水处理技术与环境保护

好氧颗粒污泥对钇离子的吸附-解吸性能

曾敏静1,程媛媛1,曾玉1,李正吴1,吴俊峰2,龙焙1*

(1. 江西理工大学 土木与测绘工程学院, 江西 赣州 341000; 2. 河南省水体污染防治与修复重点实验 室, 河南 平顶山 467036)

摘要: 探究了好氧颗粒污泥(AGS)对钇离子(Y³⁺)的吸附-解吸效果。相比于搅拌及振荡,曝气混合下 AGS 具有更好的 Y³⁺吸附效果,80%以上的吸附在前 10 min 完成。当初始 Y³⁺质量浓度 \leq 50 mg/L 时,AGS 能完全吸 附废水中 Y³⁺。H⁺、Na⁺和 Pb²⁺会与 Y³⁺竞争 AGS 上的吸附位点,导致吸附率减小。0.6~1.0 mm 的 AGS 吸附量 最大,经过人工破碎后,2.4~3.0 mm 的 AGS 吸附量增大约 15%。AGS 对 Y³⁺吸附动力学符合伪二级动力学模型 (R^2 =0.99),表明化学吸附起主导作用,颗粒内扩散是影响吸附速率的主要因素。AGS 对 Y³⁺吸附热力学符合 Langmuir 模型 (R^2 =0.9849),表明吸附过程是一个单分子层吸附过程,拟合得到最大吸附量为 24.39 mg/g MLSS (MLSS 为污泥)。XPS 表征发现,参与吸附官能团有酯基、羧基、氨基,同时 Y³⁺与 K⁺进行离子交换。HNO₃ 的单次解吸率(99.8%)明显高于 NH₄Cl (63.2%),但 5 次吸附-解吸附循环后,HNO₃解吸率降至 10%,NH₄Cl 解吸率仍维持在 50%。

关键词:好氧颗粒污泥; 钇离子(Y³⁺);吸附;解吸附;吸附机理;水处理技术
中图分类号:X703.1 文献标识码:A 文章编号:1003-5214 (2022) 08-1690-09

Adsorption-desorption performances of aerobic granular sludge for yttrium ion

ZENG Minjing¹, CHENG Yuanyuan¹, ZENG Yu¹, LI Zhenghao¹, WU Junfeng², LONG Bei^{1*}

(1. School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China; 2. Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, Henan, China)

Abstract: The adsorption-desorption performances of aerobic granular sludge (AGS) for yttrium ion (Y^{3+}) under different reaction conditions were investigated, of which adsorption effect under aeration, with more than 80% of Y^{3+} adsorbed in the first 10 min, was higher than that under agitation and oscillation conditions. It was also found that AGS could adsorb all Y^{3+} from wastewater when the initial mass concentration of Y^{3+} was less than or equal 50 mg/L. However, adsorption efficiency would decrease due to competition for the adsorption sites on AGS by H⁺, Na⁺ and Pb²⁺. Moreover, AGS with particle size of 0.6~1.0 mm exhibited maximum adsorption capacity while that in 2.4~3.0 mm, when crushed manually, showed an increase of about 15% in adsorption capacity. The adsorption kinetics of AGS to Y^{3+} was fitted to the pseudo-second-order model (R^2 =0.99), indicating that chemisorption played a dominant role with intra-particle diffusion the main factor affecting the adsorption rate. The thermodynamics of adsorption of AGS to Y^{3+} was consistent with Langmuir model (R^2 =0.9849), showing that the adsorption process was a monolayer adsorption process with the fitted maximum adsorption capacity 24.39 mg/g MLSS(MLSS represents sludge). Meanwhile, XPS characterization displayed that the functional groups contributing to the adsorption were mainly ester group, carboxyl group and amino group as well as ion exchange between Y^{3+} and K^+ . For desorption, the single desorption efficiency of HNO₃ (99.8%) was significantly higher than that

收稿日期: 2022-03-03; 定用日期: 2022-05-19; DOI: 10.13550/j.jxhg.20220179

基金项目:国家自然科学基金(52060007);江西省教育厅科技项目(GJJ190502);江西理工大学研究生创新专项资金项目(XY2021-S024);江西省大学生创新训练计划项目(S202110407051);河南省水体污染防治与修复重点实验室开放基金(CJSP2021004) 作者简介:曾敏静(1998—),男,硕士生,E-mail: 836298052@qq.com。联系人:龙 焙(1986—),男,副教授,E-mail: 17770132146@ 189.cn。

of NH_4Cl (63.2%). However, after five cycles of adsorption-desorption, the desorption efficiency of HNO_3 decreased to 10%, while that of NH_4Cl remained at 50%.

