催化与分离提纯技术

Ce 掺杂对钒钨钛催化剂脱硝性能的影响

陈 宏,仲兆平*,周峻伍

(东南大学 能源与环境学院 能源热转换及其过程测控教育部重点实验室, 江苏 南京 211189)

摘要: 对钒钨钛 (V-W-Ti) 催化剂进行 Ce 掺杂制备了 Ce_xV₁W₇/Ti (*x*%为 CeO₂负载量,以催化剂总质量计,下 同),采用 XRD、N₂吸附-脱附、SEM、XPS、FTIR 对其进行了表征,通过 NH₃/NO-TPD 表征了 NH₃和 NO 在 催化剂表面的吸附强弱分布,并测试了不同 CeO₂负载量下催化剂的脱硝性能,经密度泛函理论计算探究了催 化剂的失活机理。结果表明,CeO₂的负载增加了催化剂表面化学吸附氧的比例和 Brønsted 酸性位点,减少了 催化剂表面 V⁴⁺的比例和 Lewis 酸性位点;适当的 CeO₂负载量能显著提高 V-W-Ti 催化剂的中低温活性,但负 载量过多会降低催化剂的高温活性,CeO₂负载量为 1%的钒钨钛催化剂(Ce₁V₁W₇/Ti)表现最佳,其在全温度 (200~400 ℃)段的脱硝活性均优于 V-W-Ti,在260 ℃,空速为 6×10⁴ h⁻¹的反应条件下,NO_x脱除率从 79.01% 增至 99.19%,在含有 H₂O、SO₂的气氛中,其 NO_x脱除率从 58.33%升至 74.55%。Ce 的掺杂降低了催化剂表面 氧空位的形成能,改变了催化剂表面的酸位强弱,强化了 SO₂在催化剂表面的吸附,SO₂中毒后的催化剂表面 会沉积硫酸铵盐,在 H₂O 的协同作用下,Ce 掺杂后催化剂表面更易沉积硫酸铵盐,这是催化剂失活的主要原因。 **关键词:** 选择催化还原;Ce 掺杂;SO₂中毒;计算化学;催化技术

中图分类号: TQ426; X511 文献标识码: A 文章编号: 1003-5214 (2024) 07-1550-11

Effect of Ce doping on denitrification performance of V-W-Ti catalyst

CHEN Hong, ZHONG Zhaoping^{*}, ZHOU Junwu

(Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, Jiangsu, China)

Abstract: $Ce_xV_1W_7/Ti$ (x% refers to the CeO₂ loading, based on the total mass of catalyst, the same below) was prepared by Ce doping of vanadium, tungsten and titanium (V-W-Ti) catalyst and characterized by XRD, N2 adsorption-desorption, SEM, XPS and FTIR. The adsorption strength distribution of NH3 and NO on the catalyst surface was characterized by NH₃/NO-TPD. The influence of CeO₂ loading on the denitrification performance of the catalyst was investigated, while the deactivation mechanism was analyzed by density functional theory calculation. The results showed that the CeO₂ loading increased the chemisorbed oxygen ratio and Brønsted acid sites, but decreased the V^{4+} ratio on the catalyst surface and Lewis acid sites, on the catalyst surface. Appropriate CeO₂ loading could significantly improve the activity of V-W-Ti catalyst at low temperature, while excessive loading reduced the catalyst activity at high temperature. The V-W-Ti catalyst containing 1% CeO₂ loading (Ce₁V₁W₇/Ti) showed the best performance, with its denitrification activity much better than that of V-W-Ti at all temperatures (200~400 °C). Under reaction conditions of 260 °C and space velocity $6 \times 10^4 \text{ h}^{-1}$, the NO_x removal rate increased from 79.01% to 99.19%. In an atmosphere containing H_2O and SO_2 , the NO_x removal rate increased from 58.33% to 74.55%. Ce doping reduced the oxygen vacancy formation energy on the catalyst surface, changed the strength of the acid site on the catalyst surface, and strengthened the adsorption of SO_2 on the catalyst surface. Ammonium sulfate was deposited on the catalyst surface after SO₂ poisoning. Under the synergistic action of H_2O , ammonium sulfate was more likely to be deposited on the catalyst surface after Ce doping,

收稿日期: 2023-08-13; 定用日期: 2023-09-19; DOI: 10.13550/j.jxhg.20230660

基金项目: 江苏省科技成果转化专项资金项目(BA2022073); 清洁高效燃煤发电与污染控制国家重点实验室开放课题(D2022FK076) 作者简介: 陈 宏(1998—), 男, 硕士生, E-mail: 220210468@seu.edu.cn。联系人: 仲兆平(1965—), 男, 教授, E-mail: zzhong@ seu.edu.cn。

which was the main reason for catalyst deactivation.

Key words: selective catalytic reduction; Ce doping; SO₂ poisoning; computational chemistry; catalysis technology

氮氧化物(NO_x)是大气中主要的污染物之一, 是形成光化学烟雾和酸雨的重要原因,主要由人为 活动产生^[1]。目前工业中大规模应用的氨选择性催 化还原(NH₃-SCR)脱硝催化剂主要为钒钨钛 (V-W-Ti)催化剂,其具有脱硝效率高、耐中毒性能 强等优点^[2]。V-W-Ti催化剂的工作温度为 300~400 ℃,在许多中低温脱硝环境中,其脱硝效率难以满 足需求,且烟气中的粉尘、SO₂等成分会对催化剂 活性和寿命造成较大影响^[3-4]。因此,针对不同应用 环境下烟气脱硝的实际需求,对 V-W-Ti催化剂的改 性研究主要集中于拓宽反应温度窗口,增强其耐 SO₂和碱(土)金属中毒性能上。

CeO₂具有优良的贮氧释氧能力,高温下,在 Ce 氧化物的 Ce³⁺和 Ce⁴⁺之间的氧化-还原变换过程 中,易产生具有较高迁移率的不稳定氧空位和大体 积的氧自由基,进而生成非化学计量比的 CeO_{2-x}物 $\mathcal{P}^{[5]}$ 。将其作为 SCR 催化剂的活性物质,可能会提 升催化剂的氧化还原能力,进而提高反应速率。XU 等^[6]使用浸渍法在锐钛型 TiO₂ 上负载不同质量的 CeO₂,结果表明,所有 Ce/TiO₂ 催化剂都表现出优 良的 N₂选择性和对 SO₂、H₂O 的高耐受性。LIU 等^[7] 通过改变 WO3和 CeO2前驱体的浸渍顺序获得了对 SO₂具有不同耐受性的催化剂,研究发现,浸渍顺 序会影响到催化剂表面活性物种的元素价态,其中 Ce³⁺的比例越大,催化剂的脱硝性能越好。LIU 等^[8] 对商用 V-W-Ti 催化剂进行 Ce 改性,结果表明, Ce 的引入有助于提高 SCR 催化剂的表面酸性和氧化还 原性能。然而,关于 CeO2添加量对 V-W-Ti 催化剂 表面元素状态和酸性位点的影响以及 SO₂失活机理 仍有待进一步的研究。

