精细化工<sup>®</sup> FINE CHEMICALS

◇入选中国科技期刊卓越行动计划
◇EI、CSCD、中文核心、北大核心
等权威数据库收录
◇国内精细化工行业创刊最早的权威期刊

♥中国化工学会精细化工专业委员会会刊

# 知网首发

稿件一经录用,中国知网可查 询,并由编辑部与知网共同出具网络 首发证书。

# 报道范围

涵盖当代中国精细化工科学与工业 的众多新兴领域。如:功能材料、能源 化工、生物工程、中药现代化技术、环 境保护、食品化学品、油田化学品、表 面活性剂、医药与日化原料等。





# 《精细化工》编辑部



# 微波合成第二代脱水膜



国家自然科学二等奖 成果转化 IChemE全球 创新产品冠军 微波分子筛膜 脱水性能遥遥领先 共沸体系、热敏体系、含水有机物脱水精制换代技术



收率高、能耗低、连续脱水、无需再生 在如下领域的有机物脱水精制已有工业化应用

锂电池电解液溶剂及NMP生产、回收 BD0产业链、煤化工、石油化工精细化学品 制药行业、溶媒回收、燃料乙醇、超纯溶剂 广泛适用于醇类、醚类、酯类、酮类、苯系物、卤代烃的脱水精制



 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 =
 =
 =

一广告1一

综论

# 铜基材料电催化还原硝酸盐制氨研究进展

董亚男<sup>1</sup>,赵长盛<sup>1\*</sup>,陈庆锋<sup>2</sup>,刘 伟<sup>1</sup>,谭 宇<sup>1</sup>,刘绪振<sup>1</sup>

〔1. 齐鲁工业大学(山东省科学院)山东省分析测试中心,山东 济南 250014; 2. 山东师范大学 环境 与地理学院,山东 济南 250358〕

摘要:人类工农业活动导致环境中硝酸盐浓度升高,利用电催化技术将硝酸盐还原合成氨(NO<sub>3</sub>RA)符合"双碳" 政策,可达到去除硝酸盐污染和制备氨(NH<sub>3</sub>)的双重目的。该文综述了铜(Cu)基材料电催化硝酸盐还原的 反应机理,从反应机理角度分析了不同Cu基催化材料优势性能的起源。围绕Cu单原子、单金属Cu、Cu基合 金、Cu基氧化物和Cu基金属有机框架材料的大量研究实例,对不同Cu基催化材料催化NO<sub>3</sub>RA反应的性能进 行归纳总结。通过对Cu基材料催化NO<sub>3</sub>RA反应影响因素的分析,针对目前存在的问题展开探讨,以期为未来 Cu基催化剂电催化NO<sub>3</sub>RA反应的开发与实际应用提供参考。

关键词: 电化学还原; 硝酸盐; 铜基催化剂; 合成氨; 影响因素

中图分类号: TQ426 文献标识码: A 文章编号: 1003-5214 (2024) 04-0761-11

### Advances in electrocatalytic reduction of nitrate to ammonia over copper-based catalysts

DONG Ya'nan<sup>1</sup>, ZHAO Changsheng<sup>1\*</sup>, CHEN Qingfeng<sup>2</sup>, LIU Wei<sup>1</sup>, TAN Yu<sup>1</sup>, LIU Xuzhen<sup>1</sup> [1. Shandong Provincial Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, China; 2. School of Environment and Geography, Shandong Normal University, Jinan 250358, Shandong, China]

**Abstract:** Nitrate concentration in the environment has been increasing due to human industrial and agricultural activities, and electrocatalytic technology for reduction of nitrate to ammonia is in line with the "two-carbon" policy, achieving the dual purpose of nitrate pollution removal and ammonia preparation. Herein, the reaction mechanism of electrocatalytic nitrate reduction by copper-based materials was reviewed, from which the root for the advantageous properties of different copper-based catalytic materials was analyzed. Meanwhile, the electrocatalytic performance of different copper-based catalytic materials was summarized based on analysis data obtained from a large number of research examples of copper monoatoms, monometallic copper, copper-based alloys, copper-based oxides and copper-metal organic frameworks. The influencing factors on nitrate reduction catalyzed by copper-based materials were discussed and the existing problems were pointed out to provide reference for future development and practical applications.

Key words: electrochemical reduction; nitrate; copper-based catalysts; synthetic ammonia; influence factors

硝酸盐(NO<sub>3</sub>)是氮循环的重要组成部分之一<sup>[1]</sup>, 工业废水和生活污水排放、农业氮肥过度使用、固 体废物及垃圾渗滤液渗漏等人类工农业活动导致 NO<sub>3</sub>在环境中大量累积<sup>[1-6]</sup>。NO<sub>3</sub>具有高迁移性和高

溶解度,且不易从废水中分离,高浓度的 NO<sub>3</sub>会导 致水体富营养化、酸雨等环境问题<sup>[7]</sup>。此外,NO<sub>3</sub> 被人体摄入后转化为 NO<sub>2</sub>,并在肠胃中形成有毒的 亚硝基化合物<sup>[8-10]</sup>,将导致蓝色婴儿综合征、癌症、

收稿日期: 2023-06-13; 定用日期: 2023-07-31; DOI: 10.13550/j.jxhg.20230481

**基金项目:**国家自然科学基金项目(41877041);山东省科技型中小企业创新能力提升工程项目(2022TSGC2199);山东省自然科学基金项目(ZR2022MC204)

**作者简介:**董亚男(2000—),女,硕士生,E-mail: yanandong2021@163.com。联系人:赵长盛(1980—),男,副研究员,E-mail: zhaochsh1980@163.com。

高血压及先天性缺陷等疾病<sup>[1,7,9-11]</sup>。因此, 解决污染 环境和危害人体健康的高浓度 NO<sub>3</sub>问题迫在眉睫。

离子交换、反渗透、光催化、生物反硝化和电 催化是常见的 NO3处理技术。其中,电催化还原 NO3 是一种以电子作催化剂的环境友好型技术<sup>[12]</sup>,具有 选择性高、无二次污染、自动化程度高、安全高效 等优点,新兴的电催化反应体系具有传质能力高、 运行电流密度低以及低负载下 NO5还原效果明显的 特点<sup>[13-14]</sup>。目前, 电催化 NO3还原合成氨(NO3RA) 是一种绿色且最具有前景的固氮方式<sup>[15]</sup>。氨(NH<sub>3</sub>) 是工业制造和农业肥料中的主要氮来源<sup>[2]</sup>,其作为 高能量密度的无碳储能材料,适用于燃料电池、发 动机燃料、液体肥料以及大规模能源运输应用[16]。 传统的 NH<sub>3</sub>合成工艺(Haber-Bosch 工艺)每合成 1 t NH3 大约排放 2.4 t CO2<sup>[17-18]</sup>, 虽然 NH3 生产效率 高,但能耗也高[19-20]。电催化在低温低压下即可合 成 NH<sub>3</sub>, 是应对化石燃料等不可再生能源枯竭的一 种零碳排放方案<sup>[21]</sup>。NO3RA 在解决 NO3污染的同时 也是响应国家的"双碳"政策,硝酸盐电催化合成 NH<sub>3</sub>及NH<sub>3</sub>的用途如图1所示。此外,NH<sub>3</sub>更易从 废水中分离,已有的流动耦合装置可对电催化合成 的 NH<sub>3</sub> 原位收集<sup>[22]</sup>。





在电催化 NO<sub>3</sub>RA 的催化材料中,过渡金属铜 (Cu)表现出良好的 NH<sub>3</sub>选择性和 NO<sub>3</sub>转化率。Cu 单原子周围不同的配位原子有助于增强活性位点的 极性,Cu 原子与其他金属原子的协同作用可以促进 电荷转移。此外,Cu 析氢反应(HER)能力弱、丰 度高、价格低廉、导电性强,具有从 Cu(0)到 Cu(II) 的高丰度和可调的氧化态的优点<sup>[23-24]</sup>。目前,Cu 基 复合材料已被用作 NO<sub>3</sub>RA 反应的主催化剂。Cu 表 面的 NO<sub>3</sub>RA 活性差异归因于局部配位环境和表面 原子的电子态<sup>[25]</sup>。本文针对 Cu 基材料电催化 NO<sub>3</sub>RA 机理中的 NO<sub>3</sub>还原途径展开论述,综述 Cu 基材料 NO<sub>3</sub>RA 的研究实例, 汇总各 Cu 基催化剂的 NO<sub>3</sub>RA 性能。对比 Cu 单原子、Cu 单金属、Cu 基 合金、Cu 基氧化物以及 Cu 基金属有机框架(MOFs) (图 2)的性能起源、优缺点及其稳定性, 进一步 探究 Cu 基材料用于 NO<sub>3</sub>RA 的影响因素, 分析目前 Cu 基催化剂的研究热点及存在的问题, 以期为 Cu 基催化剂电催化 NO<sub>3</sub>还原的开发与应用提供参考。