Key words: aerobic granular sludge; yttrium ion; adsorption; desorption; adsorption mechanism; water treatment technology

吸附法^[1]由于操作简单、效率高等优点在水处 理中被广泛应用。除活性炭、硅胶等吸附剂外,生 物吸附剂由于原料丰富、成本低而获得众多研究者 青睐。其中,生物污泥因既能去除碳、氮、磷等污 染物,又可吸附废水中的重金属而备受关注。

好氧颗粒污泥(AGS)是一种极具发展前景的 废水生物处理技术^[2],具有结构致密、沉降速度快、 耐毒性高等优点^[3]。得益于这些优点,AGS 已被用 于多种重金属离子的吸附,如 Cd²⁺、Cu²⁺、Zn²⁺等, 并表现出一定的吸附量(172.7、59.6、164.5 mg/g MLSS)^[4]。LI 等^[5]利用 AGS 吸附 Ni²⁺(最大吸附 量为 65.77 mg/g MLSS), 胞外聚合物 (EPS) 贡献 了 25%的吸附率。李晓佳等^[6]发现,AGS 在前 20 min 就完成对 Pb²⁺的吸附,表明该吸附是一个快速吸附 过程。AGS 吸附重金属涉及多种机制,主要是官能 团吸附, AGS 表面的一OH、一COO一基团^[7]能与废 水中的重金属离子结合形成稳定的络合物。另外, 胞外重金属还能与胞内 K⁺、Mg²⁺、Ca²⁺等^[8]进行交 换从而去除。可见, AGS 在吸附重金属方面具有明 显优势。实际工程中常见多种重金属离子共存体系, 会相互影响吸附效果。一般来说, 共存体系中吸附 量低于单种离子吸附量,江孟等^[9]发现,共存时 AGS 的吸附量排序为 Pb²⁺>Cu²⁺>Cd²⁺。但关于钇离子与 其他重金属的竞争吸附研究还较少, AGS 对钇离子 的吸附选择性尚未可知。

解吸与再吸附能力是衡量吸附剂应用潜力的重要指标。目前研究多关注 AGS 吸附重金属离子性能,对于吸附饱和 AGS 的解吸-再吸附研究较少。 CaC1₂、HNO₃和 HCl等解吸剂具有较好的效果。李 姝等^[10]发现,CaC1₂、HNO₃和 HCl 3 种解吸剂均可 回收 95%以上的 Pb²⁺、Cu²⁺及 Cd²⁺。HUANG 等^[11] 利用磁化改性制备了一种新型氨基功能化的 AGS, 其对 Pb²⁺的最大吸附量为 127 mg/g MLSS,经历 5 个吸附-解吸附循环后,Pb²⁺去除率仍高达 88%。吸 附剂的解吸主要是利用酸、碱、金属盐等解吸剂将吸 附的重金属离子交换出来^[12]。可以预见的是,解吸过 程不可避免地会对 AGS 稳定性造成冲击,且一些解 吸剂会引入新的污染。因此,探索高效 AGS 多次吸 附-解吸工艺具有较好的工程应用价值。

赣南离子型稀土在开采过程中和废弃后会产生 大量尾水^[13],这些尾水呈弱酸性(pH=5~6),主要 污染物为氨氮(质量浓度为 100~150 mg/L)^[14]、稀 土金属及其他伴生离子^[15],已成为区域水环境重要 污染物输入源。赖城等[16]发现,稀土矿山尾水中残 留的稀土离子质量浓度在 11.91~126.39 mg/L, Y³⁺、 La³⁺、Nd³⁺所占比例高达 20%~60%。《稀土工业污染 物排放标准 GB26451-2011》规定,稀土元素总质 量浓度不应高于 1.0 mg/L。稀土矿山废水中稀土元 素回收的关键是其分离与富集。钟宜航等[1]利用蒙 脱石吸附重金属 Y³⁺, 拟合得到最大吸附量可达 0.39 mmol/g。魏斌等^[17]利用黏土矿物吸附 La³⁺、Nd³⁺ 元素,发现吸附性能排序为:膨润土>凹凸棒石>高 岭土,最大吸附量为 40 μmol/g。目前相关研究主要 是采用惰性吸附剂富集尾水中稀土离子,利用生物 吸附剂实现富集的研究还较少。AGS 表面丰富的化 学官能团为稀土离子的回收提供了一种新思路,在 无机高氨氮废水脱氮研究的基础上[18],本研究考察了 AGS 对稀土元素钇离子的吸附-解吸效果,以期为稀 土矿山废水的治理提供技术借鉴。

1 实验部分

1.1 试剂与仪器

氯化铵(NH₄Cl),分析纯,天津市大茂化学试 剂厂;硝酸(HNO₃)、硝酸铅[Pb(NO₃)₂]、氢氧化 钠(NaOH)、氯化钠(NaCl),西陇科学股份有限 公司;六水合硝酸钇[Y(NO₃)₃•6H₂O],上海麦克林 生化科技有限公司。

ACO-010 电磁式空气泵,广州市蓝宝水族科技 有限公司; MLA650F 扫描电子显微镜(SEM),美 国 FEM 公司; Thermo Scientific K-Alpha X 射线光 电子能谱仪(XPS),美国 Thermo Scientific 公司; Avio200 电感耦合等离子体发射光谱仪,珀金埃尔 默上海有限公司。