本研究拟选择 V-W-Ti 催化剂作为对象,对其进行 Ce 改性优化,通过实验研究改性前后催化剂脱硝活性、耐 H₂O、SO₂中毒性能的变化,结合 SEM、 XPS、程序升温脱附(NH₃/NO-TPD)等表征分析和 密度泛函理论(DFT)计算,探究 CeO₂添加量对催 化剂性能的影响和催化剂的 SO₂失活机理。

1 实验部分

1.1 试剂与仪器

六水合硝酸铈、偏钒酸铵,AR,上海麦克林 生化科技股份有限公司;二氧化钛、钨酸铵 〔(NH₄)₁₀W₁₂O₄₁•xH₂O,相对分子质量(简称分子量) 为 3042.58〕、草酸,AR,国药集团化学试剂有限公

司;去离子水,自制。

VARIO PLUS 增强型烟气分析仪,德国 MRU 公司; Ultimax IV型X射线衍射仪,日本 Rigaku公 司; SIGMA HD 场发射扫描电子显微镜,德国 Carl Zeiss 公司; V-Sorb 2800TP型比表面积及孔径分析 仪,北京金埃谱科技有限公司;EscaLab 250XI型X 射线光电子能谱仪,美国 Thermo Fisher Scientific 公司; FINESORB-3010 全自动程序升温化学吸附 仪,浙江泛泰仪器有限公司;Vector22 傅里叶变换 红外光谱仪,德国 Bruker 公司。

1.2 催化剂的制备

采用分步浸渍法浸渍活性组分,先负载 CeO₂, 再负载 V₂O₅ 和 WO₃。其中,CeO₂ 负载量为 0~4% (以催化剂总质量为基准,下同),V₂O₅ 负载量为 1%,WO₃ 负载量为 7%。

以 Ce₁V₁W₇/Ti (下标代表 CeO₂、V₂O₅和 WO₃ 在催化剂中的质量分数分别为1%、1%和7%)的制 备为例,称取 0.025 g六水合硝酸铈,加入装有 20 mL 去离子水的烧杯中,在 60 ℃水浴中搅拌下,待其 充分溶解后,加入 0.910 g TiO₂ 粉末,并继续加热搅 拌4h,再将混合浆液放入烘箱,在105 ℃下干燥 12 h,得到的固体置于马弗炉中进行煅烧,从室温 以 5 ℃/min 的升温速率升至 350 ℃煅烧 1 h, 再以 2 ℃/min 的升温速率升至 450 ℃煅烧 3 h。冷至室 温后,筛分,过 180 目筛,得到表面负载有 CeO2 的 TiO₂ (CeO₂/TiO₂) 粉末。称取 0.013 g 偏钒酸铵、 0.030 g 草酸和 0.077 g 钨酸铵在 20 mL 去离子水中 溶解后得到 V₂O₅-WO₃ 前驱体溶液,往其中倒入 0.920 g CeO₂/TiO₂粉末,按照 CeO₂/TiO₂的制备步骤 和条件,混合浆液经水浴搅拌、烘干、煅烧后,冷 却至室温,筛分至 40~60 目,即得 1 g 催化剂 Ce₁V₁W₇/Ti₀制备 V₁W₇/Ti 时省去 CeO₂/TiO₂ 的制备 过程,直接使用 180 目的 TiO2 粉末浸渍 V2O5-WO3 前驱体溶液,其余步骤不变。

1.3 催化剂的活性评价

催化剂的 SCR 脱硝活性测试在内径为 10 mm 的 石英玻璃固定床中进行,主要反应式如式(1)所示:

 $4NH_3 + 4NO + O_2 = 4N_2 + 6H_2O$ (1)

模拟烟气中含有体积分数为 0.05%的 NO(以模 拟烟气总体积为基准,下同)、0.05%的 NH₃和 3% 的 O₂,在催化剂耐 H₂O、SO₂等实验中,还含有 0.05% 的 SO₂和 10%的 H₂O,平衡气为 N₂。除 NH₃外,其 余气体进入主反应段前经过预热段预热,预热段温 度比反应段低 30 ℃。模拟总流量为1 L/min。催化 剂用量在反应空速(GHSV)为 6×10⁴ 和 1.2×10⁵ h⁻¹ 下分别为 1.0 和 0.5 mL,气体各组分体积分数稳定 时长在 20 min 以上后进行数据采样。

NO_x 脱除率 (X_1) 、NO 氧化率 (X_2) 和 N₂选择 性 (S) 的计算公式分别为:

$$X_1 / \% = \frac{\varphi_1 - \varphi_1'}{\varphi_1} \times 100$$
 (2)

$$X_2 / \% = \frac{\varphi_2 - \varphi_2'}{\varphi_2} \times 100 \tag{3}$$

$$S / \% = \left(1 - \frac{2 \times \varphi'_4}{\varphi_1 + \varphi_3 - \varphi'_1 - \varphi'_3}\right) \times 100$$
 (4)

式中: φ_1 、 φ'_1 分别为进、出固定床的气体中 NO_x的体积分数,%; φ_2 、 φ'_2 分别为进、出固定床的气体中 NO 的体积分数,%; φ_3 、 φ'_3 分别为进、出固定床的气体中 NH₃的体积分数,%; φ'_4 为出固定床的 气体中 N₂O 的体积分数,%。

1.4 催化剂表征

用 XRD 表征催化剂的晶体形态, 扫描速率为 5 (°)/min, 扫描范围为 10°~90°。用 SEM 表征催化 剂的表面形貌,放大倍数为1×10⁵倍。催化剂的 N₂ 吸附-脱附等温线在 77 K 下进行测试,测试前催化 剂在 250 ℃下真空预处理持续 5 h, 比表面积通过 多点 BET 方程计算,孔容及孔径分布通过 BJH 方法 测定。用 XPS 表征催化剂表面元素状态,使用 Avantage 软件基于污染碳 C 1s(248.8 eV) 对数据进行校正 和分峰拟合。使用 NH₃/NO-TPD 表征 NH₃和 NO 在 催化剂表面的吸附强弱分布,催化剂测试前使用高 纯 He 在 400 ℃吹扫 1 h, 冷却至 80 ℃后通入体积 分数为 5%的 NH3 或 NO(N2为载气) 吸附 1 h, 再 于高纯 He 气中吹扫 1 h, TCD 信号基线稳定后, 以 10 ℃/min 升温速率升温至 700 ℃, 在线检测 NH₃/NO 信号变化。用 FTIR 表征催化剂吸附 NH₃ 后表面基团的红外振动情况,测试前催化剂与溴化 钾混合后压片, 波数范围 4000~400 cm⁻¹。

1.5 DFT 计算设置

所有 DFT 计算均在 DMol³ 程序包中进行。使用 GGA-PW91 作为交换关联函数,价电子波函数使用 极化函数展开的双数值基组(DNP 基集)处理,考 虑偶极校正。周期性结构的真空层厚度为 1.5 nm, K 点网格选择 4×2×1,原子截断半径为 0.5 nm。以 下阈值用于几何优化:自洽场能量为 1×10⁻⁵ Hartree (1 Hartree=2625.5 kJ/mol),能量梯度为 2×10⁻² Hartree/nm,原子最大位移 5×10⁻⁴ nm。在所有计算 中,最顶层的 TiO₂及其上方的结构完全松弛,而其 他 TiO₂层保持固定。