图 2 Cu 基催化剂的种类 Fig. 2 Types of copper-based catalysts

#### 1 Cu 基材料电催化硝酸盐还原机理

NO<sub>3</sub>RA 反应过程繁杂<sup>[26-27]</sup>, 剖析反应机理是后 续开发高性能催化剂的关键。N=O键(204 kJ/mol) 的解离能小于 N≡N 键 (941 kJ/mol)<sup>[28]</sup>, NO<sub>3</sub>还原为 NH<sub>3</sub>绕过了难活化的 N≡N 键,比 N<sub>2</sub>还原为 NH<sub>3</sub> 更具有热力学优势<sup>[29]</sup>。NO<sub>3</sub>RA 反应是 N 氧化态从 +5 价到-3 价的 8 电子转移过程〔式(1)〕<sup>[30]</sup>,具 体反应的中间体包括\*NO2、\*NO、\*NOH 等多种含 氮物种<sup>[31]</sup>。一种有效的催化剂必须在强吸附 NO<sub>3</sub>和 适度吸附其他中间体之间取得平衡<sup>[32]</sup>。Cu 未配对的 d轨道电子与 NO<sub>3</sub><sup>-</sup>最低未被占据的  $\pi$ \*轨道相契合<sup>[33]</sup>, 对 NO3具有较强的吸附力,对 NO3RA 中间体的结 合强度适中,所以 Cu 基催化剂在电催化 NO<sub>3</sub>RA 研 究中性能良好<sup>[34-35]</sup>。JIANG 等<sup>[36]</sup>通过模拟生物 NO3 呼吸的[2+6]的 8 电子途径,发现 Cu 纳米阵列电催 化反应后电解质中可检测出 NO<sub>2</sub>,并验证了在 NO<sub>3</sub>RA 过程中,NO<sub>3</sub>先还原为NO<sub>5</sub>后再生成NH<sub>3</sub>。 通过对 Cu 基材料 NO3RA 体系的动力学和热力学分 析, HU 等<sup>[25]</sup>将已经被提出的脱氧和加氢 2 种 NO<sub>3</sub>RA 途径结合,提出了第3种在热力学和选择性 上都具有优势,所有 pH 范围内都有可能的 NO<sub>3</sub>RA 途径:

NO<sub>3</sub>→\*NO<sub>3</sub>→\*NO<sub>2</sub>→\*NO→\*NOH→\*NHOH →\*NH→\*NH<sub>2</sub>→\*NH<sub>3</sub>→NH<sub>3</sub>(g)〔具体见式(1)~ (10),其中,\*代表催化剂表面的活性位点〕。 ZHANG 等<sup>[32]</sup>对这一途径进行了详细的解释,NO<sub>3</sub> 被吸附和放电后形成\*NO<sub>3</sub>,电极对 NO<sub>3</sub>强吸附可以 降低第一步放电的能垒〔式(2)〕。\*NO<sub>3</sub> 被吸附 后氢化可形成\*NO<sub>3</sub>H,\*NO<sub>3</sub>H 被质子攻击后释放水 产生\*NO<sub>2</sub>,\*NO<sub>2</sub> 后续经过氢化和脱氧过程生成 NH<sub>3</sub>。NO<sub>3</sub>RA 机理复杂,中间产物繁多,有效氢化 和避免 HER 副反应的改进策略具有较高的研究价 值<sup>[37]</sup>,NO<sub>3</sub>RA 涉及的反应路径如图 3 所示<sup>[25]</sup>。

$$NO_3^- + 9H^+ + 8e^- = NH_3 + 3H_2O$$
 (1)

$$* + NO_3^{-} \rightarrow *NO_3 + e^{-}$$
 (2)

- $*NO_3 + 2H^+ + 2e^- \rightarrow *NO_2 + H_2O$  (3)
- $*NO_2 + 2H^+ + 2e^- \rightarrow *NO + H_2O$  (4)
  - \*NO + H<sup>+</sup> + e<sup>-</sup>  $\rightarrow$ \*NOH (5)
  - \*NOH + H<sup>+</sup> + e<sup>-</sup>  $\rightarrow$ \*NHOH (6)
- \*NHOH + H<sup>+</sup> + e<sup>-</sup>  $\rightarrow$ \*NH + H<sub>2</sub>O (7)
  - $*\mathrm{NH} + \mathrm{H}^{+} + \mathrm{e}^{-} \longrightarrow *\mathrm{NH}_{2} \qquad (8)$
  - $*\mathrm{NH}_2 + \mathrm{H}^+ + \mathrm{e}^- \longrightarrow *\mathrm{NH}_3 \tag{9}$

$$*\mathrm{NH}_3 \rightarrow * + \mathrm{NH}_3(\mathrm{g}) \tag{10}$$



图 3 Cu(111)晶面上的硝酸盐还原途径<sup>[25]</sup> Fig. 3 Nitrate reduction pathway on Cu(111) lattice plane<sup>[25]</sup>

#### 2 Cu 基电极材料对硝酸盐还原的研究现状

NO<sub>3</sub>RA 催化剂性能关键在于阴极材料的选择<sup>[7]</sup>, 贵金属 Au、Ag、Pt、Pd、Ru 和过渡金属 Fe、Co、 Ni、Cu、Ti、Mo 以及稀土金属 Ce 等<sup>[23,26,38-47]</sup>均已 被用于 NO<sub>3</sub>RA 的研究中。贵金属耐腐蚀、催化活性 显著,但贵金属的高氢亲和力特点使其表面存在氢 与含氮物种的竞争性吸附,而且贵金属普遍传质速 率较慢;过渡金属特殊的原子结构对 NO<sub>3</sub>具有强吸 附力<sup>[48-50]</sup>,其中 Cu 的 HER 活性和零点电荷值都较 低,且 Cu 结构上的特性有利于将 NO<sub>3</sub>转化为 NO<sub>2</sub><sup>[33]</sup>。此外,Cu具有高分散性以及高催化活性和 选择性<sup>[51]</sup>,成本仅为 Co 的 1/5<sup>[52]</sup>,针对 NO<sub>3</sub>RA 研 究的 Cu 基复合材料已成为热点。目前,Cu 基电极 材料存在 Cu 过电位较大、中间 NO<sub>2</sub>积累、稳定性 差、易团聚等缺点<sup>[53]</sup>,针对 Cu 基材料的缺点,可 通过构建单位点 Cu 催化剂、提高催化活性、增加 活性位点数量、引入具有氧空位的氧化铜、与其他 金属氧化物掺杂来提高 NH<sub>3</sub>的产率<sup>[54]</sup>。Cu 基电极 表面的 NO<sub>3</sub>还原反应高度复杂,Cu 单原子、单金属 Cu、Cu 基合金、Cu 基氧化物和 Cu 金属有机框架等 不同 Cu 基催化剂改性策略被提出来,表1详细汇 总了不同种类 Cu 基催化剂 NO<sub>3</sub>RA 的性能。

#### 2.1 Cu 单原子催化剂电催化硝酸盐还原

2.1.1 不同原子配位的 Cu 单原子催化剂

对称配位的 Cu 原子催化剂表面动力学缓慢, 电 解质和电极界面的 NO<sub>3</sub>传质速率均会受到抑制<sup>[73]</sup>。 CHENG 等<sup>[55]</sup>采用 O 原子取代 Cu 原子周围 2 个配 位 N 原子合成了 Cu-cis-N<sub>2</sub>O<sub>2</sub>, 顺式配位分裂了 Cu 原子的 3d 轨道并使轨道发生扭曲, 非对称的配位形 式增强了活性位点的极性, 降低了 NO<sub>3</sub>合成中间体 的能垒。

#### 表 1 不同 Cu 基催化剂 NO<sub>3</sub>RA 性能 Table 1 Performance of different copper-based catalysts for nitrate reduction of ammonia

