催化与分离提纯技术

Pd/SiC 催化苯甲醛加氢反应性能

吉晓云, 焦志锋*, 赵吉晓, 李佳航, 郭向云*

(常州大学 石油化工学院 江苏省绿色催化材料与技术重点实验室, 江苏 常州 213164)

摘要:以高比表面积(约30 m²/g)SiC为载体,采用液相还原法制备了负载型催化剂 Pd/SiC。通过 TEM、XRD、 XPS 对其进行了表征。考察了 Pd 理论负载量(简称 Pd 负载量)、载体类型、反应溶剂和反应 H₂ 压力对其催化 苯甲醛加氢合成苯甲醇反应的影响。采用原位漫反射红外光谱仪探究了反应机理,并考察了催化剂的循环稳定 性。结果表明,Pd 负载量(质量分数)1%的 Pd₁/SiC 的催化活性优于相同 Pd 负载量的不同载体催化剂 Pd₁/SiO₂、 Pd₁/Al₂O₃和 Pd₁/TiO₂的催化性能,在以无水乙醇为溶剂、反应温度 60 ℃、反应 H₂压力 0.5 MPa 的条件下, 30 mg 的 Pd₁/SiC 催化 1 mmol 苯甲醛加氢反应 30 min 时,苯甲醛转化率为 100.0%,苯甲醇选择性 > 99.0%。Pd/SiC 催化苯甲醛加氢生成苯甲醇的反应机理可能为:金属 Pd 解离 H₂,SiC 表面吸附并活化苯甲醛分子,活性氢在 Pd 表面形成后溢流到 SiC 表面与活化了的苯甲醛发生反应,形成苯甲醇。Pd₁/SiC 循环使用 5 次后,苯甲醛转 化率为 93.0%; Pd₁/SiC 中 Pd 纳米颗粒在 SiC 表面分散较好,平均粒径为 4.8 nm,载体 SiC 和 Pd 之间明显存在 电子转移。

关键词: Pd/SiC;苯甲醛加氢;负载型 SiC 基催化剂;催化加氢;氢溢流 中图分类号: TQ426.8 文献标识码: A 文章编号: 1003-5214 (2025) 03-0594-09

Catalytic performance of Pd/SiC for benzaldehyde hydrogenation

JI Xiaoyun, JIAO Zhifeng^{*}, ZHAO Jixiao, LI Jiahang, GUO Xiangyun^{*}

(Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China)

Abstract: Supported catalyst Pd/SiC was prepared by liquid phase reduction method using high specific surface area (about 30 m²/g) SiC as carrier, and characterized by TEM, XRD and XPS. The effects of Pd theoretical loading (for short Pd loading), carrier type, reaction solvent and reaction H₂ pressure on the catalytic hydrogenation of benzaldehyde to benzyl alcohol were evaluated. The catalyst obtained was also analyzed for its reaction mechanism *via in-situ* diffuse reflection infrared spectroscopy and its cyclic stability. The results showed that Pd₁/SiC with 1% Pd loading (mass fraction) displayed better catalytic performance than Pd₁/SiO₂, Pd₁/Al₂O₃ and Pd₁/TiO₂ with the same Pd loading. Under the conditions of 30 mg Pd₁/SiC and anhydrous ethanol as catalyst and solvent, temperature 60 °C, reaction H₂ pressure 0.5 MPa and time 30 min, the 1 mmol benzaldehyde conversion reached 100.0%, while the phenyl methanol selectivity was greater than 99.0%. The Pd/SiC catalytic mechanism on hydrogenation of benzaldehyde to benzyl alcohol might be attributed to the reaction of H₂ dissociated by metal Pd and overflowed to SiC surface and benzaldehyde molecules adsorbed and activated by SiC surface. After Pd₁/SiC being recycled for 5 times, the conversion rate of benzaldehyde was 93.0%. Pd nanoparticles in Pd₁/SiC were well dispersed on the surface of SiC with an average particle size of 4.8 nm, and there was obvious electron transfer between the carrier SiC and Pd.

