水处理技术与环境保护

微生物燃料电池-好氧颗粒污泥系统中 C/N 对阴极微生物的影响

谢岳林,程 洁,王子骏,欧阳二明*

(南昌大学 资源与环境学院, 江西 南昌 330100)

摘要:为了探索微生物燃料电池(MFC)更广泛的适用性,将好氧颗粒污泥(AGS)与 MFC 进行耦合,并采 用序批式运行方式,固定进水化学需氧量(COD)为780 mg/L,通过改变 NH4-N 的质量浓度(39、50、78 和 156 mg/L)将 COD 与 NH4-N 的质量浓度之比(简称碳氮比, C/N)分别调节为20、15.6、10、5,研究了不同 C/N 对系统阴极室内微生物的多样性和菌群结构产生的影响。通过高通量测序分析显示,随着进水 C/N 的变化, 阴极室内不同菌群的相对丰度都产生了明显的变化。在门水平下,当 C/N=10 时,最为丰富的变形菌门 (*Proteobacteria*)相对丰度为45.0%,而当 C/N=20 时降为41.1%。在纲水平下,当 C/N=5 时,最为丰富的异常球 菌纲(*Deinococci*)相对丰度均为27.2%,而当 C/N=20 时只有15.1%。当 C/N=15.6 和 20 时,阴极室内微生物的 新陈代谢最高,相对丰度均为77.1%,对应的阴极好氧颗粒污泥代谢能力较强,对微生物降解 COD 具有重要作用。 关键词:微生物燃料电池;好氧颗粒污泥;碳氮比;高通量测序;微生物群落;水处理技术 中图分类号: TM911.45 文献标识码:A 文章编号: 1003-5214 (2023) 01-0162-07

Effect of C/N ratio on cathodic microorganisms in microbial fuel cell-aerobic granular sludge system

XIE Yuelin, CHENG Jie, WANG Zijun, OUYANG Erming^{*}

(College of Resources and Environment, Nanchang University, Nanchang 330100, Jiangxi, China)

Abstract: In order to explore its wider applicability, microbial fuel cell (MFC) was coupled with aerobic granular sludge (AGS) *via* adopting sequencing batch operation. Then, the effects of C/N ratio on microbial diversity and community structure in the cathode chamber of the system was studied by fixing the influent chemical oxygen demand (COD) at 780 mg/L and adjusting the mass concentration of NH_4^+ -N to 39, 50, 78 and 156 mg/L to keep the mass concentration ratio of COD and NH_4^+ -N (carbon to nitrogen ratio for short, C/N) to 20, 15.6, 10 and 5, respectively. High-throughput sequencing analysis showed that the relative abundance of different bacterial communities in the cathode chamber significantly varied with the change of influent C/N. The relative abundance of *Proteobacteria* was decreased from 45.0% to 41.1% as C/N changed from 10 to 20 at the phylum level, while that of *Deinococci* reduced from 27.2% to 15.1% as C/N increased from 5 to 20. When C/N=15.6 and 20, the metabolic relative abundance of microorganisms in the cathode chamber reached the highest (77.1%) and led to strong metabolism of the corresponding cathode aerobic granular sludge, which played an important role in the microbial degradation of COD.

Key words: microbial fuel cell; aerobic granular sludge; carbon and nitrogen ratio; high-throughput sequencing; microbial community; water treatment technology

微生物燃料电池(MFC)是一种生物电化学装置,其利用微生物的代谢活动来实现能量转换,将

有机基质中的化学能转化为清洁的电能^[1],在修复 水体污染问题的同时可在一定程度上缓解能源危

收稿日期: 2022-06-25; 定用日期: 2022-08-19; DOI: 10.13550/j.jxhg.20220593 基金项目: 江西省自然科学基金面上项目(20192BAB206039) 作者简介:谢岳林(1998—),男,硕士生,E-mail: 1520081828@qq.com。联系人:欧阳二明(1976—),男,副教授,硕士生导师, E-mail: youmer@ncu.edu.cn。 机,是一种具有很好应用前景的能源转化技术。而 好氧颗粒污泥(AGS)是一种密实的微生物团聚体, 以生物降解、生物累积和生物吸附的方式去除水体 中的污染物^[2]。在常规生物脱氮工艺中,需要为硝 化和反硝化过程构造好氧、厌氧以及缺氧条件。而 在好氧颗粒污泥系统中,由于颗粒外部区域的微生 物呼吸以及氧的扩散限制,形成了有氧、缺氧、厌 氧的微环境,单个颗粒中存在不同的氧化还原条件 以及内外层的氧浓度梯度,可以实现同步硝化反硝 化(SND)过程^[3-4]。