氧空位形成能(Evo, kJ/mol)按下式计算:

$$E_{\rm VO} = E(\rm MO_{x-1}) + \frac{1}{2}E(\rm O_2) - E(\rm MO_x) \qquad (5)$$

式中: $E(MO_{x-1})$ 为形成氧空位后的结构能量,kJ/mol; $E(O_2)为 1 个 O_2 分子的能量, kJ/mol; E(MO_x)为形$ 成氧空位前的结构能量, kJ/mol。从公式(5)可以 $看出, <math>E_{VO}$ 越小,即结构表面氧活性越高,越容易 形成氧空位。

气态分子的吸附能 (E_{ads} , kJ/mol)按下式计算: $E_{ads} = E_{total} - (E_a + E_s)$ (6) 式中: E_{total} 为吸附构型的体系能量, kJ/mol; E_a 为 公寓的吸附质的能量。kJ/mol; E_a 为吸附其底的能

分离的吸附质的能量,kJ/mol; E_s 为吸附基底的能量,kJ/mol。 E_{ads} 为负值表示吸附放热, $|E_{ads}|$ 越大即吸附放热越多,吸附构型越稳定。

2 结果与讨论

2.1 NH₃-SCR 活性测试

图 1 为反应空速为 1.2×10⁵ h⁻¹ 下催化剂的 NH₃-SCR 脱硝活性测试结果。

图 1 Ce_xV₁W₇/Ti 的 NO_x脱除率和 N₂O 体积分数 Fig. 1 NO_x removal rate and N₂O volume fraction of Ce_xV₁W₇/Ti

从图 1 可以看出, Ce₁V₁W₇/Ti 相比于 V₁W₇/Ti, 200~400 ℃下的 NO_x 脱除率均有所提升。如果以 NO_x脱除率 80%作为合格标准, Ce₁V₁W₇/Ti 催化剂 的工作温度下限为 260 ℃。随着 CeO₂负载量继续增 加,催化剂在中低温段(200~260 ℃)的 NO_x脱除率 先升后降,但中高温(260~400 ℃)下的 NO_x脱除率 有所降低,这种变化趋势随 CeO₂负载量的增加而加 剧。在中低温段(200~260 ℃), Ce₄V₁W₇/Ti 具有较 佳的 NO_x脱除率,但其在 300~400 ℃的 NO_x脱除率低 于 V₁W₇/Ti。这可能是由于 TiO₂表面的负载活性位点 过多地被 CeO₂占据,V 物种的活性不能充分表现。

从图 1 还可以看出,所有催化剂在同一温度下的 N₂O 生成量较接近,总体上,N₂O 生成量随 CeO₂ 负载量的增加而略有减少,表明在 V-W-Ti 催化剂中添加 CeO₂ 能减少反应中 N₂O 的生成。

在 1.2×10^5 h⁻¹ 的反应空速下,各催化剂的 N₂ 选择性如图 2 所示。从图 2 可以看出,由于各催化 剂在 200~260 ℃的 N₂O 生成量极低,所以该温度段 的 N₂选择性接近 100%。随着反应温度的升高,各 催化剂的 N₂选择性逐渐降低。在中高温(260~400 ℃)段,随着催化剂中 CeO₂ 负载量的增加,由于 N₂O 生成量有所降低,因此催化剂的 N₂选择性总体 上呈增加趋势。所有催化剂在各温度下的 N₂选择性 都超过 97%,具有良好的 N₂选择性。

2.2 反应空速对催化剂脱硝性能的影响

图 3 为不同空速〔6×10⁴ h⁻¹(虚线)、1.2×10⁵ h⁻¹ (实线)〕下, V₁W₇/Ti、Ce₁V₁W₇/Ti、Ce₄V₁W₇/Ti 的 NH₃-SCR 活性测试结果。

从图 3 可知, 温度为 260 ℃时, V_1W_7/Ti 和 Ce₁V₁W₇/Ti 在 6×10⁴ h⁻¹空速下的 NO_x脱除率分别为 79.01%和 99.19%, 相比于 1.2×10⁵ h⁻¹空速下 68.90% 和 87.74%的 NO_x脱除率均有大幅提升。这是因为, 反应空速降低后,由于 NH₃等气态分子在催化剂表 面停留的时间更久,反应更充分,因此,所有催化 剂的 NO_x脱除率均有提升。温度越低,由反应空速 降低所致的 NO_x脱除率提升越明显。总体上, Ce₁V₁W₇/Ti 的脱硝性能最好,在 6×10⁴ h⁻¹反应空速 下,其在 260~400 ℃的 NO_x脱除率超过 99%。

2.3 煅烧温度对催化剂脱硝性能的影响

图 4 是在反应空速为 6×10⁴ h⁻¹ 条件下对催化剂 制备过程中最高煅烧温度分别为 425、450、475、 500 ℃时制备的 Ce₁V₁W₇/Ti 进行 NH₃-SCR 脱硝活 性测试结果。

Fig. 4 Effect of calcination temperature on NO_x removal rate

从图 4 可以看出, 煅烧温度为 425、450 ℃时, 催化剂的 NO_x脱除率接近,煅烧温度高于 450 ℃后, 催化剂的脱硝活性随着煅烧温度的升高出现一定程 度的下降,特别是低温(200~260 ℃)段的脱硝性 能下降较为明显。这是因为, 煅烧温度越高, 成型 催化剂的结构强度越大, 越有利于实际的使用, 因 此,在保证催化剂脱硝活性的基础上,选择 450 ℃ 作为颗粒状催化剂制备过程中的最高煅烧温度。

2.4 CeO₂负载量对 NO 氧化性能的影响

图 5 为在 6×10⁴ h⁻¹空速下,不同 CeO₂负载量 (0、1%、4%)催化剂的 NO 氧化率测试结果。测 试过程不通入 NH₃。

从图 5 可以看出,催化剂的 NO 氧化率随着 CeO₂ 负载量的增加和反应温度的升高而增加,NO 氧化率的增加导致了反应中 NO₂浓度的增加。在中 低温段(200~260 ℃),NO₂的存在能通过快速 SCR 反应的途径提高催化剂的 NO_x脱除率^[9]。因此,Ce 改性后可通过提高催化剂的氧化能力,从而提升其 中低温段(200~260 ℃)脱硝活性。中高温段(260~400 ℃)的反应气氛中虽然相比中低温段(200~260 ℃)含有更多的 NO₂,但由于 V 氧化物本身在高温下具有良好的脱硝活性,故此时 Ce 的引入对催 化剂 NO_x 脱除率的增益并不明显,过量负载 CeO₂ 甚至可能会影响 V 物种的活性表达,从而降低催化 剂在中高温段(260~400 ℃)的脱硝性能。