Key words: Pd/SiC; benzaldehyde hydrogenation; supported SiC based catalysts; catalytic hydrogenation; hydrogen spillover

收稿日期: 2024-02-27; 定用日期: 2024-04-15; DOI: 10.13550/j.jxhg.20240164

基金项目: 江苏省高等学校基础科学(自然科学)研究面上项目(22KJB150017)

作者简介: 吉晓云 (1997—), 女, 硕士生, E-mail: jxy10008@163.com。联系人: 焦志锋 (1988—), 男, 讲师, E-mail: jiaozhifeng2006@126.com; 郭向云 (1967—), 男, 教授, E-mail: xyguo@cczu.edu.cn。

苯甲醇是一种重要的工业化学品,是制备油墨、 油漆和涂料等产品的溶剂,同时也是一些精细化工 产品(如香精)调配时不可或缺的定香剂^[1-4]。苯甲 醇一般通过氯化苄和氢氧化钠共水解^[5]、甲苯间接 电化学氧化^[6]、苯甲醛电化学加氢^[7-9]和苯甲醛液相 催化加氢等方法制备^[3,10-12]。在这些方法中,苯甲醛 液相催化加氢具有过程简单、耗能低等优点,因而 受到人们的广泛关注。研究表明,过渡金属如 Co^[13]、 Ni^[14-15]、Cu^[16],以及贵金属如 Pt^[11,17]、Pd^[18-19]、Au^[20] 等都可用作催化加氢催化剂。过渡金属催化剂价格 便宜,但活性较低;贵金属价格虽然昂贵,但是催 化活性高。因此,关于贵金属催化剂催化苯甲醛加 氢的研究相对较多。其中, Pd 因活性高、选择性好, 而被广泛研究^[21-22]。ZHANG等^[23]将Pd纳米颗粒锚 定在具有纳米半导体层的活性炭(AC)上,制备了 纳米杂化催化剂 Pd/@-ZrO2/AC,该催化剂在较温和 的条件下对苯甲醛加氢的转化率和苯甲醇选择性分 别可达 100%和>98%, 但是催化剂稳定性有待提升, 在第6次循环使用后,催化活性已降至50%以下。 KAISER 等^[20]制备的纳米双金属 Pd₁₃Au₈₇/SiO₂-RCT (RCT代表覆盆子胶体模板化)催化剂具有较好的 催化苯甲醛加氢性能,但是制备过程相对复杂。Pd/C 催化剂是一种重要的工业加氢催化剂,失活后可以 通过烧碳回收 Pd, 但是载体不能重复利用, 而且会 产生大量的 CO₂ 排放。常规氧化物载体(如 Al₂O₃、 SiO_2 等)负载 Pd, 虽然也具有较好的催化活性, 但 是贵金属回收方法相对复杂,并且在使用醇类化合 物作溶剂时,会生成缩醛类副产物^[24],因此其工业 应用受到限制。

高比表面积碳化硅(SiC)具有化学性质稳定、 导电导热性能好、耐酸碱腐蚀等特点,是一种新兴 的催化剂载体材料^[25-26]。SiC 负载型催化剂在回收 时,可将金属用酸溶解,而不会引起载体本身变化。 这种催化剂不仅金属组分回收简单,而且 SiC 载体 可循环利用,因此是一种绿色可循环的催化剂^[25]。 此外,SiC 是一种半导体,负载金属后两者之间会 发生电荷转移,表现出一些新的性能。在 Pd-Au/SiC 催化硝基苯加氢^[27]、Pt/SiC 催化肉桂醛加氢^[28]、 Ru-Ir/SiC 催化乙酰丙酸加氢^[29]等过程中,金属/SiC 催化剂都表现出非常明显的金属-载体协同催化作 用^[28],即加氢底物在载体表面被吸附和活化,H₂在 金属表面被活化并解离成活性氢物种,活性氢溢流 到载体表面与底物发生加氢反应。

本文拟采用液相还原法制备 Pd/SiC 催化剂,考 察其催化苯甲醛加氢性能,并与其他载体负载的 Pd 催化剂进行比较,以期为 Pd/SiC 催化剂的制备和催 化苯甲醛加氢的研究提供参考。