目前,AGS-MFC 耦合系统并未得到实际应用。 虽然已有相关文献论述了将好氧颗粒污泥与 MFC 进行耦合可加快 MFC 的启动时间以及获得更高的 电压^[5],但是对于进水成分及其浓度对 AGS-MFC 耦合系统中微生物造成影响进而导致该系统性能差 异还有待研究,因此,这种耦合系统在更大范围内 的机制和适用性仍需深入探究。其中, 化学需氧量 (COD)与 NH₄⁺-N 的质量浓度之比,简称碳氮比 (C/N)对 MFC 进行废水处理过程具有重要影响。 对于有微生物参与反应的过程,进水底物中的 C/N 水平对 MFC 阳极室内的产电微生物和阴极室内的 好氧颗粒污泥微生物都会产生相应的影响,这些影 响会体现在不同进水 C/N 条件下系统的污染物去除 性能、产电性能和微生物群落结构的变化。尤其是 对于阴极室内的生物脱氮过程,进水 C/N 对好氧颗 粒污泥的理化和微生物特性具有重要作用^[6-8]。LUO 等^[9]采用连续气升式生物反应器进行好氧颗粒污泥 的培养,探究了不同进水 C/N 对好氧颗粒污泥稳定 性的影响,结果显示, C/N 从 2 降到 1, 颗粒污泥 的大小、沉降性能以及硝化速率都随之变差,分析 认为, 胞外多糖和酪氨酸的大幅度减少是导致颗粒 污泥解体的关键因素。另外,随着 C/N 的降低,微 生物的群落也发生了显著变化, 氨氧化细菌(AOB) 菌群的丰度变得较高,而亚硝酸盐氧化细菌(NOB) 菌群数量减少,这将有助于系统的硝化作用。这说 明不同的进水 C/N 会影响好氧颗粒污泥中微生物的 生长活性和代谢功能。

为此,本文通过高通量测序技术研究了在进水 C/N分别为20、15、10、5的条件下AGS-MFC耦 合系统中阴极微生物群落结构的变化,利用KEEG 代谢通路预测手段分析耦合系统各功能菌群的协同 机制,以利于培养和保留沉降良好的颗粒污泥,从 而提高系统对氮类污染物的处理能力。

1 实验部分

1.1 材料 采用传统的双室 MFC 装置(材料为亚克力,定 制而成),由尺寸大小均为 216 cm³(6 cm×6 cm× 6 cm)的阳极室、阴极室构成,反应器整体使用有 机玻璃构成并用硅胶垫密封。在阴极室和阳极室的 外侧设有进水口和出水口,上部开孔为电极插孔和 取样口。阳极室和阴极室中间由一张有效面积为 25 cm²(5 cm×5 cm)的质子交换膜(Nafion 117 型 全氟硫磺质子交换膜)隔开,采用 HESEN 亲水碳布 作为电极,有效面积为 16 cm²(4 cm×4 cm)。为增加 其导电性能,将电极按照文献[10]方法进行改性。 采用铂电极夹片固定碳布,应通过导线连接 1000 Ω 的外电阻,由此组成闭合回路。

阳极接种污泥为南昌市青山湖污水处理厂二沉 池回流污泥(主要成分是泥水混合物)。取 300 mL 泥水混合物经孔径为 0.6 mm 筛网去除杂质颗粒并 用去离子水清洗多次后放入无菌锥形瓶中,随后添 加已通入 20 min 氮气去除溶解氧的阳极营养液。阳 极营养液的组成为 1 g/L 无水乙酸钠, 0.191 g/L 的 NH₄Cl、0.5 g/L 的 NaCl、0.02 g/L 的 CaCl₂、0.015 g/L 的 MgSO₄、1.0 g/L 的 NaHCO₃、5.0 g/L 的 KH₂PO₄、 3.857 g/L 的 K₂HPO₄ 和 12.5 mL/L 的微量元素(所 用原料均为市售)^[11]。最后,将接种污泥置于恒温 水浴振荡器中 150 r/min、30 ℃培养。经过 14 d 的 培养后,原泥已经驯化为黑色的厌氧污泥。阴极接 种好氧颗粒污泥取自实验室稳定运行的序列间歇式 活性污泥法(SBR)反应器,平均直径0.5~1.0 mm, 呈棕黄色球形。阳极室接种厌氧污泥质量浓度为 6 g/L, 阴极室接种好氧颗粒污泥质量浓度为 4 g/L (除未加无水乙酸钠其他成分与阳极营养液相同), 开始启动 MFC。