2.5 SO₂、H₂O 对催化剂脱硝性能的影响

图 6 为在 6×10⁴ h⁻¹空速下,对不同 CeO₂负载 量(0、1%、4%)催化剂进行 SO₂ 的耐受性测试 (NH₃-SCR)结果。

图 6 260 ℃下, SO₂(a)、H₂O (b)对 NO_x 脱除率的影响 Fig. 6 Effects of SO₂(a) and H₂O (b) on NO_x removal rate at 260 ℃

从图 6a 只含有 SO₂的反应气氛结果可以看出, 3 种催化剂的 NO_x脱除率均出现了不同程度的降低, 但总体上均表现出较好的耐中毒性能,当停止通入 SO₂后,均能部分恢复活性。通入 SO₂后,V₁W₇/Ti 的 NO_x脱除率从 80.55%降至 74.40%,降幅最小, 说明 V-W-Ti 催化剂对 SO₂ 具有最好的耐受性; Ce₁V₁W₇/Ti 的 NO_x脱除率从 99.18%降至 84.29%, 降幅最大。Ce₄V₁W₇/Ti 在未通入 SO₂ 的 NO_x脱除率降 和 V₁W₇/Ti 接近,但通入 SO₂后,其 NO_x脱除率降 低至 68.95%,低于改性前。

从图 6b 可以看出,在模拟烟气中通入 H₂O 后, 3 种催化剂的 NO_x 脱除率均有所降低,且降幅接近, 但 H₂O 对催化剂脱硝性能的负面影响没有 SO₂ 强 烈。当模拟烟气中同时含有 H₂O 和 SO₂时,催化剂 的 NO_x 脱除率迅速下降, Ce₄V₁W₇/Ti 的降幅最大, NO_x 脱除率为 46.69%, V₁W₇/Ti 的降幅最小, NO_x 脱除率为 58.33%, Ce₁V₁W₇/Ti 的 NO_x 脱除率为 74.55%, 降幅均比在 SO₂ 气氛中大。这可能是因为, 在含有 SO₂ 和 H₂O 的气氛中,会比不含 H₂O 时生成 更多的硫酸铵盐沉积在催化剂表面,此时 H₂O 充当 了加剧催化剂 SO₂中毒的"助剂",使得催化剂脱硝 活性降幅更大^[10-12]。虽然负载 CeO₂ 后的催化剂对 SO₂的耐受性有所降低,但因为 Ce₁V₁W₇/Ti 的初始 脱硝活性较好,所以即使在含有 SO₂ 的气氛中,它 仍具有最佳的脱硝活性。

2.6 催化剂稳定性测试

图 7 为 Ce 改性前后催化剂的稳定性测试结果。 测试温度 260 ℃、空速为 6×10⁴ h⁻¹, NH₃-SCR 活性 测试 12 h。

从图 7 可以看出, 12 h 内 2 种催化剂的 NO_x脱 除率总体上均能保持稳定, 波动范围不超过 2%, 说 明浸渍法制备的颗粒状脱硝催化剂在 NH₃-SCR 反 应中具有良好的稳定性。

2.7 表征分析

2.7.1 XRD 分析

图 8 为煅烧温度为 450 ℃时制备的 V₁W₇/Ti、 Ce₁V₁W₇/Ti、Ce₄V₁W₇/Ti 和不同煅烧温度下制备的 Ce₁V₁W₇/Ti 的 XRD 谱图。

从图 8 可以看出, 煅烧湿度为 450 ℃时, CeO₂ 负载量为 0、1%、4%的催化剂均只检测到锐钛型 TiO₂,表明 Ce、V、W 氧化物的结晶程度非常小, 主要为无定形态,能均匀地分散在 TiO₂表面^[13]。随 着 CeO₂负载量的增加, TiO₂在 2θ 为 25.3°处衍射峰 强度出现了轻微的下降。

在煅烧温度为 475 ℃和 500 ℃的 Ce₁V₁W₇/Ti 检测出金红石型 TiO,的衍射峰,表明煅烧温度高于 450 ℃会使载体锐钛型 TiO2 部分转变为金红石型。 随着煅烧温度的增加, TiO2的锐钛型和金红石型衍 射峰变得尖锐,表明随着煅烧温度的升高,TiO2在 煅烧过程中发生了烧结,使得颗粒尺寸变大。煅烧 温度为 500 ℃的 Ce₁V₁W₇/Ti 检测出 WO₃的衍射峰, WO3 是负载在 TiO2 上质量分数最多的成分, 在高温 下相比于 V₂O₅和 CeO₂更易烧结,由非晶态向晶态 转化,从而降低其在载体上的分散度。结合 2.3 节 结果可知,载体和活性组分的烧结和团聚是煅烧温 度过高导致催化剂脱硝活性下降的主要原因。由于 煅烧温度越高, SCR 成型催化剂的结构强度越大, 越有利于实际的使用(耐烟气冲蚀),因此,在保证 催化剂脱硝活性的基础上,选择450 ℃作为颗粒状 催化剂制备过程中的最高煅烧温度,并对此温度下 制备的催化剂开展后续表征分析。

2.7.2 BET 分析

图 9 为各催化剂的孔径分布图,其他结构分析汇 总见表 1。其中,Ce₁V₁W₇/Ti-S 是经过 SO₂、H₂O 耐 受性测试的 Ce₁V₁W₇/Ti。从图 9 可以看出,催化剂的 孔径主要分布在 5~15 nm 范围内,这表明 CeO₂添加 前后催化剂在反应中主要是介孔主导反应物的吸附。

表1 Ce_xV₁W₇/Ti 的结构参数

Table 1	Structural parameters of $Ce_x V_1 W_7/T_1$		
催化剂	比表面积/(m²/g)	孔容/(cm ³ /g)	平均孔径/nm
V ₁ W ₇ /Ti	77.7	0.326	11.6
$Ce_1V_1W_7/Ti$	74.6	0.318	9.9
$Ce_4V_1W_7/Ti$	69.0	0.293	10.9
$Ce_1V_1W_7/Ti$ -S	63.0	0.288	11.8

从表1可以看出,CeO₂负载后催化剂的比表面积 和孔容有轻微下降,降低程度与CeO₂负载量正相关。 Ce₁V₁W₇/Ti-S 的比表面积和孔容相比于 Ce₁V₁W₇/Ti 有一定程度的降低,平均孔径略有增加。表明催化 剂在含有 SO₂、H₂O 的气氛中表面生成的硫酸铵盐 主要沉积在催化剂表面的微孔中。比表面积的大小 往往和催化剂表面暴露的活性位点数量相关, Ce₁V₁W₇/Ti 的脱硝活性相比 V₁W₇/Ti 有所提高,但 其比表面积不是最大,且 3 种催化剂的比表面积差 距较小。因此,添加 CeO₂ 对 V₁W₇/Ti 性能的影响并 不是通过改变催化剂比表面积和孔结构等表面结构 参数实现的。

2.7.3 SEM 分析

图 10 为 V_1W_7/Ti 、 $Ce_1V_1W_7/Ti$ 、 $Ce_4V_1W_7/Ti$ 和 $Ce_1V_1W_7/Ti$ -S 的 SEM 图。