1.2 吸附剂与吸附质的制备

吸附剂: AGS 泥水混合液取自实验室序批式反应器 (SBR),颜色呈褐色,具有致密的结构,污泥沉降比 (SV₃₀/SV₅,SV₃₀为静置沉淀 30 min 时污泥沉降体积,SV₅为静置沉淀 5 min 时污泥沉降体积)为 0.96,污泥容积指数 (SVI)为 40.3 mL/g,平均粒径 1.33 mm,颗粒化率为 91%,污泥的比耗氧速率 (SOUR)为 44.9 mg $O_2/(g MLSS \cdot h)$,胞外聚合物

(EPS)含量为 25.3 mg/g MLSS,蛋白质(PN)/ 多糖(PS)质量比为 0.83。取 AGS 泥水混合液,静 置 10 min 后去除上清液并收集 AGS,去离子水清洗 3 次去除表面离子制得吸附剂。

吸附质:分别称取 4.308 g Y(NO₃)₃•6H₂O 和 1.599 g Pb(NO₃)₂,用蒸馏水溶解定容至1L,获得 质量浓度 1000 mg/L 的 Y³⁺母液和 Pb²⁺母液,依据实 验要求稀释后使用。pH 由 1 mol/L NaOH 和 1 mol/L HNO₃调节,不同盐度废水由 NaCl 配制而成,解吸 液分别由 1 mol/L HNO₃、NH₄Cl 配制而成。

1.3 吸附-解吸条件

实验在 500 mL 烧杯中进行。取 SBR 中 AGS 泥 水混合液,静置 10 min 后去除上清液并收集 AGS, 用去离子水清洗 3 次以去除表面离子,加入配制好 的 Y³⁺溶液进行吸附实验。设置反应条件:曝气量 1.5 L/min,磁力搅拌速度 100 r/min,振荡速度 100 r/min,温度 25 ℃,MLSS 质量浓度 4300 mg/L, 其余条件设计见表 1。吸附反应结束后,除去上清 液,取 AGS 加入配制好的解吸液,在曝气条件下进 行解吸实验。实验结果为 3 次平行实验均值。

序号	变量	混合方式	初始 Y ³⁺ 质量浓度/(mg/L)	pН	盐度(NaCl 质量分数)/%	Pb ²⁺ 质量浓度/(mg/L)	粒径/mm
1	混合方式	曝气	100	4.5	0	0	不控制
2	混合方式	搅拌	100	4.5	0	0	不控制
3	混合方式	振荡	100	4.5	0	0	不控制
4	Y^{3+}	曝气	25	4.5	0	0	不控制
5	Y^{3+}	曝气	50	4.5	0	0	不控制
6	Y^{3+}	曝气	100	4.5	0	0	不控制
7	Y^{3+}	曝气	300	4.5	0	0	不控制
8	Y^{3+}	曝气	500	4.5	0	0	不控制
9	Y^{3+}	曝气	700	4.5	0	0	不控制
10	Y^{3+}	曝气	900	4.5	0	0	不控制
11	pН	曝气	100	3.0	0	0	不控制
12	pН	曝气	100	3.5	0	0	不控制
13	pН	曝气	100	4.0	0	0	不控制
14	pН	曝气	100	4.5	0	0	不控制
15	pН	曝气	100	5.0	0	0	不控制
16	pН	曝气	100	5.5	0	0	不控制
17	盐度	曝气	100	4.5	0	0	不控制
18	盐度	曝气	100	4.5	0.5	0	不控制
19	盐度	曝气	100	4.5	1.0	0	不控制
20	盐度	曝气	100	4.5	1.5	0	不控制
21	盐度	曝气	100	4.5	2.0	0	不控制
22	盐度	曝气	100	4.5	2.5	0	不控制
23	Pb ²⁺	曝气	100	4.5	0	0	不控制
24	Pb^{2+}	曝气	100	4.5	0	100	不控制
25	Pb^{2+}	曝气	100	4.5	0	200	不控制
26	Pb^{2+}	曝气	100	4.5	0	300	不控制
27	Pb^{2+}	曝气	100	4.5	0	400	不控制
28	Pb^{2+}	曝气	100	4.5	0	500	不控制
29	粒径	曝气	100	4.5	0	0	< 0.3
30	粒径	曝气	100	4.5	0	0	0.3~0.6
31	粒径	曝气	100	4.5	0	0	0.6~1.0
32	粒径	曝气	100	4.5	0	0	1.0~1.4
33	粒径	曝气	100	4.5	0	0	1.4~2.0
34	粒径	曝气	100	4.5	0	0	2.0~2.4
35	粒径	曝气	100	4.5	0	0	2.4~3.0