1 实验部分

1.1 材料、试剂与仪器

商业化 SiC 载体(β -SiC,比表面积约为 30 m²/g), 采用碳热还原干凝胶法制备^[30],常州锐蓁材料科技 有限公司。

Pd(NO₃)₂•2H₂O(分析纯)、溴化钾(质量分数 99%)、L-赖氨酸(质量分数 98%),上海阿拉丁试 剂生化科技股份有限公司;SiO₂(质量分数 98%)、 Al₂O₃(分析纯)、TiO₂(质量分数 99%)、WO₃(质 量分数 98%)、1,4-二氧六环(质量分数 99.5%)、二 甲基亚砜(质量分数 99.5%)、盐酸(质量分数 36%), 分析纯,国药集团化学试剂有限公司;硼氢化钠 (NaBH₄,质量分数 97%)、无水甲醇(质量分数 99.5%)、无水乙醇(质量分数 99.7%)、异丙醇(质 量分数 99.7%)、四氢呋喃(质量分数 99.5%),上 海凌峰化学试剂有限公司;H₂(体积分数 99.999%)、 N₂(体积分数 99.999%),江苏天鸿化工有限公司; 实验用水为蒸馏水,自制。

PANNA A91PLUS 型气相色谱仪(GC),上海 磐诺有限公司;GCMS-QP2010 SEW 型气相色谱-质谱联用仪(GC-MS),日本 Shimadzu 公司;FEI Talos F200型X透射电子显微镜(TEM),美国 FEI 公司;EscaLab 250Xi型X射线光电子能谱仪(XPS), Nicolet iS50型傅里叶变换原位漫反射红外光谱仪 (*in-situ* FTIR),美国 Thermo Fisher Scientific 公司; Agilent 5110型电感耦合等离子体发射光谱仪 (ICP-OES),美国 Agilent 公司;D/Max 2500PC型 X射线衍射仪(XRD),日本理学公司。

1.2 催化剂制备

采用液相还原法制备 Pd/SiC 催化剂。具体制备 过程为:首先,将 495 mg 的 β-SiC 粉末与 4.7 mL 的 Pd(NO₃)₂•2H₂O 水溶液(浓度为 0.01 mol/L)混合, 并在 30 °C下剧烈搅拌 30 min 后,连续搅拌下逐滴加 入 20 mL 的 L-赖氨酸水溶液(浓度为 0.53 mol/L); 然后,继续搅拌 30 min,在搅拌状态下向混合物 中依次逐滴加入 10 mL 的 NaBH₄水溶液(浓度为 0.35 mol/L)和 10 mL 的盐酸(浓度为 0.3 mol/L); 最后,将上述混合液搅拌 24 h 后抽滤,用蒸馏水和 无水乙醇洗涤多次后,收集固体产物并置于 60 °C 的真空干燥箱中干燥 12 h,得到 500 mg 固体粉末, 即 Pd 理论负载量(简称 Pd 负载量,质量分数,下 同)1%的 Pd/SiC 催化剂,记为 Pd₁/SiC。

采用上述步骤和方法,只调整 Pd(NO₃)₂•2H₂O 水溶液用量,制备 Pd 负载量为 0.1%和 0.5%的

Pd/SiC 催化剂, 记为 Pd_{0.1}/SiC 和 Pd_{0.5}/SiC; 只调整 载体类型为 SiO₂、Al₂O₃ 或 TiO₂,制备 Pd 负载量均 为 1%的 Pd/SiO₂ 催化剂、Pd/Al₂O₃ 催化剂、Pd/TiO₂ 催化剂,分别记为 Pd₁/SiO₂、Pd₁/Al₂O₃、Pd₁/TiO₂。

1.3 表征和测试

in-situ FTIR 测试:以单束光模式进行采集,分 辨率为4 cm⁻¹,波数范围 4000~400 cm⁻¹,光谱仪使 用有液氮冷却的 MCT-B 检测器。TEM 测试:工作 电压 40 kV。XPS 测试:Al K_a 为射线源,并以C1s (284.8 eV)为基准对数据进行校正。ICP-OES 测 试:向 5 mg 样品中加 0.5 mL 王水,60 ℃下消解 6 h, 所得溶液加蒸馏水定容至 25 mL,稀释一定倍数后 进行测试。XRD 测试:靶材 Cu,管电压 40 V,管电 流 40 mA,K_a射线, λ =0.1541 nm,扫描速率为4(°)/min, 扫描范围为 5°~90°。

苯甲醛在催化剂表面吸附情况:利用红外漫反 射光谱测定苯甲醛在催化剂表面的吸附情况。测量 前,先将催化剂在流动的 Ar 氛围下于 200 ℃预处 理1h,以除去样品表面吸附的水和其他杂质。待样 品池温度降至室温后,采集催化剂的红外谱图作为 背景,然后在样品上滴入苯甲醛,在流动 Ar 氛围中 进行红外谱图采集。每隔 5 min 记录 1 次谱图,直 至样品的红外谱图不再发生变化。