图 10 $V_1W_7/Ti(a)$ 、 $Ce_1V_1W_7/Ti(b)$ 、 $Ce_4V_1W_7/Ti(c)$ 和 $Ce_1V_1W_7/Ti$ -S (d)的 SEM 图

Fig. 10 SEM images of V_1W_7/Ti (a), $Ce_1V_1W_7/Ti$ (b), $Ce_4V_1W_7/Ti$ (c) and $Ce_1V_1W_7/Ti\text{-}S$ (d)

从图 10 可以看出, V₁W₇/Ti 表面的层状结构较 为平坦, 颗粒分布均匀, 具有良好的分散性。负载 1%和 4% CeO₂后,催化剂表面颗粒团聚现象略有增 加,但与改性前相比,总体上仍保持了相对一致的 形貌特点。相比于 Ce₁V₁W₇/Ti, Ce₁V₁W₇/Ti-S 的表 面观测到了条状形貌的物质,其体积相比催化剂表 面的颗粒更大,应该是沉积在催化剂表面的硫酸铵 盐,它们附着在催化剂表面,会遮盖表面的活性位 点,导致催化剂的比表面积下降,降低了催化剂的 脱硝活性。

图 11 是 Ce₁V₁W₇/Ti、Ce₄V₁W₇/Ti 中 Ce 元素的 Mapping 图。从图 11 可以看出, CeO₂都成功地负载 在载体上,并均匀地分散在催化剂表面,并未因 CeO₂负载量的增加而出现分布不均匀的现象。

综上所述,添加 CeO₂ 对催化剂表面形貌的影响 较小,且在含有不同 CeO₂ 负载量的催化剂中, CeO₂

都具有良好的分散度,进一步验证了 BET 表征分析 结果。

图 11 $Ce_1V_1W_7/Ti(a)$ 和 $Ce_4V_1W_7/Ti(b)$ 的 Ce Mapping 图 Fig. 11 Ce Mapping of $Ce_1V_1W_7/Ti(a)$ and $Ce_4V_1W_7/Ti(b)$

2.7.4 XPS 分析

催化剂表面元素的化学价态是影响其性能的重要因素,为进一步探究 CeO₂添加对催化剂的影响,对 CeO₂负载量为 0、1%、4%的催化剂进行了 XPS 表征,催化剂表面原子摩尔分数及元素状态见表 2,各元素的 XPS 谱图见图 12。

催化剂表面的氧物种通常以化学吸附氧(O_{ads}) 和晶格氧(O_{latt})的形式存在^[14-15],如图 12a 所示, O_{latt}和O_{ads}分别在 529.2~530.3 和 531.1~532.5 eV 的 结合能处出峰。

表 2 Ce_xV₁W₇/Ti 表面原子摩尔分数及元素状态 Table 2 Surface atomic molar fraction and elemental state of Ce_xV₁W₇/Ti

催化剂					摩	尔分数/%		
"催化"则	Ce	V	W	Ti	0	$O_{ads} / (O_{ads} + O_{latt})$	$V^{4+}/(V^{4+}+V^{5+})$	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)
V ₁ W ₇ /Ti	_	2.94	6.61	17.06	73.39	9.01	52.29	—
$Ce_1V_1W_7/Ti$	1.59	2.62	5.03	16.13	74.63	13.86	43.84	54.09
$Ce_4V_1W_7/Ti$	5.87	2.40	4.86	15.49	71.38	16.09	23.51	21.71

图 12 Ce_xV₁W₇/Ti 的 O 1s (a)、V 2p (b)和 Ce 3d (c) 的 XPS 谱图

Fig. 12 XPS spectra of $Ce_xV_1W_7/Ti$ for O 1s (a), V 2p (b) and Ce 3d (c)

CeO₂负载后,催化剂表面 O_{ads} 的比例有所增加。 O_{ads} 包含 O₂²⁻、O⁻和—OH 基团等活性氧物种,其相 比 O_{latt} 具有较高的迁移率,在氧化反应中具有很高的 活性,其中—OH 基团可成为 Brønsted 酸性位点,从 而强化对 NH₃ 的吸附^[16]。

从图 12b 可以看出, V^{4+} 和 V^{5+} 分别在 515.7~ 516.0 和 516.4~517.2 eV 的结合能处出峰^[17]。添加 CeO₂后,催化剂表面 V 物种的价态受到显著影响, V^{4+} 占比随着 CeO₂ 负载量的增加而下降,即 CeO₂ 负载后减少了催化剂表面 V⁴⁺的比例,这可能是由于 CeO₂在第一步被浸渍后,Ce-Ti 表面暴露的 TiO₂相 对减少,能够和 TiO₂强结合的钒氧化物减少。在 V-W-Ti 催化剂中,V⁴⁺的比例越高,催化剂的活性 越好,而 CeO₂添加后导致 V⁴⁺占比下降,进而削弱 V 物种原本的脱硝活性^[18]。V⁵⁺有利于 SO₂的氧化, Ce 改性后催化剂对 SO₂的耐受性降低可能就是由于 V⁵⁺占比的增加^[19]。

如图 12c 所示, Ce^{3+} 在结合能 884.9~885.5 和 903.4~903.9 eV 处出峰, Ce^{4+} 在结合能 882.2~882.5、 888.4~889.0、897.9~898.3、899.9~900.9、907.0~907.5 和 916.5 eV 处出峰^[20]。CeO₂负载量从 1%增至 4% 后, Ce^{3+} 和 Ce^{4+} 的质量分数都有明显增加, 但 $Ce_1V_1W_7/Ti$ 中 Ce^{3+} 占比高于 $Ce_4V_1W_7/Ti$, 原因是一 方面 CeO_2 负载量越多, 其在催化剂中越易发生团 聚, 使其结晶程度提高, 更有利于 Ce^{4+} 的形成, 另 一方面 $Ce_1V_1W_7/Ti$ 中 Ce氧化物的结晶程度比 $Ce_4V_1W_7/Ti$ 低, 更多地以无定形态存在, 有利于 Ce^{3+} 的形成。 Ce^{3+} 可以提供电荷不平衡, 有利于催化剂 表面不饱和化学键和氧空位的形成, 说明 CeO_2 添加 量过多不利于表现 Ce 的活性^[8]。综上所述, Ce 掺 杂后,催化剂表面的 Ce³⁺/Ce⁴⁺、V⁴⁺/V⁵⁺之间的氧化 还原循环可以提供丰富的不饱和化学键和电子空 穴,提高催化剂的 NO 氧化活性。

2.7.5 NH₃/NO-TPD 分析

图 13 为 CeO₂负载量为 0、1%、4%的催化剂进行的 NH₃/NO-TPD 测试结果。

图 13 Ce_xV₁W₇/Ti 的 NH₃-TPD (a) 和 NO-TPD (b) 谱图 Fig. 13 NH₃-TPD (a) and NO-TPD (b) profiles of Ce_xV₁W₇/Ti