| 种类        | 催化剂                                   | 电极电位            | 处理<br>时长/h | NH3的产率                                        | NH3的选<br>择性/% | NH3的法拉<br>第效率/% | 硝酸盐转化<br>率/% | 参考<br>文献 |
|-----------|---------------------------------------|-----------------|------------|-----------------------------------------------|---------------|-----------------|--------------|----------|
| Cu 单原子    | Cu-cis-N <sub>2</sub> O <sub>2</sub>  | -1.60 V vs. RHE | 8          | $27.84 \text{ mg/(h \cdot cm^2)}$             | _             | >75.00          | 93.19        | [55]     |
|           | Cu( I )-N <sub>3</sub> C <sub>1</sub> | -0.64 V vs. RHE | 6          | 5466 mmol/( $h \cdot g_{Cu}$ )                | 81.80         | —               | 96.00        | [37]     |
|           | Cu-N-C                                | -1.50 V vs. RHE | 3          | 9.23 mg/( $h \cdot mg_{cat}$ )                | 94.00         | —               | _            | [49]     |
|           | Au/Cu SAA                             | -0.80 V vs. RHE | 1.5        | $0.193 \text{ mmol/}(h \cdot \text{cm}^2)$    | 96.48         | 99.69           | 98.32        | [44]     |
|           | Ni <sub>1</sub> Cu-SAA                | -0.55 V vs. RHE | 1          | $326.7 \ \mu mol/(h \cdot cm^2)$              | _             | ~100.00         | _            | [48]     |
| 单金属 Cu    | 岛状 Cu                                 | -0.80 V vs. RHE | 2          | —                                             | 96.60         | 98.28           | 99.14        | [56]     |
|           | Cu 纳米片                                | -0.15 V vs. RHE | 3          | 390.1 $\mu g/(h \cdot mg_{Cu})$               | —             | 99.70           | —            | [57]     |
|           | B-Cu NWs/CF                           | -0.49 V vs. RHE | 1          | $0.276 \text{ mmol/(h \cdot cm^2)}$           | 96.58         | 94.41           | 100.02       | [58]     |
|           | IE-Cu-400                             | -1.40 V vs. RHE | 3          | —                                             | 92.10±1.01    | —               | 97.09±2.87   | [59]     |
|           | Cu 纳米盘                                | -0.50 V vs. RHE | 3          | $2.16 \text{ mg/(h \cdot mg_{cat})}$          | _             | 81.10           | _            | [60]     |
| Cu 基合金    | CFP-Cu <sub>1</sub> Ni <sub>1</sub>   | -0.22 V vs. RHE | 5          | $180.58 \ \mu mol/(h \cdot cm^2)$             | _             | 95.70           | _            | [61]     |
|           | $Cu_{50}Ni_{50}$                      | -0.15 V vs. RHE | 2          | —                                             | _             | 99.00±1.00      | _            | [34]     |
|           | Cu <sub>5</sub> Fe <sub>5</sub> /OMC  | -0.80 V vs. RHE | 16         | 365.9 $\mu g/(h \cdot mg_{cat})$              | _             | —               | >75.00       | [62]     |
|           | Cu <sub>7</sub> Ni <sub>3</sub> /OMC  | -0.80 V vs. RHE | 16         | 237.4 $\mu g/(h \cdot mg_{cat})$              | —             | 78.90(-0.4V)    | >70.00       | [62]     |
|           | Cu5Co5/OMC                            | -0.80 V vs. RHE | 16         | 282.9 $\mu g/(h \cdot mg_{cat})$              | _             | 74.20(-0.4V)    | 70.00        | [62]     |
|           | $Cu_xPd_y$                            | -0.30 V vs. RHE | 0.5        | $0.4 \text{ mmol/}(h \cdot \text{cm}^2)$      | _             | > 96.00         | _            | [63]     |
|           | Pd/Cu 纳米管                             | -0.40 V vs. RHE | 2          | $220.8~\mu\text{g}/(h{\cdot}\text{mg}_{cat})$ | _             | 62.30           | _            | [64]     |
|           | Pd/Cu                                 | —               | 8          | _                                             | —             | _               | 98.00        | [45]     |
|           | PdMoCu                                | -0.60 V vs. RHE | 1          | $250.4 \ \mu mol/(h \cdot cm^2)$              | —             | 56.95           | —            | [65]     |
| Cu 基氧化物   | Cu@Cu <sub>2+1</sub> O 纳米线阵列          | -1.20 V vs. SCE | 2          | 576.53 $\mu g/(h \cdot mg_{cat})$             | 76.00         | 87.07           | 78.57        | [66]     |
|           | CuO@PANI                              | -1.30 V vs. SCE | 2          | $0.213 \text{ mmol/}(h \cdot \text{cm}^2)$    | 91.38         | 93.88           | 97.16        | [67]     |
|           | Cu@Cu-CuO                             | -0.80 V vs. RHE | 0.5        | 3.17 mol/(h·g)                                | —             | 98.70           | 95.50        | [54]     |
|           | Cu <sub>2</sub> O-Cu/Ti               | -0.50 V vs. RHE | 1.5        | $0.28 \text{ mmol/(h \cdot cm^2)}$            | 80.00         | 92.00           | —            | [68]     |
| Cu 基 MOFs | Ce-UiO-66-Cu                          | -0.90 V vs. RHE | 2          | 66 $\mu$ mol/(h·cm <sup>2</sup> )             | 93.30         | 85.50           | 80.60        | [69]     |
|           | Cu@Th-BPYDC                           | 0 V vs. RHE     | 1          | 225.3 $\mu$ mol/(h·cm <sup>2</sup> )          | —             | 94.50           | —            | [70]     |
|           | Cu <sub>1</sub> Co <sub>1</sub> HHTP  | -0.60 V vs. RHE | 0.5        | 299.9 $\mu$ mol/(h·cm <sup>2</sup> )          | —             | 96.40           | —            | [71]     |
|           | Cu@CuHHTP                             | -0.95 V vs. RHE | 2          | $1.84 \text{ mg/(h \cdot cm^2)}$              | 96.84         | 67.55           | 85.81        | [72]     |

注: "一"表示文献未提及相关内容; NWs 为纳米线阵列; IE 为原位沉积; SAA 为单原子合金; CF 为碳毡; CFP 为碳纤维; OMC 为 有序介孔碳; PANI 为聚苯胺; BPYDC 为 2,2'-联吡啶-5,5'-二羧酸盐; HHTP 为六羟基三苯; RHE 和 SCE 分别为标准氢电极和饱和甘汞电极。

Cu-cis-N<sub>2</sub>O<sub>2</sub>的O侧具有较高的NO<sub>3</sub>积累能力, 而且 Cu-cis-N<sub>2</sub>O<sub>2</sub>的高屏障阻碍了 NO<sub>2</sub>的释放, Cu-cis-N<sub>2</sub>O<sub>2</sub>的 NO<sub>3</sub>转化率高达 93.19%。除选用 O 取代 N 外, XUE 等<sup>[37]</sup>用 C 取代 N,获得了 Cu(I)-N<sub>3</sub>C<sub>1</sub>,介孔碳的掺杂引入了介孔结构,增加了催化 活性位点的密度。分散的 Cu 原子与相邻的活性位 点之间具有协同作用,在相邻的 Cu(I)和 C 的活性 位点上,NO<sub>3</sub>和吸附氢之间可达到吸附平衡,所以 NO<sub>3</sub>RA 和 HER 间活性位点的竞争得到缓解。此外, 单个 Cu(I)位点以及 Cu(I)/Cu(II)位点之间高效加 氢和电子转移可以促进 NO<sub>3</sub>到 NO<sub>2</sub>的还原过程。 Cu(I)-N<sub>3</sub>C<sub>1</sub> 活性的增强源于非对称的配位形式和 特殊的氧化态。CHEN 等<sup>[49]</sup>制备的 Cu-N-C 同样属 于碳掺杂,N/Cu 杂原子通过诱导效应优化了活性位 点的电子结构,导致 NH<sub>3</sub>的选择性高达 94.00%。

#### 2.1.2 Cu 单原子合金催化剂

Cu 单原子合金催化剂主要由分离的外源金属原 子和 Cu 组成, YIN 等<sup>[44]</sup>将 1 个分离的 Au 原子和 4 个 Cu 纳米粒子(NPs)配位,制备了 Au/Cu 单原子合 金(Au/Cu SAA)。Au 单原子和相邻的 Cu 原子的协 同作用可以阻碍 N—N 偶联,有效抑制双氮物质的形 成。同时,Au 单原子可显著降低 Cu(100)上 NO<sub>3</sub><sup>-</sup>的吸 附能。Au 和 Cu 之间还存在较强的电子相互作用和电 荷转移,沿着 Au-O-N-O-Cu 路径,Au—Cu 键可以 促进电子转移到 NO<sub>3</sub><sup>-</sup>的配位 O 原子上,加强 NO<sub>2</sub>到 NO 的脱氧过程。CAI 等<sup>[48]</sup>报道了 Ni 单原子与周围 Cu 原子配位,形成的 Ni<sub>1</sub>Cu-SAA 合金结构调节了 Ni 3d 和 N 2p 轨道之间的 d 带中心间隙,增加了费米能 级以上 N 2p 的能量态。Ni 的 d 带中心低于 Cu,增强 了 HNO<sub>2</sub>中间体与 Ni<sub>1</sub>Cu-SAA 的结合,Ni 的加入显著 降低了 NO<sub>3</sub><sup>-</sup>还原合成 NH<sub>3</sub> 的过电位,低电位下 HER 被完全抑制。Ni和Cu之间的强相互作用使 Ni<sub>1</sub>Cu-SAA 对 NH<sub>3</sub> 的选择性和产率均有所提高,Ni<sub>1</sub>Cu-SAA 的 NH<sub>3</sub>产率比单独 Cu 催化剂的高 10.7 倍。

单原子催化剂(SACs)具有最大的原子利用效率, 兼具均相和多相催化剂的优点,具有良好的选择性和 电催化活性<sup>[38]</sup>,已经成为催化领域的新前沿。充分暴 露的活性位点可增加单原子催化剂的活性,单原子与 周围配位原子之间的强相互作用可抑制 N—N 偶联, 从而抑制双氮产物的形成<sup>[49]</sup>。通过调整活性原子的配 位环境,可降低 NO<sub>3</sub>RA 中不同步骤的能垒,提高 NO<sub>3</sub> 还原的选择性。在不同的配位环境下,双位点的单原 子合金可以促进催化剂扩散,但单原子合金催化剂的 设计和制备以及异原子反应机理的探索仍存在挑战。

