,这说 明颗粒内扩散不是唯一的控制吸附速率步骤。颗粒 内扩散模型的拟合数据见表 3。k2d 和 k3d 分别是颗粒 外表面和内表面的扩散速率常数,由于 k3d 远小于 k2d,说明内部孔扩散是吸附速率限制步骤。

图 8 A/GO 吸附 AB93 颗粒内扩散方程的拟合曲线 Fig. 8 Fitting curre of intra-particle diffusion equation of A/GO for the adsorption of AB93

表 3 A/GO 吸附 AB93 颗粒内扩散模型拟合参数

Table 3Fitting parameters of intra-particle diffusion model of
A/GO for the adsorption of AB93

$k_{ m 1d}/$ [mg/(g·min ^{1/2})]	C_1	$k_{2d}/$ [mg/(g·min ^{1/2})]	C_2	$k_{ m 3d}/$ [mg/(g·min ^{1/2})]	<i>C</i> ₃
85.57	0	3.72	5.6	0.16	14.1
22 I M.B	. دير انت	++++++++++++++++++++++++++++++++++++		山山田国南海教	

注: k_{id}为颗粒内扩散速率常数; C_i为边界厚度常数。

2.6 热力学分析

图 9 为 A/GO 吸附 AB93 的热力学分析,相关 计算参数见表 4。

Fig. 9 Thermodynamic analysis of A/GO for the adsorption of AB93

		表 4	A/GO 吸附	AB93 的热	力学	Z参数		
Table	4	Ther	modynamic	parameters	of	A/GO	for	the
		adso	rption of AB	93				

-	r i r i r i r			
温度/℃	$\ln K_0$	$\Delta G^0/$ (kJ/mol)	$\Delta H^0/$ (kJ/mol)	$\Delta S^0/$ [kJ/(mol·K)]
25	1.7631	-4.37	-10.33	-0.02
35	1.6491	-4.22		
45	1.5005	-3.97		

可知, 吉布斯自由能 (ΔG^0) 和焓变 (ΔH^0) 均 为负值, 说明 A/GO 对 AB93 的吸附过程为自发的 放热过程, ΔH^0 (仅为–10.33 kJ/mol, 可视吸附过程为 物理吸附过程^[20]。相比 AB93 在水溶液中的迁移运 动, AB93 在 A/GO 吸附剂表面运动较慢^[1], 这与熵 变 ΔS^0 为负值相符合。

2.7 盐对吸附效果的影响

研究了 3 种不同无机盐对 A/GO 吸附 AB93 效 果的影响,结果见图 10。由图 10 可知,当 NaCl 和 KCl浓度范围在 0~0.4 mol/L 之间时,去除率随盐浓 度增大略微降低,但仍能保持在 95%以上。这说明 吸附剂和染料之间的静电作用与染料分子之间的聚 集作用存在竞争行为,一价金属盐对吸附剂去除染 料过程表现出一定的抑制作用。而 CaCl₂则在一定 程度上提高了 AB93 的去除率,这可能是由于 Ca²⁺ 与 AB93 中的 NH一形成了络合物^[1]。整体来看, A/GO 吸附 AB93 的过程表现出较好的耐盐效果。

图 10 盐对 A/GO 吸附 AB93 的影响 Fig. 10 Effect of salt on the adsorption of AB93 by A/GO

2.8 A/GO 对甲基蓝的选择性吸附

考察了吸附剂 A/GO 对甲基蓝与刚果红、甲基 橙、罗丹明 B、亚甲基蓝等二元染料体系的选择性 吸附性能,结果见图 11a~d。

由不同染料在其最大吸收波长处吸光度的变化 情况可以看出, A/GO 对甲基蓝(最大吸收波长 580 nm)展现出显著的吸附效果, 其他 4 种染料在 吸附后仍有较大程度的吸光度保留; 由图 11a~d 插 图中吸附前后染料溶液的颜色变化看出, A/GO 对 刚果红等其他染料吸附效果不明显, 说明 A/GO 对 混合染料中的甲基蓝具有较好的选择性吸附性能。

图 11 A/GO 对不同混合溶液的选择性吸附 Fig. 11 Selective adsorption of A/GO for different mixed solutions

2.9 吸附剂 A/GO 的重复使用性能

吸附后的吸附剂 A/GO 经离心分离后,以 NaOH 溶液和乙醇混合溶液进行脱附,甲基蓝染料的脱除 率达 90%。吸附剂 A/GO 的重复使用性能见图 12。 经 5 次吸附-脱附循环后, A/GO 对甲基蓝的去除率

仍达 85%以上,说明 A/GO 复合材料具有较好的稳定性和良好的循环使用性能。

3 结论

(1)通过水相合成法制备的金刚烷胺接枝氧化 石墨烯的新型吸附材料 A/GO 表现出对甲基蓝良好 的吸附性能,其最大理论吸附容量可达 1250.0 mg/g。金刚烷胺的六元环结构在调控氧化石墨烯的 层间距方面表现出独特的优势,对于在二维纳米材 料的结构调控及其应用方面具有一定的指导意义。

(2) A/GO 对 AB93 的吸附动力学和吸附等温 模型分别符合拟二级动力学和Langmuir模型。A/GO 对 AB93 的吸附过程展现出较好的耐盐性,加入一 定浓度的 NaCl、KCl、CaCl₂,对甲基蓝去除率仍能 保持在 95%以上。

(3) A/GO 对由甲基蓝和刚果红等组成的二元 混合染料溶液表现出较好的选择性吸附性能,吸附 剂重复使用性能良好,重复使用 5 次后吸附剂对甲 基蓝的去除率仍达 85%以上。

参考文献:

- TANG J, ZHANG Y F, LIU Y, *et al.* Efficient ion-enhanced adsorption of congo red on polyacrolein from aqueous solution: Experiments, characterization and mechanism studies[J]. Separation and Purification Technology, 2020, 252: 117445.
- [2] CHEN H, WAGEH S, Al-GHAMDI A A, et al. Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red[J]. Journal of Colloid and Interface Science, 2019, 537: 736-745.
- [3] LEI C, ZHU X, ZHU B, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions[J]. Journal of Hazardous Materials, 2017, 321: 801-811.
- [4] ZHANG Y H, ZHUC Q, LIU F Q, et al. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review[J]. Science of the Total Environment, 2019, 646: 265-279.
- [5] LI Y, TANG J, LIU Y, et al. Concentration-driven selective adsorption of Congo red in binary dyes solution using polyacrolein: Experiments, characterization and mechanism studies[J]. Journal of Molecular Liquids, 2021, 335: 116230.