1.2 MFC 的运行

采用序批操作模式,使用 VICTOR 86B 数字万 用表采集电压,采集频率设为 1 min,当电压降为 50 mV 以下时结束当前周期。在新周期开始前使用 蠕动泵将上一个周期的阳极上清液抽入阴极室中作 为新周期的阴极液,此时大部分有机物已经在阳极 室内被微生物分解,产生的电子和质子分别通过外 接导线和质子交换膜传输到阴极,然后阳极室中重 新抽入新的阳极液,至此开始一个新周期。待相邻 两个周期最大电压值相近时,认为 MFC 成功启动。 为确保阳极室中微生物与阳极液充分混合,本实验 采用磁力搅拌器对阳极室进行搅拌。阴极室通过空 气泵进行曝气,以提供电子受体,同时利用微生物 进行阴极液脱氮以及再进一步去除部分残余 COD, 阴极室溶解氧通过气体转子流量计控制在质量浓度 5 mg/L 以上。MFC 实验装置及流程示意图如图 1 所示。 1.3 实验设计

采取不同阳极进水 C/N 作为影响因素,人工配

制阳极液固定进水 COD 为 780 mg/L,通过改变不 同质量浓度的 NH₄Cl进行 C/N 的调节,分别取 NH₄Cl 质量浓度为 149、191、298、596 mg/L,因此,进 水 NH₄⁺-N 质量浓度依次为 39、50、78 和 156 mg/L, 所对应的 C/N 为 20、15.6、10、5。每个工况下进 行若干周期以确保 MFC 启动成功。

图 1 MFC 实验装置及流程示意图 Fig. 1 Flow chart of MFC experimental equipment

1.4 分析方法

在 MFC 成功启动后所运行的一个周期结束时, 吸取反应室内的好氧颗粒污泥样本置于离心管,经 过离心后放入冷藏柜中冰存,所有样本采用干冰保 存运输至美吉生物(上海)医药科技有限公司。使 用 DNeasy PowerSoil Pro Kit (QIAGEN USA)DNA 提取试剂盒提取 0.5 g 样品(干重),再用 Nano Drop 2000 超微量分光光度计(美国赛默飞世尔科技公司) 进行 DNA 纯度和浓度检测。DNA 完整性检测方法: 质量分数为 1%的琼脂糖凝胶电泳,电压 5 V/cm, 时间为 20 min^[12]。PCR 扩增选择 16S rRNA 基因的 可变区 V3~V4 构建用于 MiSeq 测序的细菌群落文 库,上游引物 338F: ACTCCTACGGGAGGCAGCAG; 下游引物 806R: GGACTACHVGGGTWTCTAAT。 利用 Illumina 公司的 Miseq PE300 平台进行测序^[12]。

2 结果与讨论

2.1 微生物多样性分析

稀释曲线可以反映微生物群落在不同测序量下 的多样性,不同阳极样本的稀释曲线变化情况如图 2 所示,其中操作分类单元(OTU)是在了解一个 样本测序结果中的菌种、菌属等数目信息时,将序 列进行聚类,通过聚类操作,将序列按照彼此的相 似性分归为不同的小组。可根据不同的相似度水平, 对所有序列进行 OTU 划分,本实验是对 97%相似水 平下的 OTU 进行生物信息统计分析。根据曲线是否 达到平缓来判断本次测序数据量的合理性。

