功能材料

镍锰氧化物复合电化学传感器对抗坏血酸的检测

韩春然,岳振歌,遇世友*,王 鑫,黎晨晨,张丝瑶

(哈尔滨商业大学 食品工程学院,黑龙江 哈尔滨 150028)

摘要:首先,通过一步水热法制备了镍锰氧化物复合材料(Mn-Ni-Oxide),并将其修饰玻碳电极构建抗坏血酸 快速检测的电化学传感器。利用 XRD、SEM、EDS 及 FTIR 对 Mn-Ni-Oxide 进行了表征。采用滴涂法将 Mn-Ni-Oxide 修饰于电极表面,并用循环伏安(CV)法、差分脉冲伏安(DPV)法测试了抗坏血酸在 Mn-Ni-Oxide 修饰电极 上的电化学行为。结果表明,Mn-Ni-Oxide 的外表面为带有孔隙的纳米球形结构,主要组分为 Mn₂O₃、NiMnO₃。 在 pH 为4 的乙酸/乙酸钠缓冲溶液条件下,修饰电极的 Mn-Ni-Oxide 修饰量为 10 μL,抗坏血酸浓度(*c*)在 0.1~9000 μmol/L 时与氧化峰电流(*I_p*)呈线性关系,线性方程为 *I_p*=3.2435*c*+17.198(*R*²=0.9920),检出限为 0.025 μmol/L,灵敏度为 3.2435 μA·m·L/(mol·cm)。该传感器实际应用于果汁饮料中抗坏血酸的测定,加标回收率为 95.5%~103.1%,表明其在食品分析等方面具有良好的应用前景。

关键词:抗坏血酸; 镍锰氧化物; 复合材料; 电化学传感器; 功能材料
中图分类号: O657.1; TS207.3
文献标识码: A
文章编号: 1003-5214 (2024) 05-1022-08
开放科学 (资源服务) 标识码 (OSID):

Detection of ascorbic acid by a nickel-manganese oxide composite electrochemical sensor

HAN Chunran, YUE Zhenge, YU Shiyou^{*}, WANG Xin, LI Chenchen, ZHANG Siyao (*College of Food Engineering, Harbin University of Commerce, Harbin* 150028, *Heilongjiang, China*)

Abstract: Nickel manganese oxide composite (Mn-Ni-Oxide), prepared by one-step hydrothermal method and characterized by XRD, SEM, EDS and FTIR, was used to modify glassy carbon electrode by drop-coating method to construct an electrochemical sensor for rapid detection of ascorbic acid. The electrochemical behavior of ascorbic acid on the Mn-Ni-Oxide modified electrode was analyzed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that the outer surface of Mn-Ni-Oxide was a porous nanosphere with the main components of Mn₂O₃ and NiMnO₃. When the acetic acid/sodium acetate buffer solution was at pH=4 and the modification amount of Mn-Ni-Oxide for the modified electrode was 10 μ L, the concentration (*c*) of ascorbic acid was linearly related to the value of oxidation peak current (I_p) in the range of 0.1~9000 μ mol/L, with the linear equation of I_p =3.2435*c*+17.198 (R^2 =0.9920), the detection limit of 0.025 μ mol/L, and the sensitivity of 3.2435 μ A·m·L/(mol·cm). When applied to the determination of ascorbic acid in fruit juice, the sensor showed recoveries of spiked standards ranging from 95.5% to 103.1%, demonstrating its good prospects for application in food analysis.

Key words: ascorbic acid; nickel manganese oxide; composite materials; electrochemical sensors; functional materials

抗坏血酸(AA)又名 V_c ,是人体不可或缺的 营养成分,兼有酸性及还原性,广泛分布在新鲜水 果及绿叶蔬菜中^[1]。在食品中常用作抗氧化剂、防 腐剂、酸度调节剂等。在机体内其广泛参与代谢过 程^[2],但人体缺乏古洛糖内酯酶,所以自身无法合 成 AA, 必须通过食物获得; 在加工和储藏期间, 食品中 AA 易发生分解。因此, 对食品中抗坏血酸 快速、精确检测是目前所需实现的目标^[3]。

目前, GB 5009.86—2016 中 AA 的主要检测方法有: 高效液相色谱法、荧光法、2,6-二氯靛酚滴定

收稿日期: 2023-05-09; 定用日期: 2023-08-28; DOI: 10.13550/j.jxhg.20230377 作者简介: 韩春然(1970—), 女, 博士生, E-mail: 13704809512@yeah.net。联系人: 遇世友(1984—), 男, 讲师, E-mail: davidyuhit@ 163.com。