催化剂还原 WO₃的能力:在温度为 30 ℃、H₂ 流量为 10 mL/min 的条件下,将 1 g 的 WO₃ 与 10 mg 不同 Pd负载量的 Pd/SiC 催化剂机械混合后通入H₂, 观察并记录混合物变色的时间和照片。

1.4 催化剂性能评价

在 50 mL 不锈钢反应釜中对催化剂进行苯甲醛 加氢性能评价。将 30 mg 催化剂、10 mL 无水乙醇 和 1 mmol 苯甲醛加入反应釜中,密封后用 H₂吹扫 3 次,除去反应釜中的空气,然后再充入 0.5 MPa 的 H₂进行反应,反应温度 60 ℃,反应时间 30 min。 反应结束后,取 3 mL 反应后的混合物,通过微孔过 滤器(孔径 0.22 μm)过滤,除去催化剂颗粒后的滤 液用 GC 和 GC-MS 进行定量定性分析。

GC 分析条件: 色谱柱 Agilent DB-5-5 柱 (30 m× 0.32 mm×0.25 µm), 柱温条件为: 初始温度 50 ℃ 保持 2 min, 再以 10 ℃/min 的速率升温至 200 ℃, 保持 15 min, 进样口温度 200 ℃, 火焰离子化检测 器 (FID)温度 250 ℃, 分流比为 20:1, 载气 N₂, 流量为 1.0 mL/min。

GC-MS分析条件:色谱柱 Rtx-5MS柱(30 m× 0.25 mm×0.25 µm),柱温条件为:初始温度 80 ℃ 保持 3 min,再以 5 ℃/min 的速率升温至 220 ℃, 保持 30 min,载气氦气,流量为 6.0 mL/min。

采用峰面积归一法计算苯甲醛转化率(Conv.,%)

和苯甲醇选择性(Select.,%),并按照公式(1)和(2)计算:

$$\operatorname{Conv.}/\% = \frac{S_{\mathrm{A}} + S_{\mathrm{other}}}{S_{\mathrm{A}} + S_{\mathrm{B}} + S_{\mathrm{other}}} \times 100 \quad (1)$$

Select. / % =
$$\frac{S_A}{S_A + S_{\text{other}}} \times 100$$
 (2)

式中: S_A 为 GC 谱图中苯甲醇的峰面积; S_B 为 GC 谱图中反应剩余苯甲醛的峰面积; S_{other} 为其他产物在 GC 谱图中的峰面积。

1.5 影响催化性能的单因素实验

在催化剂 30 mg、无水乙醇 10 mL、苯甲醛 1 mmol、反应温度 60 ℃、反应 H₂ 压力 0.5 MPa、反应时间 30 min 的条件下,考察 Pd 负载量分别为 0.1%、0.5%和 1%的 Pd/SiC 催化剂 Pd_{0.1}/SiC、Pd_{0.5}/SiC 和 Pd₁/SiC 对催化苯甲醛加氢反应性能的影响。

在催化剂 30 mg、无水乙醇 10 mL、苯甲醛 1 mmol、反应温度 60 ℃、反应 H₂ 压力 0.5 MPa、反 应时间 30 min 的条件下,考察 Pd 负载量均为 1%的 不同载体催化剂 Pd₁/SiC、Pd₁/SiO₂、Pd₁/Al₂O₃ 和 Pd₁/TiO₂ 对催化苯甲醛加氢反应性能的影响。

在催化剂 30 mg、溶剂 10 mL、苯甲醛 1 mmol、 反应 H₂压力 0.5 MPa、反应温度 60 ℃、反应时间 30 min 的条件下,考察不同反应溶剂(无水乙醇、 无水甲醇、异丙醇、1,4-二氧六环、四氢呋喃、乙腈、 二甲基亚砜)对 Pd₁/SiC 催化苯甲醛加氢反应性能 的影响。

在催化剂 30 mg、无水乙醇 10 mL、苯甲醛 1 mmol、反应温度 60 ℃、反应时间 30 min 的条件下, 考察不同反应 H₂压力(0.1、0.2、0.3、0.4、0.5 MPa) 对 Pd₁/SiC 催化苯甲醛加氢反应性能的影响。