表 1 实验条件 Table 1 Reaction conditions

1.4 测试方法

通过标准筛实现 AGS 粒径分级。反应结束后静 置 10 min 收集锥形瓶内上清液,并用 0.45 µm 的水 系滤膜过滤,采用 ICP 测定 Pb²⁺及 Y³⁺浓度。采用 冷冻干燥法制作 SEM 样品:将 AGS 清洗 3 次,质 量分数 2.5%的戊二醛水溶液固定 24 h,依次在体积 分数 50%、70%、80%、90%、95%和 100%的乙醇水 溶液中脱水,然后用叔丁醇清洗 3 次,将 AGS 冷冻 (4 ℃)后真空干燥(室温)6 h 获得样品。灼烧消 解法提取污泥中 Y³⁺,参考 POKHREL 等^[19]实验方 法,将吸附后的污泥在 600 ℃焚烧 2 h,取灰分在 0.5 mol/L HNO₃中搅拌 24 h 后静置,取上清液进行 Y³⁺浓度测定。

吸附率和解吸率计算公式如式(1)及式(2) 所示。

吸附率/% =
$$\frac{\rho_1 - \rho_{\text{出水浓度}}}{\rho_1} \times 100$$
 (1)

解吸率/%=
$$\frac{\rho_{\text{出水浓度}}}{\rho_1}$$
×100 (2)

式中: $\rho_{\text{出水浓度}}$ 为吸附或解吸附反应结束之后的 Y³⁺ 质量浓度,mg/L; ρ_1 为 Y³⁺初始质量浓度,在因素 影响实验中 ρ_1 为 100 mg/L,在吸附-解吸附实验中 ρ_1 为 50 mg/L。

Webber-Morris 方程用于分析吸附过程的 3 个阶段:外边界层扩散、颗粒内扩散及扩散平衡阶段^[20]。 吸附常数 *R* 计算公式见式(3)。

$$R / \% = \frac{C}{Q_t} \times 100 \tag{3}$$

式中: C为 Webber-Morris 方程拟合截距; Q_t 为在 t时刻的吸附量 (mg/g MLSS)。

2 结果与讨论

2.1 单因素对吸附效果影响

2.1.1 混合方式

混合方式对吸附过程的影响见图 1a。

a—混合方式; b、c—初始 Y³⁺质量浓度; d—pH; e—盐度; f— 共存离子 Pb²⁺; g—粒径

由图 1a 可知,3 种混合方式均在 40 min 后趋于 吸附平衡。其中,曝气、搅拌的吸附速率(前 10 min 吸附曲线斜率)较快,振荡模式的吸附速率略慢。 曝气模式的吸附量最大(19.0 mg/g MLSS),搅拌模 式次之,振荡模式的吸附量最小(17.5 mg/g MLSS)。 可见,曝气相比于搅拌与振荡具有更大的吸附量和更 快的吸附速率。推测原因是,曝气模式下 AGS 和 Y³⁺ 的接触效率最高,故后续实验均在曝气模式下进行。 2.1.2 初始 Y³⁺质量浓度

初始 Y^{3+} 质量浓度对吸附过程的影响见图 1b; 对吸附量的影响见图 1c。由图 1b 可知,当初始 Y^{3+} 质量浓度 \leq 50 mg/L 时,出水 Y^{3+} 质量浓度接近 0, 吸附率趋近 100%。当初始 Y^{3+} 质量浓度>100 mg/L 后,随着初始 Y^{3+} 质量浓度的增大,出水 Y^{3+} 质量浓 度逐渐升高,吸附率不断减小。推测原因是,AGS 上的吸附位点有限,初始 Y^{3+} 质量浓度超出 AGS 的 吸附容量后,吸附率开始下降。吸附量随着初始 Y^{3+} 质量浓度 (0~100 mg/L)(图 1c)的增大迅速上升, 此后增大趋势变缓。推测是高质量浓度 Y^{3+} 增大了 传质驱动力,克服了固液相之间的阻力,故初始 Y^{3+} 质量浓度>100 mg/L 后,仍能提高部分吸附量,这 与 AKPOMIE 等^[21]的研究结果一致。

2.1.3 溶液 pH 的影响

溶液 pH 对吸附过程的影响见图 1d。由图 1d 可 知,随着 pH 增大,出水 Y³⁺质量浓度逐渐减小,吸 附率逐渐提高。推测变化的原因是,低 pH 溶液中 会有更多的 H⁺与 Y³⁺争夺吸附位点,同时 H⁺占据表 面活性位点后使 AGS 质子化带正电,与溶液中 Y³⁺ 之间存在静电斥力,从而吸附率较低,这与 AHMED 等^[22]的研究结果一致。另一方面,随着 pH 的增大, Y³⁺易发生水解,生成沉淀物吸附在 AGS 表面,从 而提高吸附率。

2.1.4 盐度的影响

盐度对吸附过程的影响见图 1e。由图 1e 可知,

随着盐度的增大,出水 Y³⁺质量浓度显著上升,吸 附率明显减小。推测是 NaCl 加入到溶液后,Na⁺会 中和污泥表面的负电荷,相当于 Na⁺与 Y³⁺存在竞争 吸附,这与张彦灼等^[23]观察到的现象一致。即随着 盐度的增大,离子竞争作用增强,从而导致吸附率 下降。