法。高效液相色谱法是样品在偏磷酸钠溶液中超声 提取,再经色谱柱反复分离^[4],该方法的弊端是样 品前处理耗时较长、设备成本高;荧光法是样品经 活性炭前处理后,再与邻苯二胺反应生成具有荧光 强度的物质^[5],该设备体积较大,且样品同样需经 前处理,不适用于现场检测;2.6-二氯靛酚滴定法使 用蓝色碱性染料, 滴定呈无色时为检测终点, 该法 精度较差^[6]。电化学法检测选择性好、仪器轻便、 价格便宜、信号响应迅速,某些样本甚至不需前处 理,适用于在线快速检测^[7-8]。JIA 等^[9]利用金磁纳 米颗粒模拟酶对 AA 进行检测,其线性范围为 1~100 mmol/L, 最低检出限为 0.0117 mg/L。MnO₂ 为过渡金属氧化物,具有资源丰富、稳定性好以及 催化性好的优点^[10]。朱峰等^[11]利用 MnO₂复合石墨 烯对 AA 进行检测,其线性范围为 2.5~25.0 µmol/L, 最低检出限与金等贵金属比较降低了成本。另外, 过渡金属镍(Ni)可为锰的生长提供更多的孔隙, 增加复合材料的催化性能及比表面积,并且在不降 低电化学性能的基础上成本低于贵金属。

本文拟利用镍锰氧化物复合材料(Mn-Ni-Oxide) 修饰电极来构建一种用于检测 AA 的电化学传感 器,在最优条件下探究此电化学传感器对 AA 的检 出范围、检出限和灵敏度以及在实际样品中的应用。

1 实验部分

1.1 试剂与仪器

AA,分析纯,阿拉丁(上海)试剂有限公司; 四水合乙酸锰、四水合乙酸镍、乙二醇、无水乙醇、 碳酸铵、N,N-二甲基甲酰胺(DMF),分析纯,登 峰精细化工有限公司;乙酸、乙酸钠、铁氰化钾、 亚铁氰化钾,分析纯,烟台市双双化工有限公司; 葡萄糖、羧甲基纤维素钠、柠檬酸钠、胭脂红,分 析纯,天津市富宇精细化工有限公司;玻碳电极 (GCE)、铂电极、甘汞电极,上海越磁电子科技 有限公司;水果为超市购买的新鲜水果。

S-3400N 扫描电子显微镜,日本日立有限公司; VECTOR-22 型傅里叶变换红外光谱仪,美国赛默飞 世尔科技公司; D8 Advance 型 X 射线衍射仪,德国 布鲁克公司; Vario EL 型能量色散光谱仪(EDS), 德国 Elementar 公司; KH-50 mL 高压反应釜,西安 正仪仪器有限公司; CHI660E 型电化学工作站,上 海辰华仪器有限公司。

1.2 实验方法

1.2.1 Mn-Ni-Oxide 的制备

参照文献[12]的方法,分别将 0.490 g 四水合乙酸锰、0.248 g 四水合乙酸镍加入到烧杯中,再加入

35 mL 乙二醇, 超声至完全溶解^[12]。然后,将1.920 g 碳酸铵溶解于上述乙二醇混合液中,超声溶解; 最后,将溶液转移至 50 mL 高压反应釜中,置于 200 ℃ 烘箱内,反应 8 h。自然冷却至常温后过滤,将过滤得到的产物经 3 次无水乙醇洗和 3 次超纯水洗后再置于烘箱中,在 100 ℃下干燥 5 h,在马弗炉中 600 ℃ 下煅烧 4 h,制得 Mn-Ni-Oxide。

固定其他条件不变,按照上述实验方法,实验 过程中未加四水合乙酸锰或四水合乙酸镍,分别制 备了 NiO 或 MnO₂。

1.2.2 电化学传感器的构建

GCE 经少量的 Al₂O₃ 粉末打磨至光滑后,用超 纯水反复清洗,置于 60 ℃烘箱内干燥备用。将制 备的 Mn-Ni-Oxide 超声分散在 DMF 中,配制成质量 浓度为 1.0 g/L 的分散液,然后将其滴涂在经过处理 的 GCE 表面,在 60 ℃下干燥 10 min,即得 Mn-Ni-Oxide/GCE 修饰电极,其检测示意图如图 1 所示。

图 1 Mn-Ni-Oxide/GCE 对 AA 的检测示意图 Fig. 1 Schematic diagram of detection of AA by Mn-Ni-Oxide/GCE

1.3 表征方法和性能测试

1.3.1 表征方法

FTIR 测试:采用溴化钾压片法,在 4000~400 cm⁻¹范围内对 Mn-Ni-Oxide 进行 FTIR 测定。SEM 及 EDS 测试:电压 10 kV、放大倍数为 1×10⁵倍。XRD 测试:电压 40 kV,电流 150 mA,靶材为 Cu K_a, 2 θ =20°~80°。