如图 13a 所示, V1W7/Ti 在 100~400 ℃内有一 个宽且高的 NH, 解吸峰, 对应于催化剂表面的弱酸 和中酸位点,在 400~500 ℃内有一个中酸的解吸 峰; Ce₁V₁W₇/Ti 的弱酸和中酸对应的解吸峰面积有 所增加,强酸位的脱附峰面积有所减少;Ce4V1W7/Ti 在 100~400 ℃内的 NH₃ 解吸峰变得尖锐, 400~ 500 ℃内的强酸解吸峰面积大幅减小,其中高温性 能不理想,可能是由于较多的强酸位点转变为弱酸 位点或失去酸性,从而使得高温下吸附态的 NH, 数量减少导致的。NH3-TPD 结果表明,少量的 Ce 掺杂能增加 V-W-Ti 催化剂表面弱酸量和中酸量, 但会减少强酸量,能显著提高催化剂的中低温效 率。通过对比发现,催化剂表面酸性位点的数量与 催化剂的脱硝性能测试结果一致,这说明酸性位点 的数量和强弱是影响催化剂脱硝性能的重要因素 之一。

如图 13b 所示,各催化剂在 150~250 ℃均内有 一个尖锐的 NO 解吸峰,这是催化剂表面物理吸附 的 NO 在加热过程中脱附形成的。在 500~700 ℃内 出现了宽且矮的 NO 解吸峰,表明负载 CeO₂增加了 催化剂表面的 NO 强吸附位点,强化了催化剂对 NO 的化学吸附。催化剂在高温下的 NO 解吸峰随着 CeO₂ 负载量的增加而变高,但 Ce₄V₁W₇/Ti 在高温 段的脱硝活性却低于 Ce₁V₁W₇/Ti,说明化学吸附态 的 NO 对催化剂的高温脱硝性能影响微弱。

综合图 13 可以认为, Ce 改性前后催化剂, 在 反应中主要是吸附的 NH₃ 与气相或物理吸附的 NO 发生反应,即反应遵循 Eley-Rideal 机理^[21]。

2.7.6 FTIR 分析

图 14 为吸附 NH₃后的 V₁W₇/Ti、Ce₁V₁W₇/Ti、 Ce₄V₁W₇/Ti 的 FTIR 谱图。

从图 14 可以看出, 3739、3426 cm⁻¹ 处为催化 剂表面羟基的伸缩振动峰, 3154 cm⁻¹ 处为 Lewis 酸 位上配位态 NH₃ 的对称伸缩振动峰, 1634 cm⁻¹ 处为 Lewis 酸位上配位态 NH₃ 的非对称伸缩振动峰, 1400 cm⁻¹ 处为 NH⁴ 在 Brønsted 酸位上的非对称伸缩 振动峰^[22-25]。负载 1% CeO₂ 后, Ce₁V₁W₇/Ti 催化剂 在 1400 cm⁻¹ 处峰有所增强, 在 1634 cm⁻¹ 处峰有所减 弱, 这表明 CeO₂ 负载后增加了催化剂表面的 Brønsted 酸位数量, 减少了 Lewis 酸位和 Brønsted 酸位的变 化不大,说明 Brønsted 酸位的增强是 Ce 掺杂提升 V-W-Ti 催化剂性能的重要因素。结合 XPS 的结果, 认为 Ce 掺杂后催化剂增加的表面化学吸附氧包含 了新形成的 Brønsted 酸位^[8]。

2.8 DFT 计算

2.8.1 模型构建与氧空位形成能计算

参照 GAO 等^[26]对 V₂O₅/TiO₂ (V/Ti)进行 Cr、 Fe 等元素掺杂改性的 DFT 模拟,搭建了 Ce 掺杂改 性的 CeO₂-V₂O₅/TiO₂ (Ce-V/Ti) 模型。

氧空位是催化剂制备过程中表面形成的重要缺陷,在 SCR 反应中,氧空位极易吸附 O_2 和 N_2O ,

吸附 O₂ 可以促进 NO 的氧化,从而增强快速 SCR 反应,吸附 N₂O 可以促进其分解,提高催化剂的 N₂选择性^[27]。V/Ti 和 Ce-V/Ti 形成氧空位前后的结 构如图 15 所示,V/Ti 的 E_{VO} 为 13398 kcal/mol,这 表明 V/Ti 极难形成氧空位;Ce-V/Ti 在 V 的位置形 成氧空位的 E_{VO} 为 47 kcal/mol,在 Ce 的位置形成氧 空位的 E_{VO} 为 47 kcal/mol,在 Ce 的位置形成氧 空位的 E_{VO} 为-30 kcal/mol,在该位置形成氧空位是 放热过程,即 Ce 掺杂降低了催化剂表面的氧空位形 成能,且不仅使得 Ce 端氧空位形成变得容易,还使 得 Ce 周围的 VO_x物种形成氧空位所需的能量变小, 难度降低。因此,Ce 掺杂后催化剂表面具有更多的 氧空位,结合 XPS 和 FTIR 的结果,Ce 引入后催化 剂表面增加的化学吸附氧,主要是氧空位和 Brønsted 酸性位点。

图 15 V/Ti、Ce-V/Ti 形成氧空位前后结构 Fig. 15 V/Ti, Ce-V/Ti structure before and after forming oxygen vacancy

为了模拟气态分子在 Brønsted 酸位点的吸附, 分别在端氧(V=O、Ce=O)、表面桥氧(V-O-V、 Ce-O-V)和载体桥氧(V-O-Ti、Ce-O-Ti) 上加氢模拟催化剂表面的 Brønsted 酸位点, V/Ti和 Ce-V/Ti形成 Brønsted 酸位点后的构型分别如图 16 所示。。

图 16 V/Ti、Ce-V/Ti 的 Brønsted 酸位点构型 Fig. 16 Brønsted acid site configuration of V/Ti and Ce-V/Ti

2.8.2 NH3吸附模拟

NH₃在V/Ti和Ce-V/Ti上Lewis酸位点和Brønsted 酸位点的吸附构型如图 17 所示,对应的吸附能、 Hirshfeld 电荷转移量见表 3。

从表 3 可以看出, NH₃在所有酸性位点上的吸 附能绝对值均大于 90 kcal/mol, 结合 NH₃、NH⁺₄ 的布局分析,认为 NH₃ 吸附均为化学吸附。对于 V/Ti,NH₃ 在位于 V一O—Ti上的 Brønsted 酸位点 的吸附能最大,吸附最稳定,这表明 TiO₂ 作为载体 和活性物种 VO_x之间的键合对于 NH₃ 吸附是非常有 利的,TiO₂ 和表面无定形活性氧化物种之间的结构 可能是 SCR 反应的重要活性位点^[28]。

Ce 掺杂削弱了 NH₃ 在端氧和载体桥氧上 Brønsted 酸位点的吸附,但强化了 NH₃在 Lewis 酸 位点和表面桥氧上 Brønsted 酸位点的吸附,而 FTIR 结果表明,Ce 掺杂后催化剂表面的 Brønsted 酸位有 所增强,因此认为 Ce 掺杂后形成的 "Ce—O—V" 上 Brønsted 酸性位点比 "V—O—V"具有更强的酸 性,即 Ce 掺杂改变了催化剂表面的酸位强弱,增强 了中酸的酸性,削弱了弱酸和强酸的酸性。