#### 2.2 单金属 Cu 电催化硝酸盐还原

密切控制催化颗粒尺寸和形状是实现 Cu 基催 化剂最佳活性的必要条件<sup>[59]</sup>,纳米 Cu 的形貌和晶 面都会对 NO3的还原产生影响<sup>[74]</sup>。WANG 等<sup>[56]</sup>利用 泡沫 Ni 的大比表面积和丰富的孔隙电沉积 Cu 颗 粒,得到岛状 Cu 颗粒。Cu 颗粒不规则的堆积使催 化剂表面和边界存在大量断层和缺陷,断层可加速 电子传递和中间体扩散,缺陷部位能增加催化剂的 活性。岛状 Cu 颗粒中的活性位点是由 CuO 转化来 的 Cu<sub>2</sub>O, Cu(I)的存在有效地促进了\*NHOH 向 \*NH<sub>2</sub>OH 的转化并抑制了 HER。Cu 氧化价态对 NO<sub>3</sub>RA 具有促进作用;此外,Cu 切面也是提升 NO<sub>3</sub>RA 性能的关键。FU 等<sup>[57]</sup>合成了三角态的 Cu 纳米片,其表面被 Cu(111)覆盖。Cu 纳米片催化 NO3RA 反应速率是普通 Cu 箔的 400 倍、Cu 纳米块 的 3.1 倍、Cu 纳米颗粒的 1.7 倍, 4 种形貌的 Cu 将 NO3还原为 NO2的电流密度大小为: Cu 纳米片>Cu 纳米颗粒>Cu 纳米块≈Cu 箔, Cu 纳米片 NO<sub>3</sub>RA 性 能的提升来源于 Cu(111)的覆盖。HONG 等<sup>[59]</sup>经原 位电沉积和退火工艺制备了小粒径的 Cu 纳米颗粒 (IE-Cu-400, 其中 400 代表退火温度为 400 ℃), CuO(111)能提升 IE-Cu-400 的电催化 NO3还原性能。 经过 NO3还原后,得到 CuO(111)、Cu(111)以及高密 度的晶界, 推测是 CuO(111)还原后产生了晶界。 IE-Cu-400 活性来源于小尺寸 Cu 纳米颗粒和高氧化 态 Cu, 纳米颗粒的氧化增加了 IE-Cu-400 表面的粗 糙度和比表面积,较小的纳米颗粒以及固有的缺陷 可增强 IE-Cu-400 对中间体的吸附。在 Cu 纳米片和 Cu 纳米颗粒的研究基础上, WU 等<sup>[60]</sup>为寻求均匀 Cu 纳米结构设计了 Cu 纳米盘。在 NO<sub>3</sub>RA 过程中, Cu 纳米盘的表面出现了脱氧化现象。氧气和十六烷胺 可控制 Cu(111)切面的生长, 脱氧化后的表面得到重 建。Cu纳米盘上 NO3的吸附效果比 NO2的吸附效果 好, Cu(111)表面 N 原子和 O 原子之间具有强相互 作用。表面 O 原子被完全去除后, Cu(111)表面会形 成三原子团簇,重建表面的 NO<sub>3</sub>RA 性能得到提升。 非金属元素与 Cu 纳米线掺杂可形成空的 3d 轨道, GOU 等<sup>[58]</sup>制备了 B 掺杂的 Cu 纳米线列 (B-CuNWs/CF),空的 B 2p 轨道可以接受 Cu 三 维轨道上的电子诱导,形成空的 Cu 3d 轨道。B 的 掺入使 NO<sub>3</sub>与 Cu 活性位点之间的相互作用显著增 加,降低了 NO<sub>3</sub>RA 过程中\*NO 加氢转化为\*NOH 的反应能垒,并有效抑制了 HER 的活性。掺杂 B 增强了羟基自由基的表面吸附,CuNWs/CF 的氧化 得到显著抑制,有利于 CuNWs 表面活性位点的暴 露。纳米线阵列结构可以促进反应物、中间产物和 产物在电极表面的快速运输和扩散<sup>[36]</sup>。

不同的单金属 Cu 形态由于纳米颗粒的尺寸、 Cu 的氧化态、活性位点密度、电化学表面积、电子 传递速率等因素,呈现出不同的 NO<sub>3</sub>RA 性能,通过 不断构建不同的 Cu 纳米结构,调整 Cu 的电子结构、 优化中间体的吸附能量、引入异元素或异结构,或 设计活性和功能组件以构建串联催化,都是提升 Cu 基催化剂 NO<sub>3</sub>还原性能的策略<sup>[34,54,75]</sup>,关键点在于 实现增加活性位点、得到特殊的 Cu 氧化态、暴露 高活性的 Cu(111)面。

#### 2.3 Cu基合金电催化硝酸盐还原

Ni 具有与 Cu 相似的性质, Ni 可以和 Cu 形成 均相单相合金, Ni 和 Cu 合金化会使半波电位发生 正位移,催化剂的 NO<sub>3</sub>RA 性能得到提升。ZHANG 等<sup>[61]</sup>得到了均匀分布在碳纤维上的单相 Cu<sub>1</sub>Ni<sub>1</sub>双金 属合金(CFP-Cu1Ni1), CFP-Cu1Ni1在 NO3RA 过 程中未发生相分离且稳定存在。Cu 与 Ni 合金化导 致 Cu 的 d 带中心向费米能级上移, Cu 的存在增强 了 Ni 活性位点对 NO3的吸附<sup>[50]</sup>。与纯 Cu 相比, Cu 与 Ni 间的强相互作用增强了 NO3和中间体的吸附, Cu<sub>1</sub>Ni<sub>1</sub>合金上的中间体更易接受电子, Cu<sub>1</sub>Ni<sub>1</sub>表面 的电荷转移得到促进。同样, WANG 等<sup>[34]</sup>发现, 当 Ni 被加入时, Cu 的晶格间距会减小, Ni 2p 电子的 再分配导致 Cu 3d 带中心向费米能级正偏移。当 n(Ni):n(Cu)>1:1时会出现沉积Ni阻塞Cu位点的 现象,用 Ni 取代 50%的 Cu 得到 Cu<sub>50</sub>Ni<sub>50</sub>,吸附氢 和 NO<sub>3</sub>的吸附能得到调整,中间体吸附达到最佳值。 Cu和Pd均具有催化NO3合成NH3的活性,Cu-Pd 合金材料具有双功能特性: Cu 对 NO3的强吸附及 Pd 温和的加氢能力<sup>[76]</sup>,导致吸附氢在 Pd(111)表面 的吸附较强, NO<sub>3</sub>倾向吸附在 Cu(111)表面<sup>[45,64]</sup>。 WANG 等<sup>[63]</sup>制备了在宽泛 pH 和 NO3浓度范围下可 抑制 HER 的 Cu,Pd, 合金。Cu-Pd 界面可以作为 NO, 和吸附氢的吸附位点, Cu 对吸附氢的吸附弱, 而

Pd 对吸附氢的吸附强度适中,可提供充足的吸附氢 维持 NO<sub>2</sub>的深度氢化。在宽泛的 pH 范围(1~14) 内, Cu<sub>x</sub>Pd<sub>y</sub>生成 NH<sub>3</sub>的法拉第效率均超过 96.00%。 Pd 与 Cu 合金后具有氢还原反应,可缓解 Cu 的腐蚀 钝化问题, 延缓酸性条件下 Pd 快速氧化为 PdO。 Pd/Cu 之间的协同效应可有效地提高催化剂的 NO<sub>3</sub>RA 性能。2 种金属相掺杂的比例也会影响合金 催化剂的性质,适中的原子比是改变晶体结构和催 化剂性能的关键。ZHAO 等<sup>[62]</sup>合成了 9 种 CuM 双 金属催化剂〔*n*(Cu):*n*(M)为7:3、5:5或3:7; M为Fe、Co或Ni〕,晶格间距及掺杂量是Cu和 M 组分之间产生协同作用的关键。双金属较强的协 同作用可降低 NO<sub>3</sub>RA 的能垒, 促进 NH<sub>3</sub> 的合成, 表1中列举了9种CuM催化剂中性能最佳的3种。 其中, Fe 在高电位下对 NO<sub>3</sub>RA 中间体具有较强的 吸附作用, Cu<sub>5</sub>Fe<sub>5</sub>/OMC 的 NH<sub>3</sub>产率最高。协同作 用可以加速电荷转移和增加额外的活性位点[77],三金 属催化剂的大比表面积可提供更多的吸附位点。 TONG 等<sup>[65]</sup>将 Cu 与 PdMo 掺杂合成了富含缺陷的 PdMoCu 三金属催化剂,较大的比表面积、暴露的 高活性位点和3种元素之间的协同作用,使PdMoCu 表现出高 NO<sub>3</sub>RA 催化活性和高稳定性。掺入 Cu 的 PdMoCu 晶格间距减小, Cu 原子增加了催化剂活性 位点的数量并加速了电荷转移。

纯 Cu 电极容易自发氧化溶解,竞争性吸附会引 起电极表面中毒,导致电催化活性降低。适当的金 属元素掺杂可以调整 Cu 基材料的电子结构,产生更 多的活性位点,提高催化剂的 NO3还原活性<sup>[40,65,78]</sup>。 由析氢金属和析氧金属组成的双金属催化剂比单金 属催化剂的性能更优越<sup>[21]</sup>,Cu 与第二金属结合形成 合金,两个原子间的协同效应可促进 NO3的 N-O 键断裂,提高 NO3还原的性能<sup>[30]</sup>。双金属合金可以 利用协同效应改善纯 Cu 电极氧化溶解和中毒的缺 陷,调节对 NO3的吸附能<sup>[78]</sup>,d带中心位置和诱导 吸附性能对 NO3RA 活性和选择性具有重要的作用。 在不发生相分离的情况下,元素的固有性质和合金 化方法是形成单相合金的关键。此外,合金具有较 高的耐腐蚀性和稳定性,通过调整合金的组成和结 构,可以进一步提高合金的 NO3RA 性能。