1.3.2 性能测试

1.3.2.1 循环伏安(CV)曲线测试

采用三电极体系,以修饰电极作为工作电极、 铂片为对电极、饱和甘汞电极为参比电极,在含有 0.1 mol/L氯化钾、1 mmol/L铁氰化钾/亚铁氰化钾 溶液中进行 CV 曲线测试。测试条件:电位范围 -0.4~0.6 V、脉冲周期 0.2 s、静置时间 5 s,电极材 料测试是在用缓冲溶液(乙酸/乙酸钠)调节 pH=4 的 AA 溶液中进行,测试 Mn-Ni-Oxide/GCE、 NiO/GCE、MnO₂/GCE、GCE 的电极电化学行为。 1.3.2.2 电化学阻抗(EIS)测试

在 1.3.2.1 节溶液中进行 EIS 测试,考察传感器

• 1024 •

的电化学性能。

1.3.2.3 Mn-Ni-Oxide/GCE 传感器测试条件优化

以 pH=4 的乙酸/乙酸钠缓冲溶液为电解液,在 -1.5~1.0 V 电位区间内,利用差分脉冲伏安法 (DPV),测试该传感器电极修饰材料 Mn-Ni-Oxide 中乙酸镍与乙酸锰物质的量比、修饰量、缓冲溶液 种类、缓冲溶液 pH、扫描速率及 AA 对测试体系的 影响。

在最佳测试条件下, 配制 0.1、100、1000、3000、 5000、7000、9000 μmol/L 的 AA 标准溶液, 并用 DPV 法进行测定。以 AA 浓度(x) 与氧化峰电流值 (y) 为坐标绘制曲线。根据式(1)、(2)分别计 算检出限(LOD)和定量限(LOQ):

$$LOD=3\sigma/S \tag{1}$$

$$LOQ=10\sigma/S \tag{2}$$

式中:S为方程的斜率, μ mol/L; σ 为空白样品的标准偏差, μ A。

1.3.2.4 Mn-Ni-Oxide/GCE 传感器重复性、稳定性 及抗干扰性测试

在电位范围--0.4~0.6 V、脉冲周期 0.2 s、静置 时间 5 s,用乙酸/乙酸钠缓冲溶液调节 1.0 μmol/L AA 溶液的 pH=4 中进行,以 Mn-Ni-Oxide/GCE 电极 检测溶液中的 AA,重复测试 10 次。再将电极室温 储存 5 d 后重复测试,考察电流变化,判断电极的 重复性及稳定性。

在电位范围--0.4~0.6 V、脉冲周期 0.2 s、静置 时间 5 s,用乙酸/乙酸钠缓冲溶液调节 pH=4 的 AA 溶液中进行,利用 Mn-Ni-Oxide/GCE 电极检测溶液 中的 AA。在 1.0 μmol/L AA 溶液中分别加入葡萄糖、 羟甲基纤维素钠、柠檬酸钠、胭脂红溶液,其浓度 均为 5.0 μmol/L,测试其氧化峰电流的变化,探究 传感器的抗干扰性能。

1.3.2.5 实际样品检测

选择超市购买的新鲜水果榨汁进行实际样品检测。在果汁样品中,对加标量(质量浓度为2.0、5.0、10.0 mg/L)的 AA 进行实际样品分析及加标回收率 计算。

1.4 数据处理

测试均进行 3 次平行实验, 使用 Origin 2018 软 件对数据进行处理和绘制, 运用 SPSS 25.0 统计软 件对数据进行显著性分析,显著性水平定为 P<0.05。

2 结果与讨论

2.1 电极材料的表征

图 2 为 Mn-Ni-Oxide 的 XRD 谱图。由图 2 可知, Mn-Ni-Oxide 所有的衍射峰都可以索引为 Mn₂O₃ (JCPDS No. 41-1442)、NiMnO₃ (JCPDS No. 48-1330)^[13-15]。其中,2θ=33.02°处的强衍射峰对应
NiMnO₃的(104)晶面,2θ=33.14°、37.24°、51.42°、
55.18°、64.14°处的强衍射峰分别对应 NiMnO₃的(222)、(400)、(521)、(440)、(541)晶面^[16-17]。

- 图 3 Mn-Ni-Oxide 的 SEM 图(a)、EDS(b) 谱图及元 素分布(c)
- Fig. 3 SEM image (a), EDS spectra (b) and element mapping (c) of Mn-Ni-Oxide

从图 3 可以看出, Mn-Ni-Oxide 呈微球状, 直 径约为 500 nm, 单个微球呈现多孔隙结构, 且由许 多微小颗粒聚集而成。EDS 谱图中出现 O、Mn、

Ni 元素, 其物质的量比约为 6:3:1。结合 XRD 谱 图, 表明该 Mn-Ni-Oxide 可能的主要成分为 Mn₂O₃、 NiMnO₃。

Mn-Ni-Oxide 的 FTIR 谱图见图 4。

由图 4 可知,504 cm⁻¹ 处为 Mn—O 键的特征峰, 492 cm⁻¹ 处为 Ni—O 键的特征峰,这与 XRD 的结果 相符,由此判断 Mn-Ni-Oxide 成功制备^[18]。