2.1.5 共存离子 Pb²⁺的影响

共存 Pb²⁺对吸附过程的影响见图 1f。由图 1f可知, 随着进水 Pb²⁺质量浓度的增大,AGS 对 Pb²⁺的吸附量 逐渐增大,但 AGS 对 Y³⁺的吸附量明显减小。可见, Pb²⁺的共存会显著减少 Y³⁺的吸附量,故推测两种阳 离子存在竞争吸附,Y³⁺和 Pb²⁺存在共同吸附位点。 另外,AGS 对 Pb²⁺具有更大的吸附量,推测是因为 可吸附 Pb²⁺的位点更多,或是因为 Pb²⁺具有更大的 相对原子质量所致。基于稀土矿山废水复杂的重金 属离子共存体系,后续研究中还应考虑钇与 Cu²⁺、 Cd²⁺等其他金属离子的竞争吸附。

2.1.6 粒径对吸附的影响

AGS 粒径对吸附过程的影响见图 1g。由图 1g 可知,不同粒径的 AGS 对 Y³⁺的吸附性能和吸附速 率存在明显差距。小粒径 AGS (0.3~0.6 mm、0.6~ 1.0 mm)具有更大的吸附量(21.94、23.38 mg/g MLSS) 和更快的吸附速率。随着粒径的增大,吸附量和吸 附速率均会下降。基于此,采用人工碾压的方式将 大粒径 AGS (2.4~3.0 mm)破碎成小粒径 AGS (图 2),碾压后的粒径分布见表 2。

a—破碎前; b—破碎后 图 2 AGS 形貌 Fig. 2 Morphology of AGS

表 2	破碎后	AGS	的粒径分布
-----	-----	-----	-------

Table 2 Particle size distribution o	of AGS after crushing
--	-----------------------

粒径/mm	占比/%
<0.3	3.01
0.3~0.6	16.86
0.6~1.0	31.63
1.0~1.4	27.19
1.4~2.0	14.25
2.0~2.4	3.53
2.4~3.0	3.53

由表 2 可知,碾压破碎后的 AGS 粒径主要分布 在 0.6~1.4 mm 之间。碾压后的 AGS 吸附量由碾压 前的 20.16 mg/g MLSS 提升至 23.11 mg/g MLSS(提 升量约为15%),并且吸附速率提升至与0.6~1.0 mm AGS 相当。可见,碾压破碎法是提升大粒径 AGS 吸附能力的有效手段,推测原因可能为小粒径吸附 剂具有更大的比表面积,因而具有更高吸附能力, 这与冉艳等^[24]的研究结果一致。

2.2 吸附动力学

在曝气混合、pH=4、不添加盐和其余重金属离 子条件下进行动力学、热力学实验,结果见图 3。

a一吸附曲线; b一伪二级动力学拟合; c一Webber-Morris 动力学 拟合

初始 Y³⁺质量浓度 (ρ_0)为 25、50 mg/L 时基本 在 0~10 min 就完成了吸附,初始 Y³⁺质量浓度为 100 mg/L 时需 40 min 达到吸附平衡 (图 3a)。可见,随 着初始 Y³⁺质量浓度的增大,需要更长的时间达到 吸附平衡,但 80%以上的吸附进程均在前 10 min 完 成。因此,认为 AGS 吸附 Y³⁺是一个快速吸附过程。 对吸附数据进行动力学拟合,结果见表 3。由图 3b 可知,伪二级动力学的 R^2 =1.00,相比伪一级模型能 更准确表达 AGS 对 Y^{3+} 吸附过程,表明化学吸附在 吸附过程中起主导作用^[25]。由图 3c 和表 3 可知, Webber-Morris 方程吸附常数 *R* 随着 Y^{3+} 初始质量浓 度增加而减小(表 3),说明颗粒内扩散是控制吸附 速率的主要因素。

	表 3	吸附动力学模型	参数	
Table 3	Paramet	ers of adsorption	kinetics	models

$\rho_{\rm 0}/({\rm mg/L})$		25	50	100	拟合方程	
	Q_{e}	5.9	11.7	19		
伪一级	K_1	0.066	0.067	0.049	$\ln(Q_{\rm e}-Q_t)=\ln Q_{\rm e}-K_{\rm l}t$	
	R^2	0.58	0.74	0.6		
	Q_{e}	5.84	11.72	19.27	. 1 1	
伪二级	K_2	3.512	11.806	45.849	$\frac{t}{Q} = K_2 \frac{1}{Q^2} + \frac{1}{Q}t$	
	R^2	0.99	0.99	0.99	Σ_t Σ_e Σ_e	
	K_3	0.137	0.339	0.689		
Webber-	С	4.59	8.417	12.526	$Q = K t^{1/2} + C$	
Morris	R^2	0.61	0.54	0.67	$Q_t = K_3 l + C$	
	R	0.778	0.719	0.65		