由图 2 可以看出,不同的 C/N 进水条件下阴极 微生物样本在测序数量较小时,OTU 数量迅速增加,随着测序数量的增加 OTU 数量逐渐趋于平缓,

说明产生新的物种数量逐渐减少,即此测序数量合 理且覆盖度高。

不同 C/N 进水阴极微生物 Alpha 多样性指数如 表 1 所示,其中,G1、F1、E1、H1 分别对应 C/N 为 5、10、15.6、20 的阴极微生物样本。其中,Sobs 指数是实际观察到的 OTU 数量;Shannon、Simpson 指数主要用来衡量样本的多样性情况,其中, Shannon 数值越大代表物种的多样性越大,Simpson 指数则相反^[13];Ace、Chao 指数主要用来衡量物种 的丰富度,指数越大代表物质的丰富度越高^[14];Coverage 指数主要用来检测测序对于物种的覆盖度。

图 2 不同 C/N 进水阴极微生物样品稀释曲线

Fig. 2 Dilution curves of cathode microbial samples with different C/N influents

表 1	不同 C/N	进水条件	下阴极微生	主物样性指数表
-----	--------	------	-------	---------

 Table 1
 Microbial-like index table under different C/N influent conditions

样品	Sobs ·	多样性		丰富度		Covoraço
		Shannon	Simpson	Ace	Chao	Coverage
G1	694	3.7151	0.0912	891.5351	893.1053	0.9959
F1	744	3.9763	0.0670	983.8382	989.0792	0.9948
E1	782	4.1714	0.0625	1030.5930	1061.1250	0.9941
H1	732	4.2671	0.0414	967.1306	1016.8880	0.9951

由表 1 可知,本次检测的 Coverage 指数均超过 0.99,说明微生物群落结构信息被完全包括。E1 组 Sobs 指数最大,说明在 C/N=15.6 的进水条件下阴 极微生物中实际观测到的 OTU 数量最多,Ace 和 Chao 指数均说明物种的丰富度最大。H1 组 Shannon 指数最大、Simpson 指数最小,说明在 C/N=20 的进 水条件下物种的多样性最大;此外,G1 组 Shannon 指数最小、Simpson 指数最大,则说明在 C/N=5 的 进水下物种的多样性最小。这是因为,在高 NH⁴ 量浓度条件下好氧颗粒污泥培养出了更多的专性功 能菌,也有报道称 NH⁴对微生物群落会产生细胞毒 性影响^[15],一方面,细胞质的酶活性可能受到非解 离 NH₃的有害影响;另一方面,疏水 NH₃分子会被 动扩散到细胞内,然后在细胞内转化为 NH⁴,而 NH⁴ 的积累会改变细胞内的 pH,导致对细胞正常生长的 抑制^[16]。因此,在高 NH⁴质量浓度条件下将会淘汰 不适应环境的菌群,而在低 NH⁴质量浓度条件下对 阴极微生物种群生长的限制将会减弱。

2.2 门水平下的微生物群落结构

对不同 C/N 进水阴极微生物群落在门水平下的 组成进行了分析,分布结果如图 3 所示。

由图 3 可知,随着 C/N 的增加,不同菌群的相 对丰度变化较为明显,其中变形菌门(Proteobacteria) 的相对丰度分别为 41.7%(C/N=5)、45.0%(C/N=10)、 43.3% (C/N=15.6)、41.1% (C/N=20); 异常球菌门 (*Deinococcota*)的相对丰度分别为 27.2%、22.6%、 22.1%、15.9%; 拟杆菌门(Bacteroidota)的相对丰 度分别为 8.4%、8.4%、9.5%、15.5%; 放线菌门 (Actinobacteriota)的相对丰度分别为 8.8%、9.7%、 11.5%、10.0%; 绿弯菌门(Chloroflexi)的相对丰 度分别为 7.5%、7.3%、7.2%、8.8%; 厚壁菌门 (Firmicutes)的相对丰度分别为 3.2%、3.7%、2.7%、 4.6%。在所有的样本中变形菌门最为丰富,据报道, 在不同的水生态条件下,变形菌门是促进反硝化作 用的主要菌群^[17],在 F1 组(C/N=10)和 E1 组 (C/N=15.6)进水条件下变形菌门的相对丰度较高, 促进了硝态氮的转换,提升了脱氮性能,而在 G1 组(C/N=5)和 H1 组(C/N=20)的进水条件下, 变形菌门的相对丰度较低,说明随着进水氨氮浓度 的增加变形菌门的相对丰度呈先升后降趋势。异常 球菌门在 G1 和 H1 中的相对丰度差异明显,说明进 水 C/N 对其有着显著的影响。WANG 等^[18]发现, 异常 球菌门在处理含有固废和有机物的水中作为优势菌 门,在 C/N=11.58 时观察到总氮含量的上升,通过细 菌与环境因素的相关性分析也发现,C/N 与异常球菌 门密切相关。拟杆菌门、绿弯菌门和厚壁菌门在 H1 组中富集, 拟杆菌门能够降解有机物, 而绿弯菌门 在污水处理厂中广泛分布,其中一些菌属在降解有 机物和营养物质去除方面能够发挥重要作用^[19]。放