2.2 Mn-Ni -Oxide 电极的电化学性能分析

图 5 为 Mn-Ni-Oxide/GCE 和 GCE 电极在 1 mmol/L 铁氰化钾/亚铁氰化钾溶液中的循环伏安曲线。

图 5 GCE 及 Mn-Ni-Oxide/GCE 电极的 CV 曲线 Fig. 5 CV curves of GCE and Mn-Ni-Oxide electrodes

由图 5 可知,两电极均出现氧化还原峰,Mn-Ni-Oxide/GCE 电极氧化还原峰明显高于 GCE,表明 Mn-Ni-Oxide/GCE 电极具有更优的电化学催化性能。

结合 AA 的氧化机理 ($C_6H_8O_6-2H^+ \rightarrow C_6H_6O_6+$ 2e), AA 分子均匀分散在溶液中, 经 Mn-Ni-Oxide 催化, 羟基基团上的氢被氧化, 生成 2 个电子^[19]。 如图 6 所示。

AA 在 Mn-Ni-Oxide/GCE 电极上的识别过程如 图 7 所示。AA 在 Mn-Ni-Oxide/GCE 电极表面发生 氧化反应,每反应1次失去2个电子而产生电流。

图 7 AA 在 Mn-Ni-Oxide/GCE 电极上的识别示意图

Fig. 7 Schematic diagram of AA identification on Mn-Ni-Oxide/GCE electrode

图 8 为 GCE 及 Mn-Ni-Oxide/GCE 的 EIS 测试结果。

图 8 GCE 及 Mn-Ni-Oxide/GCE 电极的 Nyquist 图 Fig. 8 Nyquist plots of GCE and Mn-Ni-Oxide/GCE electrodes

高频处的半圆形部分与电子转移过程相对应, 其半圆区域直径的大小与电荷转移阻力有关,直径 越大,电阻也越高^[20]。由图 8 可以发现,GCE 电极 半圆直径较大,Mn-Ni-Oxide/GCE 电极半圆直径减 小,表明Mn-Ni-Oxide/GCE 能够降低催化反应的传 荷电阻,提高电子转移能力。因此,Mn-Ni-Oxide/ GCE 电极具有良好的电导率及催化效果。

2.3 Mn-Ni -Oxide/GCE 传感器的构建条件及测试 条件优化

2.3.1 Mn-Ni-Oxide 对传感器的影响

采用 DPV 法对 Mn-Ni-Oxide/GCE、NiO/GCE、 MnO₂/GCE、GCE 电极的电化学行为进行了测试, 结果见图 9。

由图 9 可知,GCE 对于 AA 无明显的电流响应, MnO₂/GCE 电极在 0.6 V 处出现 AA 的电流响应峰, NiO/GCE 电极对于 AA 电流响应进一步增强,而 Mn-Ni-Oxide/GCE 的氧化峰电流最高。这可能是由 于其具有快速的电子转移能力,能够提高催化反应 • 1026 •

活性, 增大反应电流。因此, 选择 Mn-Ni-Oxide/GCE 构建传感器进行后续研究。

将质量浓度为 1.0 g/L 的 n(乙酸镍): n(乙酸锰) 分别为 1:0.5、1:1.0、1.0:1.5、1:2.0、1:2.5 制备的 Mn-Ni-Oxide 分散液 10 μL 滴涂在 GCE 表面, 烘干后电极的检测结果如图 10 所示。

由图 10a 可知,不同镍锰物质的量比对 AA 氧 化峰电流的影响具有显著差异。随着乙酸锰用量的 增加,氧化峰电流先增加后减小,当n(乙酸镍):n(乙 酸锰)=1:2.0时,氧化峰电流最大。由图 10b 可知, 随着乙酸锰用量的增加,响应电流与 DPV 曲线变化 趋势一致,这可能是因为镍为锰的生长提供了良好 的空隙结构,因此,镍锰最优物质的量比为1:2.0, 后续实验选择此物质的量比进行。

2.3.3 Mn-Ni-Oxide 修饰量对传感器的影响

Mn-Ni-Oxide 电极单位面积修饰量分别为 4、6、 8、10、12 μL 时的检测结果如图 11 所示。

a—DPV 曲线; b—Mn-Ni-Oxide 修饰量与响应电流的关系 图 11 Mn-Ni-Oxide 修饰量对检测 AA 的影响

Fig. 11 Effects of Mn-Ni-Oxide modification amount on detection of AA

由图 11a 可知,修饰量为 4 μL 时氧化峰电流最低,随着修饰量的增加,AA 的氧化峰电流呈先增加后减小的趋势,当修饰量为 10 μL 时,氧化峰电流最大。由图 11b 可知,不同修饰量电极的响应电流与 DPV 变化趋势相同,可能是由于过量的复合材料使修饰层变厚,掩盖了部分活性位点,从而影响了电子的有效传递^[21]。因此,选择修饰量为 10 μL 进一步后续实验。