图 17 NH₃在 Lewis、Brønsted 酸位点的吸附构型 Fig. 17 Adsorption configuration of NH₃ at Lewis and Brønsted acid sites

- 表 3 NH₃ 在 Lewis、Brønsted 酸位点吸附能、Hirshfeld 电荷转移量
- Table 3
 NH₃ adsorption energy at Lewis and Brønsted acid sites and Hirshfeld charge transfer amount

吸附构型	$ E_{ads} /(kcal/mol)$	NH3、NH ⁺ 电荷/e
NH ₃ -L1	127.34	0.32
NH ₃ -L2	142.13	0.19
NH ₃ -B1-1	98.90	0.40
NH ₃ -B2-1	91.91	0.30
NH ₃ -B1-2	133.71	0.54
NH ₃ -B2-2	139.40	0.27
NH ₃ -B1-3	244.13	0.51
NH ₃ -B2-3	211.32	0.46

2.8.3 SO2吸附模拟

SO₂ 在 V/Ti 和 Ce-V/Ti 上 Lewis 酸位点和 Brønsted 酸位点的吸附构型如图 18 所示, 对应的吸 附能、Hirshfeld 电荷转移量见表 4。

SO₂在催化剂表面会和 NH₃发生竞争吸附, Ce 掺杂后,各种构型吸附能有较大程度的增长,即 SO₂ 在 Ce 掺杂后催化剂表面的吸附稳定性有所增加。改 性前后较小的 Hirshfeld 电荷转移量表明 SO₂属于非 极性吸附,其与酸性位点成共价键。高温下,吸附 在 Ce 掺杂后催化剂表面酸性位点的 SO₂ 更加难以 脱附,并能与 NH₃等反应生成硫酸铵盐覆盖在催化 剂表面,进一步降低催化剂脱硝性能。

Fig. 18 Adsorption configuration of SO₂ at Lewis and Brønsted acid sites

表 4 SO₂ 在 Lewis、Brønsted 酸位点吸附能、Hirshfeld 电荷转移量

Table 4SO2 adsorption energy at Lewis and Brønsted acidsites and Hirshfeld charge transfer amount

吸附构型	$ E_{ads} /(kcal/mol)$	SO2电荷/e
SO ₂ -L1	28.19	-0.03
SO ₂ -L2	73.09	-0.03
SO ₂ -B1-1	40.42	-0.04
SO ₂ -B2-1	85.28	-0.09
SO ₂ -B1-2	66.66	0.03
SO ₂ -B2-2	63.30	0.03
SO ₂ -B1-3	78.35	0.08
SO ₂ -B2-3	96.03	-0.11

很明显,催化剂表面的 Ce 酸位点数量随着 CeO₂添加量的增加而增加,因此,在SO₂、H₂O 耐 受性测试中,Ce₄V₁W₇Ti 比 Ce₁V₁W₇Ti 和 V₁W₇Ti 表面更易沉积硫酸铵盐,从而导致其 NO_x脱除率降 幅最大。

2.8.4 H₂O 吸附模拟

H₂O 在 V/Ti 和 Ce-V/Ti 上 Lewis 酸位点和 Brønsted 酸位点的吸附构型如图 19 所示,对应的吸 附能、Hirshfeld 电荷转移量见表 5。

从表 5 可以看出,相比于 NH₃和 SO₂, Ce 掺杂 前后,H₂O 在其表面的吸附能很小,结合较大的 Hirshfeld 电荷转移量,认为 H₂O 在催化剂表面是弱 化学吸附,高温下吸附态的 H₂O 易脱附,这与大量的 实验研究结果一致^[29-30]。但由于烟气中 H₂O 的体积 分数较高,比 NH₃高 2 个数量级,因此数量占绝对 优势的水分子也会占据催化剂表面部分酸性位点,

从而影响 NH₃ 的吸附,特别是烟气中还含有 SO₂时, 吸附态的 H₂O、SO₂和 NH₃相比于气态更容易在催 化剂表面发生反应生成(NH₄)₂SO₄和 NH₄HSO₄覆盖 酸性位点,降低催化剂脱硝性能,这是催化剂失活 的主要原因。

图 19 H₂O 在 Lewis、Brønsted 酸位点的吸附构型

Fig. 19 Adsorption configuration of H₂O at Lewis and Brønsted acid sites

表 5 H₂O 在 Lewis、Brønsted 酸位点吸附能、Hirshfeld 电荷转移量

 Table 5
 H₂O adsorption energy at Lewis and Brønsted acid sites and Hirshfeld charge transfer amount

吸附构型	$ E_{ads} /(kcal/mol)$	H ₂ O 电荷/e
H ₂ O-L1	18.09	0.19
H_2O-L2	23.41	0.11
H ₂ O-B1-1	16.88	0.15
H ₂ O-B2-1	32.74	0.06
H ₂ O-B1-2	21.84	0.16
H ₂ O-B2-2	18.65	0.13
H ₂ O-B1-3	17.21	0.14
H ₂ O-B2-3	20.39	0.14

3 结论

(1)当 CeO₂负载量为 1%时, Ce₁V₁W₇/Ti 的脱 硝活性相较 V₁W₇/Ti 有显著提升,其具有最佳的活 性组分负载状态和更多的酸性位点。在 6×10⁴ h⁻¹空 速下,其在 260~400 ℃的 NO_x 脱除率超过 99%。 NH₃-TPD 结果表明,负载少量的 CeO₂后, Ce_xV₁W₇/Ti 表现出更多的弱酸和中酸,从而提高了其对 NH₃的 低温吸附能力。结合 FTIR 和 NH₃ 吸附的 DFT 计算 的结果,认为 "Ce—O—V"上 Brønsted 酸性位点 比 "V—O—V"具有更强的酸性,是添加 CeO₂ 后 催化剂脱硝性能提升的重要原因。

(2) Ce 的引入增加了催化剂表面的活性物种, Ce³⁺/Ce⁴⁺、V⁴⁺/V⁵⁺之间的氧化还原循环可以提供丰 富的不饱和化学键和电子空穴,提高催化剂的 NO 氧化活性。但过量负载 CeO₂ 会使催化剂表面的 V⁴⁺ 占比显著下降,强酸位点转变为弱酸或失去酸性, 从而使得催化剂在高温段的脱硝活性低于改性前。 XPS、FTIR 和氧空位形成能的计算结果表明,Ce 引入后,催化剂表面增加的化学吸附氧,主要是氧 空位和 Brønsted 酸性位点。

(3)负载 CeO₂后,催化剂对 SO₂的耐受性降低; SO₂吸附的 DFT 计算结果表明, SO₂在 Ce 掺杂后催化剂表面的吸附稳定性有所增加;结合 BET、SEM 分析, SO₂中毒后的催化剂表面会沉积硫酸铵盐。在 H₂O 的协同作用下, Ce 掺杂后催化剂表面更

易沉积硫酸铵盐,使得 SO₂中毒后的催化剂脱硝活 性降幅更大。

参考文献:

- FINLAYSON-PITTS B J, PITTS JR J N. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles[J]. Science, 1997, 276(5315): 1045-1051.
- [2] CHEN Z C, REN S, WANG M M, et al. Insights into samarium doping effects on catalytic activity and SO₂ tolerance of MnFeO catalyst for low-temperature NH₃-SCR reaction[J]. Fuel, 2022, 321(19): 124113.
- [3] BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalyst: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36.
- [4] JIA H J (贾海娟). Application of SCR flue gas denitrification technology in coal-fired power plants[J]. Electric Power Technology and Environmental Protection (电力科技与环保), 2012, 28(6): 10-11.
- [5] REDDY B M, KHAN A, YAMADA Y, et al. Structural characterization of CeO₂-TiO₂ and V₂O₅/CeO₂-TiO₂ catalysts by Raman and XPS techniques[J]. The Journal of Physical Chemistry B, 2003, 107(22): 5162-5167.
- [6] XU W Q, HE H, YU Y B. Deactivation of a Ce/TiO₂ catalyst by SO₂ in the selective catalytic reduction of NO by NH₃[J]. The Journal of Physical Chemistry C, 2009, 113(11): 4426-4432.
- [7] LIU X H, ZHAO Z W, NING R L, et al. Ce-doped V-W-Ti with low vanadium loadings as SCR catalyst and the resistance of H₂O and SO₂[J]. Catalysis Letters, 2020, 150(2): 375-383.
- [8] LIU W J, LONG Y F, LIU S N, et al. Promotional effect of Ce in NH₃-SCO and NH₃-SCR reactions over Cu-Ce/SCR catalysts[J]. Journal of Industrial and Engineering Chemistry, 2022, 107: 197-206.
- [9] IWASAKI M, SHINJOH H. A comparative study of "standard", "fast" and "NO₂" SCR reactions over Fe/zeolite catalyst[J]. Applied Catalysis A: General, 2010, 390(1/2): 71-77.
- [10] ZHU L, ZHONG Z P, XUE J L, et al. NH₃-SCR performance and the resistance to SO₂ for Nb doped vanadium based catalyst at low temperatures[J]. Journal of Environmental Sciences, 2018, 65: 306-316.
- [11] ZHU Z P, NIU H X, LIU Z Y, *et al.* Decomposition and reactivity of NH₄HSO₄ on V₂O₅/AC catalyst used for NO reduction with ammonia[J]. Journal of Catalysis, 2000, 195(2): 268-278.
- [12] YANG Z Z (杨志忠), AI S B (艾生炳). Influence of SO₂/SO₃ on selective catalytic reduction flue gas denitraization[J]. Electric Power Technology and Environmental Protection (电力科技与环保), 2014, 6: 31-33.
- [13] LIU X G (刘晓刚), FEI H T (费浩天), LIU Y Q (刘奕绮), et al. Denitrification performance of Cu(x)/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ at low temperature[J]. Fine Chemicals (精细化工), 2019, 36(9): 1845-1849.
- [14] ZHANG L, LI L L, CAO Y, et al. Getting insight into the influence of SO₂ on TiO₂/CeO₂ for the selective catalytic reduction of NO by NH₃[J]. Applied Catalysis B: Environmental, 2015, 165: 589-598.
- [15] WANG F M, SHEN B X, ZHU S W, et al. Promotion of Fe and Co doped Mn-Ce/TiO₂ catalyst for low temperature NH₃-SCR with SO₂ tolerance[J]. Fuel, 2019, 249: 54-60.
- [16] CHEN Y X, HUANG Z W, ZHOU M J, et al. Single silver adatoms

on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement[J]. Environmental Science & Technology, 2017, 51(4): 2304-2311.

- [17] YANG J, YANG Q, SUN J, et al. Effects of mercury oxidation on V₂O₅-WO₃/TiO₂ catalyst properties in NH₃-SCR process[J]. Catalysis Communications, 2015, 59: 78-82.
- [18] LÁZARO M J, BOYANO A, HERRERA C, et al. Vanadium loaded carbon-based monoliths for the on-board NO reduction: Influence of vanadia and tungsten loadings[J]. Chemical Engineering Journal, 2009, 155(1/2): 68-75.
- [19] YIN Z J (尹子骏), SU S (苏胜), ZHONG Y X (钟毓秀), et al. Study on the effect of active component V of SCR catalyst on SO₂ oxidation[J]. Journal of Chinese Society of Power Engineering (动力 工程学报), 2023, 43(3): 332-340.
- [20] LIU C X, CHEN L, LI J H, et al. Enhancement of activity and sulfur resistance of CeO₂ supported on TiO₂-SiO₂ for the selective catalytic reduction of NO by NH₃[J]. Environmental Science & Technology, 2012, 46(11): 6182-6189.
- [21] ZHU L (朱林). Study on low temperature NH₃-SCR performance and mechanism of transition metal oxide catalysts[D]. Nanjing: Southeast University (东南大学), 2018.
- [22] WU Z B, JIANG B Q, LIU Y, et al. DRIFT study of manganese/ titania-based catalysts for low-temperature selective catalytic reduction of NO with NH₃[J]. Environmental Science & Technology, 2007, 41(16): 5812-5817.
- [23] LIU F D, ASAKURA K, HE H, *et al.* Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NO_x with NH₃[J]. Catal Today, 2011, 164(1): 520-527.
- [24] ZHAO H, BENNICI S, SHEN J Y, *et al.* The influence of the preparation method on the structural, acidic and redox properties of V₂O₅-TiO₂/SO₄²⁻ catalyst[J]. Applied Catalysis A: General, 2009, 356(2): 121-128.
- [25] STOILOVA D, GEORGIEV M, MARINOVA D. Infrared study of the vibrational behavior of CrO²₄ guest ions matrix-isolated in metal (II) sulfates (Me=Ca, Sr, Ba, Pb)[J]. Journal of Molecular Structure, 2005, 738(1/2/3): 211-215.
- [26] GAO Y Y, LI Z X, HAO Y. Effect of M-doped (M=Cr, Fe, Co, and Nb) V₂O₃/TiO₂(001) on mercury oxidation: The insights from DFT calculation[J]. The Journal of Physical Chemistry C, 2017, 121(50): 27963-27975.
- [27] ZHENG H L, SONG W Y, ZHOU Y, *et al.* Mechanistic study of selective catalytic reduction of NO_x with NH₃ over Mn-TiO₂: A combination of experimental and DFT study[J]. The Journal of Physical Chemistry C, 2017, 121(36): 19859-19871.
- [28] LI P, XIN Y, LI Q, et al. Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH₃: Confirmation of Ce-O-Ti active sites[J]. Environmental Science & Technology, 2012, 46(17): 9600-9605.
- [29] LIUF, HE H. Selective catalytic reduction of NO with NH₃ over manganese substituted iron titanate catalyst: Reaction mechanism and H₂O/SO₂ inhibition mechanism study[J]. Catalysis Today, 2010, 153(3/4): 70-76.
- [30] HUANG Z, LIU Z, ZHANG X, et al. Inhibition effect of H₂O on V₂O₃/AC catalyst for catalytic reduction of NO with NH₃ at low temperature[J]. Applied Catalysis B: Environmental, 2006, 63(3/4): 260-265.