#### 2.4 Cu 基氧化物电催化硝酸盐还原

在各种纳米结构中,一维纳米线阵列具有丰富、 暴露的活性位点和高效的电荷转移<sup>[66]</sup>,而 CuO 纳米 线阵列(NWs)是 NO<sub>3</sub>RA 反应的高效催化剂<sup>[35]</sup>。 REN 等<sup>[66]</sup>制备了具有修饰表面性能和电子结构的 Cu@Cu<sub>2+1</sub>O 纳米线阵列(Cu@Cu<sub>2+1</sub>ONWs),其内 部金属 Cu 具有高效的电子传输能力,而外部凹凸 Cu<sub>2+1</sub>O 层则具有丰富的催化活性位点。Cu/Cu<sub>2+1</sub>O 之间的界面效应和电子相互作用可以调节 Cu d 带 中心,并调节 NO<sub>3</sub>RA 过程中间体的吸附能。Cu 可 以加快诱导形成 NO<sub>2</sub>, 加速速率决定步骤的反应速 率和最终产物 NH3 的生成。利用有机分子或聚合物 对电催化剂进行表面改性,已成为提高催化剂活性 的有效途径<sup>[79-80]</sup>。XU 等<sup>[67]</sup>采用 PANI 修饰 CuO 纳 米线阵列(CuO@PANI),具有高导电性的 PANI 可以赋予 CuO 表面丰富的催化活性位点。在 NO3RA 过程中, CuO 被原位电化学还原为 Cu/Cu<sub>2+1</sub>O 异相 结构, Cu2+1O 位点可激活并还原 NO3, Cu 位点可促 进 PANI 捕获的 H<sup>+</sup>还原为吸附氢。CuO 和 PANI 的 协同作用可以有效地促进 NO3富集、吸附氢积累, Cu/CuO<sub>x</sub>界面上的电子转移有利于反应中间体的形 成<sup>[35]</sup>。ZHAO 等<sup>[54]</sup>制备了具有 Cu-CuO 异质结构的 Cu 立方体(Cu@Cu-CuO)。由于暴露在空气中, Cu表面层将部分氧化成Cu(111)-CuO(111)的异质结 构层, Cu(111)晶面可有效抑制 HER 反应,显著提 升 NH3 的选择性<sup>[81]</sup>。与纯 Cu 和 CuO 相比, Cu@Cu-CuO 的电化学表面积最小,但 Cu-CuO 异质 结构比纯 Cu 更有利于 NO<sub>3</sub>RA, Cu-CuO 异质结构 更有利于最终 NH3 的脱附, NH3 的产率为 3.17 mol/(h·g)、法拉第效率高达 98.70%; 其对 NO3 初始质量浓度为 18.12 mg/L 的河流水样处理 12 h 后,NO3的转化率高达95.50%,处理后水样中NO3 的浓度低于世界卫生组织和《生活饮用水卫生标准》 (GB 5749-2006)规定的饮用水中 NO3的最大残留 量。Cu 基氧化物与过渡金属 Ti 结合可以产生协同 作用, CHAVEZ 等<sup>[68]</sup>将 Cu<sub>2</sub>O-Cu 纳米颗粒镀在 Ti 箔上,制备了Cu2O-Cu/Ti电极。纯Ti电极的NO3 还原活性低但具有高的 NH<sub>3</sub>选择性,这种特性使 Ti 成为 Cu 基等 NO<sub>3</sub>RA 催化材料的优良活性载体。 Cu<sub>2</sub>O-Cu/Ti 使 NO<sub>3</sub>RA 的动力学性能得到了改善, 对 NO<sub>3</sub>浓度和 pH 表现出高敏感。当 Cu<sub>2</sub>O-Cu/Ti 表 面部分 Cu 被氧化为 Cu<sup>+</sup>时, Cu<sup>+</sup>的活性优势、Cu 和 Ti 之间的协同作用以及 Cu 特殊的结构优势, 可增 加Cu<sub>2</sub>O-Cu/Ti催化NO<sub>3</sub>RA的速率和NH<sub>3</sub>的选择性。

电化学重建经常用于创建 Cu 纳米结构表面,特 别是 Cu 及其氧化物的纳米结构表面<sup>[23]</sup>。Cu 基氧化物 具有可控的 Cu 氧化态,Cu 在电催化过程中会发生相 变,形成不同成分的 Cu 金属氧化物,不同价态的 Cu 物种经过氧化还原可得到具有双功能、双价态的 Cu 物种经过氧化还原可得到具有双功能、双价态的 Cu 活性位点。具有氧空位的 CuO 的反应活性比完美的 CuO 更强,合成 NH<sub>3</sub>的活性更强<sup>[82]</sup>。Cu 基氧化物通 过部分氧化,可实现金属-氧化物界面工程,金属与金 属氧化物之间具有强界面和电子相互作用,可以有效 地提高 Cu 基催化剂的 NO<sub>3</sub>RA 性能。

#### 2.5 Cu 基 MOFs 电催化硝酸盐还原

MOFs 的合成后修饰策略可以通过结合附加功 能、交联和金属配位重建来实现。如果重建的金属 离子作为 MOFs 的连接节点,通常会导致主体框架 崩溃、性能降低或部分 MOFs 结构被破坏<sup>[83]</sup>。XU 等<sup>[69]</sup>制备了由单原子 Cu 预催化剂和 Ce-UiO-66 原 位重建的主-客体超小 Cu 纳米催化剂 (Ce-UiO-66-Cu)。Ce-UiO-66-Cu中的Cu原子不具有连接节点 的作用,不会导致主体框架崩溃,这种限制支撑作 用使 Cu 纳米团簇在聚集过程中会造成局部缺陷, 但不会破坏整体框架结构; Ce-UiO-66 的约束效应 以及主-客体相互作用使 Cu 纳米团簇尺寸均匀, 其 真正的催化位点是 Cu 纳米团簇。Ce-UiO-66-Cu 具 有超高的 NO3还原活性,比报道的 Cu 基 NO3RA 催 化剂活性高 3.3 倍<sup>[34]</sup>。不饱和配位环境下的单金属 位点可以显著提高不同反应的催化活性,具有开放 金属位点的 MOFs 与 NH<sub>3</sub>、CO、和 CO<sub>2</sub>等分子表现 出强烈的相互吸附作用,设计 MOFs 支撑的单开放 位点 Cu 基催化剂,可以有效提高 NO5的还原性能。 Th 基 MOFs 具有高结晶度和明确的结构, GAO 等<sup>[70]</sup> 合成了 Th-MOFs 支撑的单位点 Cu 材料 (Cu@Th-BPYDC),其具有高密度均匀分布的单开放位点 Cu,Cu位点的不饱和配位可以提高Cu@Th-BPYDC 的 NO<sub>3</sub>RA 催化活性。高密度单位点的 Cu 掺入后由 于价间的电荷转移和带隙重叠,电导率显著增加约5 个数量级。Cu@Th-BPYDC 具有高稳定性,在具有良 好的 NO3还原效果的同时具有较强的储 NH3能力。

六羟基三苯(HHTP)常被用作有机物的起始材料,ZHU等<sup>[72]</sup>以CuHHTP为自我牺牲模板,将部分CuHHTP原位还原为Cu纳米团簇,Cu团簇被均匀地限制在CuHHTP介孔中,形成Cu@CuHHTP。部分Cu<sup>2+</sup>物种被还原为Cu活性位点,Cu的3d轨道可同时得失电子,Cu(111)表面电荷转移呈现出

"接受-捐赠"机制。Cu的高 d带中心和"接受-捐 赠"机制有利于 NO<sub>3</sub>RA 中含氮物种在 Cu(111)上的 吸附,产物中未检测到联氨,表明 Cu@CuHHTP 对 NH<sub>3</sub>具有较高的选择性。CuHHTP 具有  $\pi$ -d 完全共 轭的二维扩展刚性平面结构,导电 MOFs (cMOFs) 结构可控,将金属原子引入 cMOFs 结构可实现双金 属 cMOFs 结构。LIU 等<sup>[71]</sup>合成了 CuHHTP cMOFs 后用 Co 取代部分 Cu, 得到双金属 Cu, Co, HHTP cMOFs, 其具有大量的 Cu 单金属位点、良好的电导 率和有序的多孔结构,有利于增加 NO<sub>3</sub>RA 过程中 Cu<sub>x</sub>Co<sub>v</sub>HHTP 对中间体的吸附和反应电荷的转移。 由于 Cu/Co 的协同作用, Cu<sub>x</sub>Co<sub>v</sub>HHTP cMOFs 显示 出优越的 NO<sub>3</sub>RA 性能。当 n(Co): n(Cu)=1:1 时, Cu1Co1HHTP 对合成 NH3 的电催化活性最好, Co 原 子取代了 Cu<sub>1</sub>Co<sub>1</sub>HHTP 结构中的 Cu<sup>2+</sup>位点,而活性 位点 Cu 原子的密度随着 Co 的增加而增加。

开发高活性、低成本 NO3还原的新型非贵金属 电催化剂具有重要的意义<sup>[71]</sup>。载体的大比表面积和 丰富的多孔结构可以增加 Cu 粒子的 NO3RA 性能, 具有开放晶体结构、可调的孔隙度的 MOFs 是一种 良好的载体。合理调节 MOFs 的微环境可以提高 NO3的传质速率、促进电子转移、增加催化位点的 活性,使 Cu 基 MOFs 具有优异的活性和选择性<sup>[84]</sup>。 此外, MOFs 稳定性良好的主体框架可以发挥双重 功能,在作为 Cu 纳米团簇支撑的同时可阻碍 Cu 纳 米团簇的过度聚集,受 MOFs 限制的金属种类与 Cu 基 MOFs 结合,有望增加催化活性<sup>[85-86]</sup>。通过修改 MOFs 的结构和组成来开发催化位点,在具有优异 电催化性能的高导电衬底上原位生长超薄 MOFs 纳 米片阵列,也是未来的研究方向<sup>[84]</sup>。

表 2 对不同 Cu 基催化剂的性能起源、优缺点、 稳定性进行分析,以便更直观了解和对比不同种类的 Cu 基催化剂。

| Tuble 2 Comparison of anterent types of copper based catalysis |                                              |                           |                                          |                   |  |  |  |  |
|----------------------------------------------------------------|----------------------------------------------|---------------------------|------------------------------------------|-------------------|--|--|--|--|
| 催化剂种类                                                          | 性能起源                                         | 优点                        | 缺点                                       | 结构稳定性             |  |  |  |  |
| Cu 单原子                                                         | Cu 原子与相邻的活性位点之间<br>的协同作用,非对称的配位形式<br>和特殊的氧化态 | 原子利用效率高,可抑制<br>N—N 偶联     | 单原子及合金催化剂的设<br>计和制备存在挑战,异原<br>子的催化机理尚不明确 | 不稳定,易被氧化          |  |  |  |  |
| 单金属 Cu                                                         | 纳米 Cu 的形貌和晶面                                 | 成本低,研究成熟                  | 纯Cu电极会自发氧化溶解<br>和吸附氢中毒                   | 不稳定,易被氧化          |  |  |  |  |
| Cu 基合金                                                         | 金属之间的协同效应, d带中心 向费米能级正偏移                     | 稳定性高,耐腐蚀                  | 易团聚,合适的掺杂量和<br>掺杂元素有待研究                  | 稳定,结构不易破坏         |  |  |  |  |
| Cu 基氧化物                                                        | 金属与金属氧化物之间具有强<br>界面和电子相互作用                   | 较稳定,可形成双功能双<br>价态 Cu 活性位点 | 受 pH 影响大, 价态比例不<br>确定                    | 稳定,结构不易破坏         |  |  |  |  |
| Cu 基 MOFs                                                      | MOFs 开放的晶体结构、可调的<br>孔隙度,Cu 纳米团簇              | MOFs 结构具有特殊性、均<br>匀性和可设计性 | 成本高,Cu基MOFs种类<br>有待开发                    | 不稳定,重建构架易发<br>生崩溃 |  |  |  |  |

|         | 表 2 不同种类 Cu 基催化剂的对比                                     |
|---------|---------------------------------------------------------|
| Table 2 | Comparison of different types of copper-based catalysts |