2.3.4 缓冲溶液种类的影响

采用 DPV 法,缓冲溶液种类的影响结果如图 12 所示。

由图 12 可知,在 pH=4下,不同缓冲溶液中氧 化电位发生了移动,其中,在乙酸/乙酸钠缓冲溶液 中,Mn-Ni-Oxide/GCE 电极的氧化峰电流明显高于 磷酸二氢钠/磷酸氢二钠缓冲溶液和柠檬酸/柠檬酸 钠缓冲溶液,表明在乙酸/乙酸钠缓冲溶液中, Mn-Ni-Oxide 构建的电极催化活性最大,有利于催

化 AA 产生电子。因此,选用乙酸/乙酸钠缓冲溶液 体系作为 AA 的检测环境,进行后续实验。

图 12 缓冲溶液种类对 AA 检测的影响 Fig. 12 Effect of buffer solution types on detection of AA

2.3.5 缓冲溶液 pH 的影响

AA 本身偏酸性,在碱性条件下更容易氧化分解,因此选用 pH 3~7 的乙酸/乙酸钠缓冲溶液对 AA 检测,结果如图 13 所示。

图 13 缓冲溶液 pH 对 AA 检测的影响 Fig. 13 Effect of pH of buffer solution on detection of AA

由图 13 可知,随着缓冲溶液 pH 的降低,氧化 峰电流先升高后降低,且出峰电位左移。当 pH=4 时,电极对 AA 催化产生的氧化峰电流达到最大。 因此,选择 pH=4 的乙酸/乙酸钠缓冲溶液进行后续 实验。

2.3.6 扫描速率的影响

为考察 Mn-Ni-Oxide/GCE 的表面动力学过程, 设置扫描速率为 10~90 mV/s,结果见图 14。

由图 14a 可知,随着扫描速率的增加,阳极峰 电流(I_{pa})和阴极峰电流(I_{pc})的绝对值均持续增 加。同时,阳极峰电位逐渐正移,阴极峰电位发生 负移。由图 14b 可知,氧化峰电流(I_p)与扫描速 率(v)的平方根呈较好的线性关系 I_p =9.3514 $v^{1/2}$ – 13.046(R^2 =0.9982),表明 Mn-Ni-Oxide 在电解质 溶液中催化氧化 AA 的过程主要受扩散控制。

2.3.7 AA 浓度的影响

利用 DPV 法对不同浓度的 AA 进行检测, 结果 如图 15 所示。

图 15 不同浓度下 AA 的 DPV 曲线(a)及标准曲线(b) Fig. 15 DPV curves (a) and standard curve (b) of AA at different concentrations

由图 15a 可知, 在 0.1~9000 µmol/L 范围内, 氧

化峰电流随着 AA 浓度的增加而增大,且氧化峰电 流与 AA 浓度(c)呈较好的线性关系。由图 15b 可 知,回归方程为 I_p =3.2435c+17.198 (R^2 =0.9920)。以 3 倍信噪比(S/N=3)计算检出限为 0.025 μ mol/L,以 10 倍信噪比计算定量限为 0.086 μ mol/L。将此检出 限与表 1 中其他文献报道结果进行比较,表明本研 究构建的传感器检出限较低,具有较好的灵敏度[回 归方程的斜率, 3.2435 μ A·m·L/(mol·cm)]。

表1 不同修饰电极检测 AA 的性能对比(S/N=3)

 Table 1
 Performance comparison of different modified electrodes for detecting AA (S/N=3)

电极材料	线性范围/ (µmol/L)	检出限/ (µmol/L)	回收率/%	参考 文献
Mb/AuNPs	1000~3000	1.32	94~109	[22]
$N-LC/CoS_2-MoS_2$	9.9~4800	3.00	100.0~102.7	[23]
Poly-NALM/GCE	10.0~100	0.97	96.5~102.2	[24]
碳混合电极	6.0~1500	5.00	100.0~114.0	[25]
Fe(III)TPyP-Ba/GCE	5.0~330	0.90	_	[26]
Mn-Ni-Oxide/GCE	0.4~7600	0.025	95.5~103.1	本研究

注: AuNPs 为金磁纳米颗粒; Mb 为甲烷氧化菌素; N-LC 为掺杂 N 的木质素; Poly-NALM 为聚 N-乙酰蛋氨酸; Fe(Ⅲ) TPyP-Ba 为氯代间四苯基卟啉铁(Ⅲ)/黏土。

2.3.8 重复性、稳定性及其抗干扰性

Mn-Ni-Oxide/GCE 电极在 1.0 μmol/L AA 溶液 中前后测定 10 次,结果见图 16。

图 16 Mn-Ni-Oxide/GCE 检测 AA 的重复性测试 Fig. 16 Reproducibility test results of Mn-Ni-Oxide/GCE assay for AA