线菌门在 E1 组(C/N=15.6)中相对丰度最高,放线 菌由于其固体结构和相对较高的适应性,对好氧颗粒 污泥的形成和维持有积极作用^[20],而在 G1 中过低的 C/N 会导致好氧颗粒污泥解体,从而使得系统性能发 生恶化。这些变化说明,还可以通过改变进水 C/N 来 筛选微生物种类以达到保留目标菌群的目的。

2.3 纲水平下的微生物群落结构

不同C/N进水阴极纲水平微生物组成如图4所示。

由图 4 可以看出,随着进水 C/N 的增加,不同 组中的微生物纲水平分布为: y-变形菌纲 (Gammaproteobacteria) 相对丰度依次为 20.9%、22.0%、 23.9%、22.3%; 异常球菌纲 (Deinococci) 相对丰度 依次为 27.2%、22.6%、22.1%、15.1% (C/N=20); α-变形菌纲(Alpha-proteobacteria)相对丰度分别为 20.8%、23.0%、19.4%、18.8%; 拟杆菌纲(Bacteroidia) 相对丰度分别为 7.8%、7.9%、8.4%、14.7%; 放线 菌纲(Actinobacteria)依次为 6.1%、 7.0%、 8.5%、 6.5%; 绿弯菌纲 (Chloroflexia) 依次为 4.6%、4.5%、 4.5%、5.6%。其中,γ-变形菌纲在所有样本中均有 大量富集, E1组(C/N=15.6)中含量最高,研究发 现, y-变形菌纲具有较强的反硝化能力^[21],并且 y-变形菌纲可以利用细胞色素 C 进行电子传递, 增强 了系统的胞外电子传递过程,因此,该条件下有利 于提升系统的脱氮及产电性能。异常球菌纲在各组 中的富集程度均较高,事实上,在环境样本中发现 的异常球菌纲通常只占微生物群落的一小部分[22]。 这类细菌主要以其抗辐射能力强和拥有用于生物技 术物种的高效 DNA 修复系统而闻名,但尚未被证明 具有电活性^[23]。G1组(C/N=5)中异常球菌纲相对 丰度最高,具有代表性,这将显著增强硝化作用。 FENG 等^[24]在处理垃圾渗滤液的阴极中发现异常球 菌纲的富集,促进了阴极 COD 的降解和硝化作用。

E1 组(C/N=15.6)中阴极富集了较多的放线菌纲, 能将底物分解为蛋白酶、淀粉酶、纤维素酶、维生 素 B12 和有机酸^[24],促进了系统的异养硝化过程。 y-变形菌纲和其他种类的丰度随着 C/N 进水的增加 而变化,表明 C/N 对阴极微生物群落组成具有生物 选择性影响,这些结果的差异性变化对 MFC-AGS 系统微生物的选择性富集和针对目标污染物去除具 有一定的科学意义。

2.4 C/N 对微生物群落代谢通路的影响

不同 C/N 进水代谢路径第一水平、第二水平和 第三水平图分别如图 5~7 所示。

由图 5 可见,不同 C/N 进水阴极生物样本中第 一水平的代谢路径中前三功能主要是:新陈代谢 (Metabolism)相对丰度依次为 76.9%、76.8%、 77.1%、77.1%;遗传信息处理(Genetic information processing)相对丰度依次为 6.2%、6.3%、6.3%、6.5%; 环境信息处理(Environmental information processing) 相对丰度依次为 6.0%、5.9%、5.9%、5.6%(排序仍 为从 G1 到 H1)。在本系统中微生物的新陈代谢功 能是主要代谢途径,表明在不同进水负荷的冲击下 具有较强的适应性,在 E1(C/N=15.6)和 H1(C/N=20) 组中相对丰度最高,阴极中好氧颗粒污泥代谢能力较 强。H1 组的遗传信息处理相对丰度最高,为 6.5%; 而 H1 组环境信息处理的相对丰度最低,为 5.6%。