注: ρ_0 为 Y³⁺初始质量浓度(mg/L); Q_e 为平衡时的吸附量(mg/g MLSS); Q_t 为 t 时刻的吸附量(mg/g MLSS); $K_1(\min^{-1}), K_2(\text{ mg·min/g MLSS})$ 、 K_3 [mg/(g MLSS·min^{0.5})]、C (mg/g MLSS)、R 均 为吸附常数。

2.3 吸附热力学

通过 Langmuir 和 Freundlich 方程对吸附结果进 行热力学拟合,结果见图 4。

图 4 吸附热力学

对比两种吸附模型的线性相关系数可知, AGS 对 Y³⁺的吸附更倾向于 Langmuir 模型(R^2 =0.9849, 表 4)。 表明 AGS 吸附 Y³⁺是一个单分子层吸附过程^[26], 且 其最大吸附量(Q_{max})为 24.39 mg/g MLSS。

表 4 吸附热力学模型参数

Table 4	Thermodynamic model p	parameters	of adsorption
模型	线型形式	R^2	参数
Langmuir	$\frac{\rho_{\rm e}}{Q_{\rm e}} = \frac{1}{bQ_{\rm max}} + \frac{1}{Q_{\rm max}}\rho_{\rm e}$	0.9849	b=0.0507 Q _{max} =24.39
Freundlich	$\ln Q_{\rm e} = \ln K + \frac{1}{n} \ln \rho_{\rm e}$	0.7913	<i>K</i> =3.384 1/ <i>n</i> =0.1615

注: ρ 。为平衡时 Y³⁺的质量浓度(mg/L); Q_{max} 为最大饱 和吸附量(mg/g MLSS); b(L/mg)、K(L/mg)及 1/n 均为 吸附常数。

2.4 XPS 表征

利用 XPS 分析吸附前后 AGS 表面化学特性变化,结果见图 5;吸附前后元素质量分数见表 5。

表 5 元素组成分析 Table 5 Element composition analysis

	-	-
元素	吸附前质量分数/%	吸附后质量分数/%
С	63.3	48.6
0	24.7	29.5
Ν	6.7	6.0
Р	1.0	5.0
S	0.1	ND
Na	0.3	0.2
Κ	1.2	ND
Fe	0.9	0.5
Mg	0.4	0.5
Ca	1.4	1.9
Y	ND	7.7
合计	100	100

吸附后污泥样品出现明显的 Y^{3+} 特征峰(图 5a), Y^{3+} 元素质量分数为 7.7%(表 5),证实 AGS 与 Y^{3+} 发 生了吸附反应, Y $3d_{5/2}$ (158 eV)和 Y $3d_{3/2}$ (160 eV) 处的特征峰(图 5a 插图)表明其在 AGS 表面的主 要化学态是 $Y_2(CO_3)_{30}$ 精细谱中 C、O、N 峰形及峰 面积的改变证实 Y^{3+} 在 AGS 表面存在化学吸附。对 C、O、N 谱进行分峰、拟合及含量计算(图 5b、c、 d)。C 1s 精细谱图中,与吸附前相比,吸附后污泥样 品的 O=C-峰面积(288.5 eV)占比明显减小;O 1s 精细谱图也能得出该结论,O=C-峰面积占比也明 显减小,表明吸附与酯基、羧基官能团有关。N 1s 精 细谱中—NH₂峰(400 eV)明显减少,表明氨基也参 与了吸附过程。另外,吸附后污泥样品表面 K⁺明显减 少,表明 AGS 对 Y^{3+} 的吸附存在与 K⁺交换作用。通过 灼烧消解法提取吸附后 AGS 灰分中 Y^{3+} ,测得含量为 66 mg Y³⁺/g MLSS(为 2.2.1 节中曝气吸附实测结果的 80%),进一步证实 Y³⁺被稳固吸附在 AGS 上。

2.5 吸附-解吸附再生研究

在曝气混合、初始 Y³⁺质量浓度为 50 mg/L、不添加盐和其余重金属离子条件下进行吸附-解吸附 实验。分别用 HNO₃和 NH₄Cl 对 AGS 吸附 Y³⁺进行 解吸附,结果见图 6、7。解吸附后用 0.1 mm 孔径 的筛网滤去解吸液,进行 AGS 的回收利用,再吸附 过程无需进行污泥清洗,其余操作步骤同 1.3 节。