由图 16 可知,电极氧化峰电流的相对标准偏差 (RSD)为1.20%。将电极置于4 ℃冰箱中避光保存7d后再进行测试,其电流相比储存前的初始电 流仅下降了2.9%,表明 Mn-Ni-Oxide 化学稳定性较好,制备的传感器对 AA 的检测具有良好的可重复 性及稳定性。

考察了 10 个批次 Mn-Ni-Oxide/GCE 对 AA 检 测的稳定性,结果见图 17。

由图 17 可知,各电极之间氧化峰电流的 RSD 为 0.98%。在此条件下每个电极均测试 10 次,其电流比初始电流仅下降 0.1%,表明 Mn-Ni-Oxide 构建的电化学传感器在不同批次电极之间的重复性、稳定性均良好。

在对 AA 的检测中,由于果汁成分较为复杂,因此对复合电极的抗干扰能力测试较为关键。 Mn-Ni-Oxide 的抗干扰能力测试结果见图 18。由图 18 可知,在其他干扰物质存在的情况下,AA 的氧 化峰电流变化较小,表明传感器抗干扰能力较好, 对 AA 具有较高的选择性。

2.3.9 实际样品分析

将超市购买的新鲜水果榨汁、离心,取处理后的上清液1mL,分别加入0.5mLAA标准品使此溶液总体质量浓度增加至2.0、5.0、10.0mg/L(加标量),在电位范围-0.4~0.6 V、脉冲周期0.2s、静置时间5s,电极材料测试是在用缓冲溶液(乙酸/乙酸钠)调节pH=4的AA溶液中进行测试,每组实验重复3次,将其测定的氧化峰电流带入相应的回归方程,计算其加标回收率,结果如表2所示。

由表2可知, AA的加标回收率为95.5%~103.1%,

RSD 均≤5.1%,表明本研究构建的电化学传感器具 有较好的加标回收率及精度。

样品	初始量/ (mg/L)	加标量/ (mg/L)	测定量/ (mg/L)	加标回 收率/%	RSD/%
柠檬汁	5.6	2.0	7.7	100.9	1.4
		5.0	10.7	100.8	1.0
		10.0	15.4	98.1	3.9
葡萄汁	2.8	2.0	4.8	100.5	2.2
		5.0	7.8	100.0	1.4
		10.0	13.2	103.1	4.5
橙汁	10.9	2.0	13.2	102.8	4.2
		5.0	15.5	97.5	3.4
		10.0	21.2	101.6	2.8
草莓汁	3.5	2.0	5.3	96.9	2.8
		5.0	8.6	101.6	2.4
		10.0	13.8	102.1	3.2
番石榴汁	4.6	2.0	6.6	100.0	1.3
		5.0	9.6	99.7	1.1
		10.0	14.2	97.4	4.6
西柚汁	7.8	2.0	9.8	99.8	1.2
		5.0	12.8	100.0	5.1
		10.0	17.0	95.5	3.5

表 2 样品中 AA 的加标回收率 Table 2 Recovery rate of AAin the sample

3 结论

本研究通过一步水热合成法制备了 Mn-Ni-Oxide,构建了一种能够快速、准确、灵敏地检测 AA 的 Mn-Ni-Oxide 电化学传感器。此传感器检测 AA 的 线性范围为 0.1~9000 µmol/L,检出限为 0.025 µmol/L, 定量限为 0.086 µmol/L。此传感器实际应用于食品中的 AA 检测,其加标回收率可达 95.5%~103.1%, RSD≤5.1%,表明此传感器具有良好的灵敏度与准确性。本研究应用的电极材料均为过渡金属,具备价格低廉、导电性强、稳定性好的优点,并且此传感器具有良好的重复性、抗干扰性和稳定性,对食品中 AA 的检测具有可实际应用性。

参考文献:

- ZHENG X Z, GONG M, ZHENG D Q, et al. Metabolism and regulation of ascorbic acid in fruits[J]. Plants, 2022, 11(12): 1602
- [2] NJUS D, KELLEY P M, TU Y J, et al. Ascorbic acid: The chemistry underlying its antioxidant properties[J]. Free Radical Biology and Medicine, 2020, 159: 37-43.
- [3] PRADEDOVA E V, NIMAEVA O D, SEMENOVA N V, et al. Comparative study on redox state of ascorbic acid and ascorbate oxidase activity in vacuoles and leucoplasts of red beet taproots during physiological dormancy[J]. Russian Journal of Plant Physiology, 2021, 68: 74-84.
- [4] KARP S, HELT C S, SOUJARI N H. Solid state postcolumn reactor for the electrochemical detection of ascorbic and dehydroascorbic acids in high performance liquid chromatography[J]. Microchemical

Journal, 1993, 47(1/2): 157-162.