图 5 不同 C/N 进水代谢路径第一水平图

Fig. 7 The third level diagrams of different C/N influen metabolic pathways

从图 6 来看, H1 组的碳水化合物代谢水平 (Carbohydrate metabolism)为 8.7%,氨基酸代谢 (Amino acid metabolism)水平为 8.1%,并且膜转 运(Membrane transport)功能在所有组别中相对丰 度最低,为 3.1%,由此可以推断低 NH₄⁺-N 质量浓 度的进水条件下会影响细胞膜上的转运蛋白合成和 数量,从而导致电子转移效率降低。

从图 7 看出, ko01100 代谢途径、ko01110 次生 代谢产物生物合成、ko01120 不同环境的微生物代 谢、ko01230 氨基酸生物合成是主要功能。E1 组中 的 ko01110 次生代谢产物生物合成、ko01230 氨基酸 生物合成和 ko00230 嘌呤代谢均为高值,分别为 8.3%、3.3%、1.4%。在微生物的生长过程中会产生

次级代谢产物,其中包括抗生素、氨基酸和激素等, 而某些抗生素可以对抗病原菌或者病毒,研究表明, 放线菌是这些天然产物的丰富来源^[25],在 E1 组中 相对丰度较高的放线菌纲微生物,在本系统中可能 通过次级产物生物合成途径分泌了大量抗生素,从 而有效抑制了其他对系统产生危害的病原微生物的 生长, 使系统微生物获得了安全的生长环境。G1 中 ko01120 不同环境的微生物代谢和 ko02020 双组分 信号转导系统相对丰度较高,分别为5.4%和1.9%, 其中 ko02020 双组分系统是自然界中最大的一类多 步信号转导途径, 也是合成生物学的一个重要传感 器家族,使细菌能够感知和响应细胞内外的物理、 化学和生物刺激^[26],这也对应着高氨氮浓度对好氧 颗粒污泥产生负面影响。此外,在不同阴极样本中 的 ko00910 氮代谢水平分别为 0.38% (G1)、0.38% (F1)、0.40%(E1)和 0.39%(H1),虽然相对丰 度很低,但对氨氮的去除有明显的影响。氮代谢途 径如图 8 所示,其中涉及 5 种途径:固氮、同化 NO3 还原、异化 NO3还原、反硝化和硝化作用。不同途

径的相关酶水平是影响系统好氧颗粒污泥微生物的

注:圆圈为代谢产物;方框为氮代谢相关酶编号;NR代表亚硝酸还原酶

图 8 氮代谢途径示意图^[27] Fig. 8 Diagram of nitrogen metabolism pathway^[27]

3 结论

不同阴极微生物样本在门水平下的主要分布为 变形菌门、异常球菌门、拟杆菌门、放线菌门、绿 弯菌门和厚壁菌门。其中,变形菌门是促进反硝化 作用的优势菌门,促进了 C/N=10 和 15.6 组中的硝 态氮的转化,提升了脱氮性能,而异常球菌门相对 丰度随着进水 C/N 的升高而减少。此外,在 C/N=15.6 中富集了最高丰度的放线菌门,这有利于维护好氧 颗粒污泥的颗粒化形态。纲水平下,γ-变形菌纲、 异常球菌纲、α-变形菌纲、拟杆菌纲、放线菌纲和 绿弯菌纲为主要菌群。在 C/N=15.6 时,γ-变形菌纲 相对丰度达到最高,这将有利于提升系统的脱氮以 及产电性能。

不同阴极样本中微生物主要通过新陈代谢以维 持正常的生命活动。随着 C/N 的增加, MFC-AGS 系统能够有效应对进水负荷的变化,其中第三水平 中代谢途径、次生代谢产物生物合成、不同环境的 微生物代谢、氨基酸生物合成是主要功能,能够有 效维持好氧颗粒污泥的稳定形态。在 C/N=5 阴极中 不同环境的微生物代谢和双组分信号转导系统的变 化对应的是进水氨氮浓度过高对好氧颗粒污泥产生 的负面影响。氮代谢功能水平对应了系统的脱氮性 能,不同的 C/N 可能会影响相关酶的丰度,从而影 响系统菌群的硝化与反硝化过程。