a、b—吸附前; c、d—5 次吸附-HNO₃ 解吸附循环; e、f—5 次 吸附-NH₄Cl 解吸附循环

由图 6 可知, HNO₃ 单次解吸率(99.8%)明显 高于 NH₄Cl(63.2%), HNO₃ 基本能实现 Y³⁺的全部 解吸附。多次吸附-解吸附循环中,在经历 1 次 HNO₃ 解吸附循环后, AGS 吸附能力大幅下降, 而 NH₄Cl 解吸剂的第 2 次解吸率达到 85%, 多次吸附-解吸附 能力明显大于 HNO₃解吸剂。5 次吸附-解吸附循环 后,HNO₃ 解吸率降至 10%,NH₄Cl 解吸率仍维持 在 50%。从 AGS 外貌形态可以看出(图 7c、e), 吸附后 AGS 的三维结构没有明显破坏,HNO₃解吸 附的 AGS 颜色由褐色变成浅黄色,而 NH₄Cl 解吸 附的 AGS 颜色没有发生明显变化。从 SEM(图 7d、 f)可以看到,吸附后 AGS 表面出现许多白色结晶 物,IYER 等^[27]认为这是重金属与蛋白质等大分子 形成的螯合物。

推测 AGS 颜色变化的原因是:强酸 HNO3 会破 坏 AGS 外部吸附官能团结构,从而导致脱色和吸附 能力丧失,TIAN 等^[28]也发现,极端 pH 的解吸剂会 导致生物活性下降,不利于颗粒结构的维持。相比 之下,NH4Cl 解吸剂较为温和,解吸附后 AGS 的颜 色和结构无明显变化,且能实现多次吸附-解吸附。 AGS 是微生物凝聚形成的生物聚集体,需要营养物 质维持生长,黄思浓等^[29]研究发现,AGS 对 NH4Cl 具有较强的降解能力,可进一步降低 NH4Cl 对污泥 系统的影响。另一方面,相比于盐酸、CaCl₂等解吸 剂,NH4Cl 解吸剂未向稀土废水中引进新的污染物 和改变 pH,具有一定的应用潜力。解吸回收获得高 浓度 Y³⁺溶液,后续可采用草酸沉淀、灼烧回收高 品质氧化稀土产品。

3 结论

(1) AGS 吸附 Y^{3+} 是一个快速吸附过程,曝气 混合下 AGS 具有最好吸附效果, H^+ 、Na⁺和 Pb²⁺会 与 Y^{3+} 竞争吸附位点,小粒径 AGS 吸附效果优于大 粒径。

(2)吸附动力学符合伪二级模型,颗粒内扩散 是影响吸附速率的主要因素,热力学符合 Langmuir 模型,化学吸附起主导作用,吸附过程是一个单分 子层吸附过程,最大吸附量为 24.39 mg/g MLSS。

(3)吸附机理有官能团吸附和离子交换,参与 吸附官能团有酯基、羧基、氨基,同时 Y³⁺与 K⁺发生 离子交换, 钇在 AGS 表面的主要化学态是 Y₂(CO₃)₃。

(4) HNO₃ 的单次解吸附率明显高于 NH₄Cl, 但 HNO₃ 会破坏 AGS 表面结构, NH₄Cl 解吸能维持 AGS 的颜色和结构, 且能实现多次吸附-解吸附。在 此基础上, 可进一步考察 AGS 脱氮除钇性能, 并建 立 AGS (脱氮+吸附)-再生调控方法以实现离子型 稀土矿山尾水无害化治理。

参考文献:

- [1] ZHONG Y H (钟宜航), PENG C L (彭陈亮), WANG G S (王观石), et al. Adsorption characteristics and mechanism of Y³⁺ by montmorillonite[J]. Journal of the Chinese Society of Rare Earths(中 国稀土学报), 2019, (6): 713-723.
- [2] LIN H H, MA R, HU Y P, et al. Reviewing bottlenecks in aerobic

granular sludge technology: Slow granulation and low granular stability[J]. Environmental Pollution, 2020, 263: 114638.