- [5] CHENG X, XU J, WANG L, *et al.* A redox modulated ratiometric fluorometric method based on the use of dual-color carbon dots for determination of the activity of enzymes participating in ascorbic acid-related reactions[J]. Microchimica Acta, 2019, 186: 1-8.
- [6] ALY M M, HASSAN M K, SOULIMAN R M. Simple and rapid spectrophotometric and titrimetric methods for the determination of ascorbic acid in pharmaceutical preparations[J]. Journal of Chemical Technology and Biotechnology, 1980, 30(1): 435-439.
- [7] ALFAIFI S Y M, HUSSAIN M M, ASIRI A M, et al. Glassy carbon electrodes decorated with HgO/CNT nanocomposite and modified with a conducting polymer matrix for enzyme-free ascorbic acid detection[J]. ChemistrySelect, 2022, 7(14): e202200086.
- [8] HATAMIE A, RAHMATI R, REZNAVI E, et al. Yttrium hexacyanoferrate microflowers on freestanding three-dimensional graphene substrates for ascorbic acid detection[J]. ACS Applied Nano Materials, 2019, 2(4): 2212-2221.
- [9] JIA H L, ZHAO J W, QIN L R, et al. The fabrication of an Ni₆MnO₈ nanoflake-modified acupuncture needle electrode for highly sensitive ascorbic acid detection[J]. RSC Advances, 2019, 9(46): 26843-26849.
- [10] GONG D Z (龚德状), GUAN H N (关桦楠), WU Q X (吴巧艳), et al. Detection of ascorbic acid based on gold magnetic particles mimicking enzyme electrochemical enhancement system[J]. Food Science (食品科学), 2020, 41(16): 151-157.
- [11] ZHU F (朱峰), WANG J (王静), LIU L H (刘林海), et al. Simultaneous determination of uric acid, ascorbic acid and xanthine in urine by graphene-manganese dioxide-ionic liquid modified glassy carbon electrode[J]. Chinese Journal of Analysis Laboratory (分析试 验室), 2020, 39(6): 640-644.
- [12] WANG D D, CAI D P, WANG C X, et al. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors[J]. Nanotechnology, 2016, 27(25): 255501.
- [13] MAHESHWARI A, HECK M, SANTARELLI M. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy[J]. Electrochimica Acta, 2018, 273: 335-348.
- [14] YAN H, HU W H, CHENG S, et al. Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions[J]. Water Science and Technology, 2020, 82(1): 170-184.
- [15] NGUYEN V H, HUYNH L T N, NGUYEN T H, et al. Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries[J]. Journal of Applied Electrochemistry, 2018, 48: 793-800.
- [16] NI Z J, LIANG X, ZHAO L M, et al. Tin doping manganese dioxide cathode materials with the improved stability for aqueous zinc-ion batteries[J]. Materials Chemistry and Physics, 2022, 287: 126238.
- [17] LOH A, XU K, LI X H, et al. Influence of synthesis parameters on amorphous manganese dioxide catalyst electrocatalytic performance[J]. Electrochimica Acta, 2017, 245: 615-624.
- [18] WEI H M, WANG J X, YU L, *et al.* Hydrothermal preparation of nickel-manganese oxide with microsphere structure grown on Ni foam and supercapacitive performance[J]. Materials Letters, 2017, 187: 11-14.
- [19] ABBASI S, GHARAGHANI S, BENVIDI A, et al. Novel insights into the effect of folate-albumin binding on the transport of ascorbic acid as an anticancer agent: Chemometric analysis based on combined spectroscopic and electrochemical studies[J]. New Journal of Chemistry, 2018, 42(13): 11031-11045.

外增塑手段进一步增加树脂的柔韧性,通过实验确 定了两者加入比例,从而保证基体树脂的柔韧性。 采用该基体树脂和国际上得到环保认可的防污剂 (吡啶硫酮铜和吡啶硫酮锌)制备防污涂料,并对 防污涂料的性能进行了测试。结论如下:

(1)从漆膜的物理机械性能以及防污涂料防污效果综合考虑,选定丙烯酸硅烷酯基体树脂的 T_g 为-20.54 ℃。

(2) m(丙烯酸硅烷酯基体树脂): m(韧性树脂)=7:3时, SEM 观察到树脂断裂面较光滑,此时共 混树脂的缺陷相对其他配比最小,树脂相容性最好。

(3)柔性自抛光防污涂料柔韧性达到1级,经过60d测试,涂层吸水率在1.1%~1.2%。

(4)柔性自抛光防污涂料,在弹性体基材表面 经过36个月实海挂板验证,防污涂层表面没有明显 附着海生物。

由此得出,本文研制的柔性自抛光防污涂料具 有良好的防污性能,可满足弹性体基材水下表面对 海洋污损防护需求。

参考文献:

- [1] SUN B K (孙保库), FAN H S (范会生), PAN X L (潘学龙), et al. Development of copper-free self-polishing anti-fouling paints by using acrylate resin[J]. Surface Technology (表面技术), 2022, 51(1): 280-286.
- [2] WANG X J (王效军), YU X Y (于雪艳), CONG W W (丛巍巍), et al. Current research on tin-free self-polishing antifouling coatings[J]. China Coatings (中国涂料), 2021, 36(6): 1-4.
- [3] YANG HF (杨海峰), ZHANG P (张苹), GET (葛婷), et al. Study

on performance of marine antifouling coating with controlled release technology of benzoisothiazolinone[J]. Chemical Management (化工 管理), 2018, 5: 145-146.

- [4] GUO J (郭静), LIU C H (刘春花), ZHANG F (张帆), et al. Research progress of environment-friendly antifouling coatings for ships[J]. Corrosion Science and Protection Technology (腐蚀科学与防护技 术), 2016, 28(4): 374-378.
- [5] HELLIO C, YEBRA D. Advances in marine antifouling coatings and technologies[M]. Sawston: Woodhead Publishing in Materials, 2009.
- [6] KIIL S, WEINELL C E, PEDERSEN M S, et al. Analysis of selfpolishing antifouling paints using rotary experiments and mathematical modeling[J]. Industrial & Engineering Chemistry Research, 2001, 40(18): 3906-3920.
- [7] DUFF(杜飞飞), WANGJH(王佳华), YAOWL(姚唯亮). Overview of anti-fouling coatings[J]. Shanghai Coatings (上海涂料), 2012, 50(2): 31-37.
- [8] YE Z J (叶章基), CHEN S S (陈珊珊), WU K (吴堃), et al. Development of self-polishing antifouling coating based on main chain degradable silyl acrylate polymers[J]. Paint & Coatings Industry (涂料工业), 2018, 48(7): 25-32, 61.
- [9] LICG (李春光). Development of self-polishing antifouling paints based on silicone acrylate copolymer[J]. Surface Technology (表面 技术), 2017, 46(12): 6-10.
- [10] PENG H Y (彭洪阳), XU L H (徐丽慧), ZHAO Y P (赵亚萍), et al. Preparation and characterization of aqueous monodisperse nano-SiO₂/fluorine-containing polymer hybrid emulsion[J]. New Chemical Materials (化工新型材料), 2010, 38(9): 103-105, 127.
- [11] JIANG Y (姜元). Synthesis of polyvinylidene fluoride composite latex and its application in waterborne coatings[D]. Tianjin: Hebei University of Technology (河北工业大学), 2020.
- [12] HE J H (何金花). Study on ultraviolet curing anticorrosive coating[D]. Zhenjiang: Jiangsu University of Science and Technology (江苏科技 大学), 2008.
- [13] JIANG Z P (江泽鹏). Preparation and properties study of polytetrafluoroethylene composite coating modified by inorganic ceramic particles[D]. Beijing: Beijing University of Chemical Technology (北京化工大学), 2009.

(上接第1029页)

- [20] SIMIC M D, SAVIC B G, OGNJANOVIC M R, et al. Degradation of bisphenol A on SnO₂-MWCNT electrode using electrochemical oxidation[J]. Journal of Water Process Engineering, 2023, 51: 103416.
- [21] JI L D, CHENG Q, WU K B, et al. Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of sunset yellow and tartrazine[J]. Sensors and Actuators B: Chemical, 2016, 231: 12-17.
- [22] ZHANG Q Y (张巧云), CHENG W W (程玮玮), ZHANG Y (张岩), et al. Construction of nanoporous gold electrochemical sensor and its detection of ascorbic acid in beverages[J]. Food Science (食品科学), 2021, 42(20): 274-279.
- [23] ZHANG Y, WEN F F, HUANG Z H, et al. Nitrogen doped lignocellulose/binary metal sulfide modified electrode: Preparation

and application for non-enzymatic ascorbic acid, dopamine and nitrite sensing[J]. Journal of Electroanalytical Chemistry, 2017, 806: 150-157.

- [24] KANNAN A, SIVANESAN A, KALAIVANI G, et al. A highly selective and simultaneous determination of ascorbic acid, uric acid and nitrite based on a novel poly-*N*-acetyl-l-methionine (poly-NALM) thin film[J]. RSC Advances, 2016, 6(99): 96898-96907.
- [25] SUN L P, LI H J, LI M J, *et al.* Simultaneous determination of ascorbic acid, dopamine, uric acid, tryptophan, and nitrite on a novel carbon electrode[J]. Journal of Electroanalytical Chemistry, 2016, 783: 167-175.
- [26] KEMMEGNE-MBOUGUEN J C, ANGNES L. Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode[J]. Sensors and Actuators B: Chemical, 2015, 212: 464-471.