参考文献:

- IDRIS S A, ESAT F N, ABD RAHIM A A, et al. Electricity generation from the mud by using microbial fuel cell[C]//MATEC Web of Conferences, EDP Sciences, 2016.
- [2] SARMA S J, TAY J H, CHU A. Finding knowledge gaps in aerobic granulation technology[J]. Trends in Biotechnology, 2017, 35(1): 66-78.
- [3] NANCHARAIAH Y V, MOHAN S V, LENS P N L. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems[J]. Bioresource Technology, 2016, 215: 173-185.
- [4] COMA M, VERAWATY M, PIJUAN M, et al. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J]. Bioresource Technology, 2012, 103(1): 101-108.
- [5] TANG X D (唐晓东). Study on degradation of excess sludge by microbial fuel cell assisted by ultrasonic and aerobic granular sludge[D]. Wuhan: Huazhong University of Science and Technology (华中科技大学), 2017.
- [6] MOY B Y, TAY J H, TOH S K, *et al*. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2010, 34(6): 407-412.
- [7] KIM D J, SEO D. Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor[J]. Process Biochemistry, 2006, 41(5): 1055-1062.
- [8] LIU Y Q, MOY Y P, TAY J H. COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors[J]. Enzyme & Microbial Technology, 2008, 42(1): 23-28.
- [9] LUO J, HAO T, WEI L, et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62: 127-135.
- [10] FUENTES-ALBARRÁN C, JUÁREZ K, GAMBOA S, et al. Improving the power density of a geobacter consortium-based microbial fuel cell by incorporating a highly dispersed birnessite/C cathode[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(12): 3169-3178.
- [11] LU H, OEHMEN A, VIRDIS B, et al. Obtaining highly enriched cultures of candidatus accumulibacter phosphatis through alternating carbon sources[C]// Iwa World Water Congress & Exhibition, 2006: 3838-3848.
- [12] WANG X F (王雪飞), WANG Y Y (王悦云), XU W F (徐文芬). Genetic differentiation of two epimedium species based on gene

typing technique of simplified genome sequencing[J]. Chinese Journal of Traditional Chinese Medicine (中华中医药学刊), 2022, 40 (11): 103-109,284-285.

- [13] ZHANG Z X (张泽玺), WANG B S (王宝山), XU Y B (许亚兵), et al. Degradation of wastewater from traditional Chinese medicine extraction by electro-biological technology and analysis of microbial community [J]. Fine Chemicals (精细化工), 2021, 38(2): 387-394.
- [14] SUN C, ZHANG B, CHEN Z, et al. Sludge retention time affects the microbial community structure: A large-scale sampling of aeration tanks throughout China[J]. Environmental Pollution, 2020, 261: 114140.
- [15] MÜLLER T, WALTER B, WIRTZ A, et al. Ammonium toxicity in bacteria[J]. Current Microbiology, 2006, 52(5): 400-406.
- [16] KADAM P C, BOONE D R. Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens[J]. Applied & Environmental Microbiology, 1996, 62(12): 4486-4492.
- [17] CHEN D, WANG H, YANG K, *et al.* Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342.
- [18] WANG S P, WANG L, SUN Z Y, et al. Effect of distillery sewage sludge addition on performance and bacterial community dynamics during distilled grain waste composting[J]. Bioresource Technology, 2022, 345: 126486.
- [19] FANG D, ZHAO G, XU X, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693.
- [20] LIU Y, WEI D, XU W, et al. Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system:

System evaluation and community structure[J]. Bioresource Technology, 2019, 288: 121504.

- [21] LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254.
- [22] ARCHANA G, CHATURVEDI R. Novel 16S rRNA based PCR method targeting *Deinococcus* spp. and its application to assess the diversity of deinococcal populations in environmental samples[J]. Journal of Microbiological Methods, 2012, 90(3): 197-205.
- [23] RIMBOUD M, QUEMENER D L, ERABLE B, et al. The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community[J]. Bioelectrochemistry, 2015, 102: 42-49.
- [24] FENG Q, XU L, LIU C, et al. Treatment of shale gas fracturing wastewater using microbial fuel cells: Mixture of aging landfill leachate and traditional aerobic sludge as catholyte[J]. Journal of Cleaner Production, 2020, 269: 121776.
- [25] GUO X D. Study on secondary metabolites of rhizosphere actinomycetes and their biological activities[D]. Lanzhou: Lanzhou Jiaotong University (兰州交通大学), 2021.
- [26] LAZAR J T, TABOR J J. Bacterial two-component systems as sensors for synthetic biology applications[J]. Current Opinion in Systems Biology, 2021, 28: 100398.
- [27] WANG C C (王朝朝), WU X J (武新娟), ZHU S H (朱书浩), et al. Start of simultaneous nitrification and anaerobic ammonia oxidation coupled heterotrophic denitrification (SNAD) process for low ammonia nitrogen wastewater: operation efficiency and microbial ecological characteristics[J/OL]. China Environmental Science (中国环境科学), 2022. DOI:10.12030/j.cjee.202209080.