- [3] NANCHARAIAH Y V, REDDY G K K. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143.
- [4] LIU Y, XU H, YANG S F, *et al.* A general model for biosorption of Cd²⁺, Cu²⁺ and Zn²⁺ by aerobic granules[J]. Journal of Biotechnology, 2003, 102(3): 233-239.
- [5] LI N, WEI D, WANG S, et al. Comparative study of the role of extracellular polymeric substances in biosorption of Ni (II) onto aerobic/anaerobic granular sludge[J]. Journal of Colloid and Interface Science, 2017, 490: 754-761.
- [6] LI X J (李晓佳), WANG R D (王然登), RONG H W (荣宏伟), et al. Performance and mechanism of Pb²⁺ removal by phosphorus removal granular sludge[J]. CIESC Journal(化工学报), 2018, 69(4): 1663-1669.
- [7] LIU W, ZHANG J S, JIN Y J, et al. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1223-1232.
- [8] XU H, LIU Y, TAY J H. Effect of pH on nickel biosorption by aerobic granular sludge[J]. Bioresource Technology, 2006, 97(3): 359-363.
- [9] JIANG M (江孟), HU X W (胡学伟), NGUYEN D T, et al. Adsorption of Pb²⁺, Cu²⁺, Cd²⁺ by aerobic granular sludge and the influencing factors[J]. Technology of Water Treatment (水处理技术), 2013, 39(2): 53-56.
- [10] LI S(李姝), HU X W (胡学伟), JIANG M (江孟), et al. Adsorption of heavy metals with dried aerobic granular sludge[J]. Industrial Water Treatment (工业水处理), 2013, 33(10): 40-43.
- [11] HUANG X, WEI D, ZHANG X, et al. Synthesis of aminofunctionalized magnetic aerobic granular sludge-biochar for Pb (II) removal: Adsorption performance and mechanism studies[J]. Science of the Total Environment, 2019, 685: 681-689.
- [12] ZHANG H L (张海玲), LIN Y M(林跃梅), WANG L (王琳). Cu²⁺ biosorption by bacterial alginate extracted from aerobic granules and its mechanism investigation[J]. Environmental Science(环境科学), 2010, 31(3): 731-737.
- [13] XU Q H (许秋华), SUN Y Y (孙园园), ZHOU X Z (周雪珍), et al. Green extraction of lon- adsorption rare earth resources[J]. Journal of the Chinese Society of Rare Earths (中国稀土学报), 2016, 34(6): 650-660.
- [14] OU J C (欧家才), HUANG W F (黄万抚). The technology practice of recycle of rare earth and removal of ammonia nitrogen from tail fluid of production of lon-adsorption type rare earth ore in southern china [J]. Chinese Rare Earths (稀土), 2021, 257(6): 42-48.
- [15] XU Y Y (许燕颖), LIU Y C (刘友存), ZHANG J (张军), et al. Spatial distribution and risk assessment of nitrogen and heavy metals in typical watershed of the upper reaches of ganjiang river[J]. Earth and Environment (地球与环境), 2020, 48(5): 574-583.

- [16] LAIC (赖城), ZHOUH (周豪), ZHANG DC (张大超), et al. Effect of heavy rare earth element yttrium on partial denitrification process[J]. China Environmental Science (中国环境科学), 2021, 41(7): 3221-3228.
- [17] WEI B (魏斌), ZHANG Z L (张自立), LU J (卢杰). Adsorption of low concentration of La³⁺, Nd³⁺ by clay minerals[J]. Journal of the Chinese Society of Rare Earths (中国稀土学报), 2011, 29(5): 637-642.
- [18] ZENG M J (曾敏静), ZHANG B C (张斌超), ZENG Y (曾玉), et al. Effects of alkalinity and external carbon source concentration on denitrification efficiency of aerobic granular sludge[J]. Fine Chemicals (精细化工), 2021, 38(8): 1679-1685.
- [19] POKHREL S P, MILKE M W, BELLO-MENDOZA R, et al. Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge[J]. Waste Management, 2018, 76: 90-97.
- [20] JIAN M P, TANG C C, LIU M. Dried biomass of activated sludge for Cu²⁺ adsorption: Behaviors and mechanisms[J]. Journal of Dispersion Science and Technology, 2014, 35: 1468-1475.
- [21] AKPOMIE K G, DAWODU F A, ADEBOWALE K O. Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential[J]. Alexandria Engineering Journal, 2015, 54(3): 757-767.
- [22] AHMED B, RACHID R, HOCINE H, et al. The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire[J]. Environmental Science and Pollution Research International, 2014, 21(1): 684-694.
- [23] ZHANG Y Z (张彦灼), LI J (李军), DING Y (丁岩). Adsorption of crystal violet from aqueous solutions by aerobic granular sludge[J]. Advanced Engineering Sciences (工程科学与技术), 2015, 47(4): 205-212.
- [24] RAN Y (冉艳), HE Q (何强), YUAN R Y (袁若愚), et al. Adsorption characters of dibutyl phthalate in different grain-size suspended particulate matter[J]. Journal of Civil and Environmental Engineering (土木与环境工程学报), 2021, 43(5): 178-186.
- [25] ZHAO J H, LIU J, LI N, *et al.* Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe₃O₄-MnO₂: Adsorption behavior and process study[J]. Chemical Engineering Journal, 2016, 304: 737-746.
- [26] MAHMOUD M E, AMIRA M F, SELEIM S M, et al. Adsorption isotherm models, kinetics study, and thermodynamic parameters of Ni(II) and Zn(II) removal from water using the LbL technique[J]. Journal of Chemical & Engineering Data, 2017, 62(2): 839-850.
- [27] IYER A, MODY K, JHA B. Biosorption of heavy metals by a marine bacterium[J]. Mar Pollut Bull, 2005, 50(3): 340-343.
- [28] TIAN C X, WANG D, WANG J X, et al. Desorption of hexavalent chromium from active aerobic granular sludge: Effects of operation parameters on granular bioactivity and stability[J]. Bioresource Technology Reports, 2020, 11: 100457.
- [29] HUANG S N (黄思浓), LIN S T (林树涛), YI M R (易名儒), et al. Advance of denitrification pathway of aerobic granular sludge[J]. Industrial Water Treatment (工业水处理), 2021, 41(9): 37-42.