1.6 催化剂本征活性评价

在相同反应条件下(1 mmol 苯甲醛、30 mg 催 化剂、10 mL 无水乙醇、反应 H₂ 压力 0.5 MPa),使 不同催化剂对苯甲醛加氢的催化性能(苯甲醛转化 率和苯甲醇选择性均在 100%)基本保持一致,记录 每种催化剂所需的反应时长。根据公式(3)计算催 化剂催化反应的转化频率(TOF,单位 h⁻¹),用以 评价催化剂的本征活性。

$$TOF = \frac{n \times Conv. \times Select.}{\frac{m \times w \times t}{M}}$$
(3)

式中: *n* 为反应过程中苯甲醛用量, 1 mmol; Conv. 为苯甲醛转化率, %; Select.为苯甲醇选择性, %; *m* 为催化剂用量, 30 mg; *w* 为 Pd 负载量, %; *t* 为 反应时间, h; *M* 为 Pd 摩尔质量, 106.42 g/mol。

1.7 催化剂循环稳定性实验

循环稳定性是评价催化剂性能的重要参数之

一。通过增加循环使用次数在最优条件下考察 Pd₁/SiC的循环稳定性,收集反应后的混合物,通过 抽滤得到催化剂固体,用无水乙醇洗涤3次后置于 60℃的真空干燥箱中烘干24h,用于下一次反应。

考察催化剂在较大规模下的催化活性和稳定性 (放大实验):将反应底物苯甲醛用量从1 mmol 扩 大至6 mmol,置于10 mL 无水乙醇中,使用30 mg 的 Pd₁/SiC 催化剂,在0.5 MPa 反应 H₂压力下催化 反应1h。每次使用的催化剂在无水乙醇中充分清洗 后再用于循环实验。

2 结果与讨论

2.1 催化剂表征分析

图 1 为 Pd₁/SiC 的 TEM 图、Pd 纳米颗粒粒径分 布图和 HRTEM 图。从图 1 可以看出, Pd 在 SiC 载 体上分散较好(图 1a), Pd 颗粒的平均粒径为 4.8 nm (图 1b)。Pd 金属颗粒的晶格间距为 0.21 nm, 对应 Pd(111)晶面。结果表明, Pd 在 SiC 表面分散均匀, 颗粒尺寸较小, 主要以金属态存在(图 1c、d)。

- 图 1 Pd₁/SiC 的 TEM 图 (a)、Pd 纳米颗粒粒径分布图 (b)和 HRTEM 图 (c、d)
- Fig. 1 TEM image (a), Pd size distribution image (b) and HRTEM images (c, d) of Pd₁/SiC

图 2 为 Pd₁/SiC 的 XRD 谱图。从图 2 可以看出, Pd₁/SiC 的 XRD 谱图中只能看到与 β-SiC (JCPDS No.46-1043)对应的衍射峰(2θ=35.6°、41.4°、60.0°、 71.8°和 75.5°),没有金属 Pd 或 Pd 氧化物的衍射 峰,此结果与文献报道相一致^[31-32]。这是因为, Pd 颗粒尺寸非常小,并且在 SiC 表面分散较好。

图 3 为 Pd₁/SiC 的 XPS 谱图。从图 3 可以看出, Pd₁/SiC 的 XPS 全谱中,除了 Si、C 和 O 元素外, 还出现了 Pd 的特征峰(图 3a),说明 Pd 纳米颗粒 已经成功地负载到 SiC 表面上。通常,SiC 的 Si 2p 谱图中,结合能 103 eV 处峰对应于 SiC 中的 Si—C 键, 结合能 101 eV 处峰对应于 SiC 表面的 Si—O 键^[33-35]。 在 Pd₁/SiC 的 Si 2p 谱图中, Si—C 和 Si—O 键的结 合能分别位于 103.3 和 101.5 eV, 而纯 SiC 载体中, 则分别位于 102.7 和 100.8 eV 处 (图 3b)。和纯 SiC 相比, Pd₁/SiC 中 Si 2p 的结合能升高,说明 Si 原子 周围的电子密度有所降低。不同催化剂中 Pd⁰的 3 $d_{5/2}$ 和 $3d_{3/2}$ 结合能数据列于表 1。可以看出, Pd₁/SiC 中 Pd⁰ $3d_{5/2}$ 和 Pd⁰ $3d_{3/2}$ 的结合能分别位于 335.1 和 340.4 eV 处,与 Pd₁/SiO₂和 Pd₁/Al₂O₃相比,上述两 处电子结合能明显偏低。这说明,在 Pd₁/SiC 催化剂 中 Pd 的电子密度有所提高。