(上接第116页)

- [30] W X X, LIU Y, LUO Y D, et al. Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin[J]. International Journal of Biological Macromolecules, 2021, 187: 462-470.
- [31] RAMAKOTI B, DHANAGOPAL H, DEEPA K, et al. Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization[J]. Bioresource Technology Reports, 2019, 7: 100293.
- [32] YANG Z L (杨增玲), MEI J Q (梅佳琪), CAO C (曹聪), et al. Traits of milled wood lignin isolated from different crop straw based on FTIR[J]. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 2018, 34(19): 219-224.
- [33] WĄDRZYK M, JANUS R, LEWANDOWSKI M, et al. On mechanism of lignin decomposition-Investigation using microscale techniques: Py-GC-MS, Py-FTIR and TGA[J]. Renewable Energy, 2021, 177: 942-952.
- [34] LIWB(李文波), LIB(李贝), WEILG(魏立纲), et al. Structural changes of lignin during the process of treatment with double salt ionic liquids[J]. Journal of Dalian Polytechnic University (大连工业 大学学报), 2022, 41(1): 42-47.
- [35] HUANG C X (黄曹兴), HE J (何娟), LAI C H (赖晨欢), et al. Structure characteristics and thermal properties of black liquor lignin and enzymatic hydrolysis lignin from moso bamboo pretreated by kraft pulping[J]. Scientia Silvae Sinicae (林业科学), 2018, 54(3): 108-116.
- [36] LIN X N, SUI S J, TAN S, *et al.* Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS[J]. Energies, 2015, 8(6): 5107-5121.
- [37] ZENG C (曾诚), SONG G J (宋国杰), SUN H Y (孙海彦), et al. Isolation and structural characterization of glycerol extracted

sugarcane bagasse lignin[J]. Chemical Industry and Engineering Progress (化工进展), 2020, 39(11): 4418-4426.

- [38] WANG Z X (王则祥), LI H (李航), XIE W L (谢文蓥), et al. Progress in basic structure, pyrolysis mechanism and characteristics of lignin[J]. Advances in New and Renewable Energy (新能源进展), 2020, 8(1): 6-14.
- [39] ZHANG S P, DONG Q, ZHANG L, et al. Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS[J]. Bioresource Technology, 2016, 199: 352-361.
- [40] CHEN D Y, WANG Y, LIU Y X, et al. Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS[J]. Fuel, 2019, 252: 1-9.
- [41] LU X Y, ZHU X J, GUO H Q, *et al.* Investigation on the thermal degradation behavior of enzymatic hydrolysis lignin with or without steam explosion treatment characterized by TG-FTIR and Py-GC/MS[J]. Biomass Conversion and Biorefinery, 2022, 12: 5825-5834.
- [42] YANG J H, WANG X, SHEN B X, et al. Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation[J]. Renewable Energy, 2020, 161: 963-971.
- [43] TAN Y T, CHUA A S M, NGOH G C. Evaluation on the properties of deep eutectic solvent-extracted lignin for potential aromatic bioproducts conversion[J]. Industrial Crops and Products, 2020, 154: 112729.
- [44] LI H (李晗), YANG W L (杨威岭), YANG Z L (杨宗玲), et al. Physicochemical properties and structural characterization of lignin from *Camellia oleifera* shell[J]. Science and Technology of Food Industry (食品工业科技), 2021, 42(4): 33-38.
- [45] UGARTONDO V, MITJANS M, VINARDELL M P. Comparative antioxidant and cytotoxic effects of lignins from different sources[J]. Bioresource Technology, 2008, 99(14): 6683-6687.