#### 3 Cu 基材料电催化硝酸盐还原的影响因素

电化学 NO3还原的动力学和选择性受电解池结 构、电极电位、电流密度、pH、NO3浓度、共存离 子以及电极材料的影响<sup>[2]</sup>。影响电催化 NO3还原效 率的关键是阴极材料和电流密度,溶液 pH 随反应 时间的增加而升高,初始 pH 变化对 NO3还原效率 的影响较小,而应用电极电位、共存离子、电解池 结构等因素主要影响产物的选择性<sup>[8]</sup>。初始 NO<sub>3</sub>浓 度不同的废水可以通过调节电流密度获得较好的 NO3去除率,氯水解过程形成的氯活性物质会间接 氧化 NH<sub>4</sub>,通过改变较低浓度下的电极电位和电解 池结构来提高 NH,的选择性。在处理实际废水时应 充分考虑废水中的离子种类、有机污染物和固体沉 积物等复杂成分,特殊情况可对废水预处理。Cu基 材料电催化还原 NO<sub>5</sub>废水在未来重建氮循环方面具 有广泛的应用前景,本章对影响 Cu 基催化剂的因 素进行分析。

#### 3.1 单双室电解池

单室电解池和双室电解池是最常见的 2 种电催 化电解池类型。单室电解池是阴极和阳极在同一电 解质环境中共存的电解池,离子转移快速且不受限 制;双室电解池的阴极和阳极通常是由离子交换膜 分开而形成 2 个单室,离子转移受限于离子交换膜 的类型。阳离子交换膜可防止阴极产生的 NO<sub>2</sub>与阳 极接触产生 NO<sub>3</sub>,可防止 NH<sup>4</sup>从阴极转移到阳极时 由于浓度梯度被氧化<sup>[8]</sup>。双室电解池对 NO<sub>3</sub>的去除 率高<sup>[87]</sup>,当 NO<sub>3</sub>质量浓度低于 200 mg/L 时,使用 双室电解池对 N<sub>2</sub>的选择性更高。HONG 等<sup>[59]</sup>发现, 对于 IE-Cu-400 使用双室电解池比单室电解池获得 NO<sub>3</sub>还原性能更高,双室电解池可以减少阳极的干扰。

#### 3.2 电极电位和电流密度

电极电位和电流密度是影响电化学 NO3还原速 率的重要因素。NO3还原反应通常发生在过电位存 在时,过电位是指超出还原半反应发生热力学所需 的电势电位<sup>[2]</sup>。高电流密度会增加水解产生 H<sup>+</sup>的数 量,根据 Cu 基材料电催化 NO5还原机理,增加 H<sup>+</sup> 的量可促进 NO3还原。过高的电流密度可促进 N—H 键的形成,抑制 N—N 键的形成,导致 NH<sup>4</sup>-N 产量 增加。SHEN 等<sup>[88]</sup>将 Cu 纳米颗粒负载在 N 掺杂多 孔碳纳米纤维上,得到了 aCu/PCNF,并在-0.2~-0.6 V vs. RHE 的电极电位下对 aCu/PCNF 进行 NO3还原 性能测试。在-0.2 V vs. RHE 的电极电位下,NO3 还原的主要产物为 NO2和 NH3;在-0.6 V vs. RHE 的电极电位下,NO3还原的主要产物为 H2和 NH3。 通过改变应用电位,NO3可以被选择性地还原为各 种产物,这表明电催化 NO₃还原的选择性高度依赖 于电流密度和电极电位。

#### 3.3 初始硝酸盐浓度

NO<sub>3</sub>还原机理表明,NO<sub>3</sub>还原过程高度依赖于 NO<sub>3</sub>的初始浓度。在相同条件下,在NO<sub>3</sub>初始质量 浓度较低(<200 mg/L)时,NO<sub>3</sub>去除率一般较高, 而在NO<sub>3</sub>初始质量浓度较高(>200 mg/L)时,NO<sub>3</sub> 去除率较低<sup>[8]</sup>。JEON等<sup>[89]</sup>研究了Co<sub>0.5</sub>Cu<sub>0.5</sub>合金催 化剂在5、50、100 mmol/L不同初始NO<sub>3</sub>浓度下的 NO<sub>3</sub>RA 活性和NH<sub>3</sub>的选择性,结果表明,电流密度 随着 NO<sub>3</sub>浓度的增加而增加,而NH<sub>3</sub>的法拉第效率 在初始 NO<sub>3</sub>浓度为50 mmol/L 时达到最大值,如图 4 所示。在高 NO<sub>3</sub>浓度下,由于缺乏还原 NO<sub>3</sub>所必 需的氢的吸附位点,吸附态 NO<sub>3</sub>占据 Cu 基催化剂 表面的活性位点,导致 NO<sub>3</sub>还原效率降低<sup>[7]</sup>。随着 初始 NO<sub>3</sub>浓度的增加,阳离子交换膜更容易被堵塞 和腐蚀,导致阴极电池中 NO<sub>3</sub>的浓度增加。



- 图 4 Co<sub>0.5</sub>Cu<sub>0.5</sub>合金在不同 NO<sub>3</sub>浓度下的电流密度-电极 电位关系(a)和氨法拉第效率-电极电位关系(b)<sup>[89]</sup>
- Fig. 4 Current density-electrode potential relationship (a) and ammonia Faraday efficiency-electrode potential relationship of  $Co_{0.5}Cu_{0.5}$  alloy at different  $NO_3^-$  concentration (b)<sup>[89]</sup>

#### 3.4 初始 pH

电化学 NO<sub>3</sub>还原可以发生在宽泛的 pH 范围内, NO<sub>3</sub>还原反应的竞争反应 HER 与电解质 pH 相关。 在碱性环境中, Cu 电极会产生屏蔽,材料的外层发 生钝化而逐渐失活。在酸性介质中 Cu 会自发溶解, Cu 的持续溶解和再沉积使 Cu 表面再生,可以防止 Cu 电极中毒和钝化。OH<sup>-</sup>在阴极附近形成,H<sup>+</sup>在阳 极附近形成,随着电解时间的增加,阴极附近的 pH 逐渐增加。因此,NO<sub>3</sub>的电催化还原主要发生在碱 性条件下。在各自的最佳工作电位下,酸性条件 Cu<sub>2</sub>O-Cu/Ti 对 NH<sub>3</sub>的法拉第效率(92.00%)高于碱 性条件(82.00%),但酸性条件下 NH<sub>3</sub>的产率较低<sup>[68]</sup>。 Cu 电极在酸性介质中优先产生 NO 和 NH<sub>3</sub>,在碱性 介质中先产生 NO<sub>2</sub>,然后再转化为 N<sub>2</sub>H<sub>4</sub>,中间体的 选择性与 Cu 单晶的构型相关。在 pH 为 0~4 时,NO<sub>3</sub> 还原的主要产物为 NH<sub>3</sub> 和 N<sub>2</sub>H<sub>4</sub>,在 pH>4 后,NO<sub>3</sub> 还原形成 N<sub>2</sub>、N<sub>2</sub>O、NH<sub>3</sub> 和 NO<sub>2</sub><sup>[87]</sup>。

#### 3.5 电解质中共存离子

实际 NO<sub>3</sub>废水中不仅含有硝酸盐离子,还含有 硫酸盐、磷酸盐、氯化物、卤化物和各种阳离子, 因此,有必要研究不同离子对 NO<sub>3</sub>还原的影响。 KATSOUNAROS 等<sup>[90]</sup>报道,在 0.1 mol/L MCl 和 0.05 mol/L 的 MNO<sub>3</sub> (M为 Li<sup>+</sup>、Na<sup>+</sup>、K<sup>+</sup>或 Cs<sup>+</sup>)电 解质中,阳离子提高硝酸盐还原率的顺序为:Li<sup>+</sup>< Na<sup>+</sup>< K<sup>+</sup>< Cs<sup>+</sup>。在 0.5 mol/L 的 NaX (X为 HCO<sub>3</sub>、 SO<sub>4</sub><sup>2-</sup>、ClO<sub>4</sub>或 Cl<sup>-</sup>)电解质中,阴离子增加 NO<sub>3</sub>还原 率的顺序为:HCO<sub>3</sub>< SO<sub>4</sub><sup>2-</sup><ClO<sub>4</sub>< Cl<sup>-</sup>,因此,Cl<sup>-</sup>是 最有利于 NO<sub>3</sub>还原动力学的电解质<sup>[7]</sup>。当 NO<sub>3</sub>还原目 标产物为 N<sub>2</sub>时,氯活性物质与氨形成的氯胺有助于 通过氯断点氧化反应将 NH<sub>3</sub>转化为 N<sub>2</sub>。在单室电解 池下,氯活性物质诱导的腐蚀可促进 Cu 的溶解和 氯化亚铜的形成,多孔和粗糙的 Cu 电极表面可产 生更高的电流密度。

#### 4 结束语与展望

目前,针对 NO<sub>3</sub>RA 反应的 Cu 基催化剂的研究 种类繁多,Cu 单原子催化剂、Cu 基氧化物以及 Cu 基 MOFs 成为近期 Cu 基催化剂的研究热点。Cu 单 原子催化剂的开发和设计、对配位环境的调节、制 备单原子合金等,都是单原子催化剂的研究方向。 Cu 基氧化物可发生相变,利用好 Cu 的价态以及异 质结构,对 NO<sub>3</sub>RA 具有重要的影响。合成新型稳定 的 Cu 基 MOFs 应用于实际工程生产,还需要进一 步探索。如何打破催化加氢的动力学和热力学限 制,克服 HER 反应以及催化剂腐蚀等问题仍存在挑 战。以下为 Cu 基 NO<sub>3</sub>还原存在的问题及未来的研 究方向:

(1)在 NO<sub>3</sub>RA 反应过程中,Cu 基不稳定价态 变化使得真正活性位点不明确,并且高度依赖于多 个反应条件,还原机理复杂。

(2)开发高效经济的 Cu 基催化剂, 增强传质

效率,提升催化活性和稳定性。

(3)NO3还原合成 NH3催化剂的种类非常丰富, 但只能在相对较低的初始 NO3浓度下实现高产率合 成 NH3。与可再生能源联用,降低技术成本以及原 位收集 NH3,仍是巨大的挑战。

(4) NO<sub>3</sub>废水可引起水体富营养化,仅仅是去 除 NO<sub>3</sub>而不去除 PO<sub>4</sub><sup>3-</sup>,水体富营养化问题得不到根 本解决,可将 2 种盐同时去除的催化剂还有待开发。

(5) 在碱性环境中, Cu 阴极钝化导致催化剂逐 渐失活,长期的电催化性能受到抑制。在酸性介质 中,Cu 电极的腐蚀和溶解导致催化稳定性较差。提 高催化剂的 NO<sub>3</sub>还原性能,设计适应宽 pH 的 Cu 基 催化剂很有必要。

(6)固定在电极上的催化剂的回收利用、新型 反应器的研发以及与其他水处理工艺的耦合,都有 待进一步研究。

#### 参考文献:

- BONDONNO C P, ZHONG L Z, BONDONNO N P, et al. Nitrate: The Dr. Jekyll and Mr. Hyde of human health?[J]. Trends in Food Science & Technology, 2023, 135: 57-73.
- [2] GARCIA-SEGURA S, LANZARINI-LOPES M, HRISTOVSKI K, et al. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications[J]. Applied Catalysis B: Environmental, 2018, 236: 546-568.
- [3] SEBESTYEN S D, ROSS D S, SHANLEY J B, et al. Unprocessed atmospheric nitrate in waters of the northern forest region in the U.S. and Canada[J]. Environmental Science & Technology, 2019, 53(7): 3620-3633.
- [4] FU X, WANG T, GAO J, et al. Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in northern China[J]. Environmental Science & Technology, 2020, 54(7): 3881-3889.
- [5] MIN L, LIU M, WU L, *et al.* Groundwater storage recovery raises the risk of nitrate pollution[J]. Environmental Science & Technology, 2022, 56(1): 8-9.
- [6] REN S (任爽), WANG P (王鹏), WANG Y E (王亚娥), et al. Research progress on reduction of nitrates in water by zero-valent iron materials[J]. Fine Chemicals (精细化工), 2022, 39(10): 2005-2015.
- [7] FLORES K, CERRÓN-CALLE G A, VALDES C, et al. Outlining key perspectives for the advancement of electrocatalytic remediation of nitrate from polluted waters[J]. ACS Environmental Science & Technology Engineering, 2022, 2(5): 746-768.
- [8] MENG S, LING Y, YANG M Y, et al. Recent research progress of electrocatalytic reduction technology for nitrate wastewater: A review[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109418.
- [9] PICETTI R, DEENEY M, PASTORINO S, et al. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis[J]. Environmental Research, 2022, 210: 112988.
- [10] WEN G, LIANG J, LIU Q, et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray[J]. Nano Research, 2021, 15(2): 972-977.
- [11] SARKAR S, MUKHERJEE A, SENAPATI B, et al. Predicting potential climate change impacts on groundwater nitrate pollution and risk in an intensely cultivated area of South Asia[J]. ACS Environmental Au, 2022, 2(6): 556-576.
- [12] WANG Z M, BERBILLE A, FENG Y W, et al. Contact-electrocatalysis for the degradation of organic pollutants using pristine

dielectric powders[J]. Nature Communications, 2022, 13(1): 130.

- [13] TRAN N N, ESCRIBÀ-GELONCH M, SARAFRAZ M M, et al. Process technology and sustainability assessment of wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1195-1214.
- [14] SU J F, KUAN W F, LIU H, *et al.* Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity[J]. Applied Catalysis B: Environmental, 2019, 257: 117909.
- [15] CENTORCELLI J C, LUYBEN W L, ROMERO C E, et al. Dynamic control of liquid biomass digestate distillation combined with an integrated solar concentrator cycle for sustainable nitrogen fertilizer production[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(22): 7409-7417.
- [16] YAO Y, WANG J, SHAHID U B, et al. Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges[J]. Electrochemical Energy Reviews, 2020, 3(2): 239-270.
- [17] PONIKVAR Ž, LIKOZAR B, GYERGYEK S. Electrification of catalytic ammonia production and decomposition reactions: From resistance, induction, and dielectric reactor heating to electrolysis[J]. ACS Applied Energy Materials, 2022, 5(5): 5457-5472.
- [18] ZHANG T, MIYAOKA H, MIYAOKA H, et al. Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides[J]. ACS Applied Energy Materials, 2018, 1(2): 232-242.
- [19] SURYANTO B H R, MATUSZEK K, CHOI J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191.
- [20] HASAN M H, MAHLIA T M I, MOFIJUR M, et al. A comprehensive review on the recent development of ammonia as a renewable energy carrier[J]. Energies, 2021, 14(13): 3732.
- [21] QING G, GHAZFAR R, JACKOWSKI S T, et al. Recent advances and challenges of electrocatalytic N<sub>2</sub> reduction to ammonia[J]. Chemical Reviews, 2020, 120(12): 5437-5516.
- [22] ZHOU B, ZHAN G, YAO Y, et al. Renewable energy driven electroreduction nitrate to ammonia and *in-situ* ammonia recovery via a flow-through coupled device[J]. Water Research, 2023, 242: 120256.
- [23] TENG M, YE J, WAN C, *et al.* Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia [J]. Industrial & Engineering Chemistry Research, 2022, 61(40): 14731-14746.
- [24] SAGAR P, ARUN KUMAR N S, SHREENIVASA L, et al. Citric acid assisted one-pot approach to synthesize CuO, CuO/Cu<sub>2</sub>O, Cu/Cu<sub>2</sub>O, and metallic Cu: Potential electrocatalyst for enhanced OER[J]. Ionics, 2022, 29(2): 711-719.
- [25] HU T, WANG C, WANG M, et al. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts[J]. ACS Catalysis, 2021, 11(23): 14417-14427.
- [26] LI Z R, DENG Z Q, LING O Y, et al. CeO<sub>2</sub> nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia[J]. Nano Research, 2022, 15(10): 8914-8921.
- [27] THEERTHAGIRI J, PARK J, DAS H T, et al. Electrocatalytic conversion of nitrate waste into ammonia: A review[J]. Environmental Chemistry Letters, 2022, 20(5): 2929-2949.
- [28] KIM K, ZAGALSKAYA A, NG J L, *et al.* Coupling nitrate capture with ammonia production through bifunctional redox-electrodes[J]. Nature Communications, 2023, 14(1): 1-13.
- [29] LI L, TANG C, CUI X, et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction [J]. Angewandte Chemie International Edition, 2021, 60(25): 14131-14137.
- [30] ZHENG X, YAN Y, LI X, et al. Theoretical insights into dissociativeassociative mechanism for enhanced electrochemical nitrate reduction to ammonia[J]. Journal of Hazardous Materials, 2023, 446: 130679.
- [31] CHUN H J, ZENG Z, GREELEY J. DFT insights into NO

electrochemical reduction: A case study of Pt(211) and Cu(211) surfaces[J]. ACS Catalysis, 2022, 12(2): 1394-1402.

- [32] ZHANG S, WU J, ZHENG M, et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia[J]. Nature Communications, 2023, 14(1): 3634.
- [33] MIN B, GAO Q, YAN Z, et al. Powering the remediation of the nitrogen cycle: Progress and perspectives of electrochemical nitrate reduction[J]. Industrial & Engineering Chemistry Research, 2021, 60(41): 14635-14650.
- [34] WANG Y, XU A, WANG Z, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption[J]. Journal of the American Chemical Society, 2020, 142(12): 5702-5708.
- [35] WANG Y, ZHOU W, JIA R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia [J]. Angewandte Chemie International Edition, 2020, 59(13): 5350-5354.
- [36] JIANG H, CHEN G F, SAVATEEV O, et al. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages[J]. Angewandte Chemie International Edition, 2023, 62(13): e202218717.
- [37] XUE Y, YU Q, MA Q, et al. Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu( I )-N<sub>3</sub>C<sub>1</sub> sites[J]. Environmental Science & Technology, 2022, 56(20): 14797-14807.
- [38] CHEN Y, GUO R, PENG X, et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites[J]. ACS Nano, 2020, 14(6): 6938-6946.
- [39] GATARD V, DE MASI D, CHATTOT R, et al. FeNi<sub>3</sub> and Ni-based nanoparticles as electrocatalysts for magnetically enhanced alkaline water electrolysis[J]. Electrocatalysis, 2020, 11(5): 567-577.
- [40] PENG O, HU Q, ZHOU X, et al. Swinging hydrogen evolution to nitrate reduction activity in molybdenum carbide by ruthenium doping[J]. ACS Catalysis, 2022, 12(24): 15045-15055.
- [41] TANG M, TONG Q W, LI Y M, et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles[J]. Chinese Chemical Letters, 2023, 34(12): 108410.
- [42] XIE Z L, WANG D, GONG X Q. Theoretical insights into nitrate reduction to ammonia over Pt/TiO<sub>2</sub>: Reaction mechanism, activity regulation, and catalyst design[J]. ACS Catalysis, 2022, 12(16): 9887-9896.
- [43] YAN J Y, LIU P, LI J W, et al. Effect of valence state on electrochemical nitrate reduction to ammonia in molybdenum catalysts[J]. Chemical Engineering Journal, 2023, 459: 141601.
- [44] YIN H, PENG Y, LI J. Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst[J]. Environmental Science & Technology, 2023, 57(8): 3134-3144.
- [45] CHEN K L, AHMAD M S, CHEN C L. Enhanced nitrate reduction over functionalized Pd/Cu electrode with tunable conversion to nitrogen and sodium hydroxide recovery[J]. Science of the Total Environment, 2023, 869: 161849.
- [46] DENG Z, MA C, LI Z, et al. High-efficiency electrochemical nitrate reduction to ammonia on a Co<sub>3</sub>O<sub>4</sub> nanoarray catalyst with cobalt vacancies[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46595-46602.
- [47] YUAN S, XUE Y, MA R, et al. Advances in iron-based electrocatalysts for nitrate reduction[J]. Science of the Total Environment, 2023, 866: 161444.
- [48] CAI J, WEI Y, CAO A, *et al.* Electrocatalytic nitrate-to-ammonia conversion with ~100% Faradaic efficiency *via* single-atom alloying [J]. Applied Catalysis B: Environmental, 2022, 316: 121683.
- [49] CHEN H, ZHANG C, SHENG L, et al. Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion [J]. Journal of Hazardous Materials, 2022, 434: 128892.
- [50] LIANG J, LIU Q, ALSHEHRI A A, et al. Recent advances in

nanostructured heterogeneous catalysts for *N*-cycle electrocatalysis [J]. Nano Research Energy, 2022, 1: e9120010.

- [51] NAW (纳薇), ZUO JY (左俊怡), YANG XL (杨学磊), et al. Application of solid solution catalyst in the hydrogenation of CO<sub>2</sub> to methanol[J]. Fine Chemicals (精细化工), 2021, 38(12): 2415-2421, 2497.
- [52] BARRERA L, SILCOX R, GIAMMALVO K, *et al.* Combined effects of concentration, pH, and polycrystalline copper surfaces on electrocatalytic nitrate-to-ammonia activity and selectivity[J]. ACS Catalysis, 2023, 13(7): 4178-4192.
- [53] SUN W J, JI H Q, LI L X, et al. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultralow concentration and electroreduction to ammonia[J]. Angewandte Chemie International Edition, 2021, 60(42): 22933-22939.
- [54] ZHAO J, SHEN Z, YU J, et al. Constructing Cu-CuO heterostructured skin on Cu cubes to promote electrocatalytic ammonia production from nitrate wastewater[J]. Journal of Hazardous materials, 2022, 439: 129653.
- [55] CHENG X F, HE J H, JI H Q, *et al.* Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia[J]. Advanced Materials, 2022, 34(36): e2205767.
- [56] WANG C, YE F, SHEN J, et al. In situ loading of Cu<sub>2</sub>O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 6680-6688.
- [57] FU X, ZHAO X, HU X, et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets[J]. Applied Materials Today, 2020, 19: 100620.
- [58] GOU F, WANG H, FU M, et al. Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media[J]. Applied Surface Science, 2023, 612: 155872.
- [59] HONG M, WANG Q, SUN J, et al. A highly active coppernanoparticle-based nitrate reduction electrocatalyst prepared by *in situ* electrodeposition and annealing[J]. Science of the Total Environment, 2022, 827: 154349.
- [60] WU K, SUN C, WANG Z, et al. Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia [J]. ACS Materials Letters, 2022, 4(4): 650-656.
- [61] ZHANG Z, LIU Y, SU X, et al. Electro-triggered joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia[J]. Nano Research, 2023, 16: 6632-6641.
- [62] ZHAO J, LIU L, YANG Y, *et al.* Insights into electrocatalytic nitrate reduction to ammonia *via* Cu-based bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2468-2475.
- [63] WANG Y, ZHANG P, LIN X, et al. Wide-pH-range adaptable ammonia electrosynthesis from nitrate on Cu-Pd interfaces[J]. Science China Chemistry, 2023, 66(3): 913-922.
- [64] WANG Z, SUN C, BAI X, et al. Facile synthesis of carbon nanobelts decorated with Cu and Pd for nitrate electroreduction to ammonia[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 30969-30978.
- [65] TONG X, ZHANG Z, FANG Z, et al. PdMoCu trimetallenes for nitrate electroreduction to ammonia[J]. The Journal of Physical Chemistry C, 2023, 127(11): 5262-5270.
- [66] REN T, REN K, WANG M, et al. Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion[J]. Chemical Engineering Journal, 2021, 426: 130759.
- [67] XU Y, WEN Y, REN T, et al. Engineering the surface chemical microenvironment over CuO nanowire arrays by polyaniline modification for efficient ammonia electrosynthesis from nitrate[J]. Applied Catalysis B: Environmental, 2023, 320: 121981.
- [68] CHAVEZ M E, BISET-PEIRO M, MURCIA-LOPEZ S, et al. Cu<sub>2</sub>O-Cu@titanium surface with synergistic performance for nitrateto-ammonia electrochemical reduction[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3633-3643.
- [69] XU Y, XIE M, ZHONG H, et al. In situ clustering of single-atom

copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction[J]. ACS Catalysis, 2022, 12(14): 8698-8706.

- [70] GAO Z, LAI Y, TAO Y, et al. Constructing well-defined and robust Th-MOF-supported single-site copper for production and storage of ammonia from electroreduction of nitrate[J]. ACS Central Science, 2021, 7(6): 1066-1072.
- [71] LIU P, YAN J, HUANG H, et al. Cu/Co bimetallic conductive MOFs: Electronic modulation for enhanced nitrate reduction to ammonia[J]. Chemical Engineering Journal, 2023, 466: 143134.
- [72] ZHU X, HUANG H, ZHANG H, et al. Filling mesopores of conductive metal-organic frameworks with Cu clusters for selective nitrate reduction to ammonia[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32176-32182.
- [73] FANG Z, JIN Z, TANG S, et al. Porous two-dimensional iron-cyano nanosheets for high-rate electrochemical nitrate reduction[J]. ACS Nano, 2022, 16(1): 1072-1081.
- [74] SHIH Y J, WU Z L, HUANG Y H, et al. Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni)[J]. Chemical Engineering Journal, 2020, 383: 123157.
- [75] LYU X, YU J, CAI J, et al. Exclusive nitrate to ammonia conversion via boron-doped carbon dots induced surface Lewis acid sites[J]. Cell Reports Physical Science, 2022, 3(7): 100961.
- [76] SHEN Z, LIU D, PENG G, et al. Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode: High nitrate removal efficiency and N<sub>2</sub>-selectivity[J]. Separation and Purification Technology, 2020, 241: 116743.
- [77] WANG T T, WANG P Y, ZANG W J, et al. Nanoframes of Co<sub>3</sub>O<sub>4</sub>-Mo<sub>2</sub>N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER[J]. Advanced Functional Materials, 2021, 32(7): 2107382.
- [78] ZHANG R, GUO Y, ZHANG S C, et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst[J]. Advanced Energy Materials, 2022, 12(13): 2103872.
- [79] PENG Y, LIU Q, LU B, et al. Organically capped iridium nanoparticles as high-performance bifunctional electrocatalysts for full water splitting in both acidic and alkaline media: Impacts of metal-ligand interfacial interactions[J]. ACS Catalysis, 2021, 11(3): 1179-1188.
- [80] SHI Y, JI Y, LONG J, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate[J]. Nature Communications, 2020, 11(1): 3415.
- [81] WANG C H (汪昌红), LIU Z Y (刘正阳), LI C M (李长明), et al. Progress on electrocatalytic reduction of nitrate on copper-based catalysts[J]. Chinese Science Bulletin (科学通报), 2021, 66(34): 4411-4424.
- [82] YANG R, LI H, LONG J, et al. Potential dependence of ammonia selectivity of electrochemical nitrate reduction on copper oxide[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(43): 14343-14350.
- [83] SINGH K, GUILLEN CAMPOS J D J, DINIC F, et al. Manganese MOF enables efficient oxygen evolution in acid[J]. ACS Materials Letters, 2020, 2(7): 798-800.
- [84] PAN F, ZHOU J, WANG T, et al. Revealing the activity origin of ultrathin nickel metal-organic framework nanosheet catalysts for selective electrochemical nitrate reduction to ammonia: Experimental and density functional theory investigations[J]. Journal of Colloid and Interface Science, 2023, 638: 26-38.
- [85] CAO J, YANG Z, XIONG W, et al. Ultrafine metal species confined in metal-organic frameworks: Fabrication, characterization and photocatalytic applications[J]. Coordination Chemistry Reviews, 2021, 439: 213924.