图 3 Pd₁/SiC 的 XPS 全谱(a)、Pd/SiC 和 SiC 的 Si 2p 高分辨 XPS 谱图(b)

Fig. 3 XPS spectrum of Pd/SiC (a) and Si 2*p* high-resolution XPS spectra of Pd/SiC and SiC (b)

综合 Pd₁/SiC 催化剂中 Si 2*p* 电子结合能升高的 结果可以推断出,SiC 的导带电子向 Pd 发生了转移, 强化了富电子的 Pd 活化 H₂ 的能力,因而 Pd₁/SiC 催化剂在几种催化剂中表现出最高的催化活性。

表 1 不同催化剂中 Pd^0 的 $3d_{5/2}$ 和 $3d_{3/2}$ 结合能 Table 1 Binding energies of $Pd^0 3d_{5/2}$ and $3d_{3/2}$ in different catalysts

催化剂 -	结合能/eV		
	$Pd^0 \ 3d_{5/2}$	$Pd^0 \ 3d_{3/2}$	
Pd ₁ /SiC	335.1	340.4	
Pd_1/Al_2O_3	335.5	340.8	
Pd_1/SiO_2	335.8	341.1	

2.2 催化性能因素考察结果分析

2.2.1 Pd 负载量的影响

图 4 为不同 Pd 负载量的 Pd/SiC 催化剂催化苯 甲醛加氢性能结果比较。表 2 为 Pd₁/SiC 和 Pd_{0.5}/SiC 的 TOF 值。

表 2 Pd_1/SiC 和 $Pd_{0.5}/SiC$ 的 TOF 值 Table 2 TOF values of Pd_1/SiC and $Pd_{0.5}/SiC$ with different

le	oadings				
催化剂	反应 时间 /h	苯甲醛 转化率 /%	苯甲醇 选择性 /%	Pd 实际 负载量 /% ^①	${{TOF}/\atop{h^{-1}}}$
Pd ₁ /Si C	0.5	100.0	99.1	1.00	703.1
Pd _{0.5} /S iC	2.0	98.2	100.0	0.42	414.7

①ICP-OES 测试结果。

从图 4 可以看出, Pd₁/SiC 的催化活性最高, 苯 甲醛转化率和苯甲醇选择性都超过 99.0%; Pd_{0.1}/SiC 和 Pd_{0.5}/SiC 的催化活性较低, 虽然苯甲醇选择性和 Pd₁/SiC 相近, 但苯甲醛转化率分别只有 1.8%和 33.3%。Pd_{0.5}/SiC 的 TOF 值(414.7 h⁻¹)低于 Pd₁/SiC (703.1 h⁻¹)。表明 3 种 Pd/SiC 催化剂中, Pd₁/SiC 具有更为优异的本征活性。

2.2.2 载体的影响

图 5 为不同载体负载的 Pd 催化剂催化苯甲醛加 氢性能。

图 5 不同载体负载的 Pd 催化剂催化苯甲醛加氢性能

Fig. 5 Catalytic performances of Pd catalysts supported by different carriers for benzaldehyde hydrogenation

从图 5 可以看出,苯甲醛转化率从高到低的顺 序为 Pd₁/SiC(100.0%)>Pd₁/Al₂O₃(98.2%)>Pd₁/SiO₂ (89.9%) >Pd₁/TiO₂ (86.2%);苯甲醇选择性从高 到低的顺序为 Pd₁/SiC(>99.0%)≈Pd₁/TiO₂(>99.0%) >Pd₁/Al₂O₃(94.7%)>Pd₁/SiO₂(83.9%)。表明 Pd₁/SiC 具有最优异的催化苯甲醛加氢性能。

2.2.3 反应溶剂的影响

表 3 为反应溶剂对 Pd₁/SiC 催化苯甲醛加氢性能的影响。

表 3 溶剂对 Pd₁/SiC 催化苯甲醛加氢性能的影响 Table 3 Effect of solvents on catalytic performances of Pd₁/SiC for benzaldehyde hydrogenation

溶剂	苯甲醛转化率/%	苯甲醇选择性/%
无水乙醇	100.0	99.1
无水甲醇	100.0	94.1
异丙醇	72.9	100.0
1,4- 二 氧 六 环	62.2	100.0
四氢呋喃	57.7	100.0
乙腈	31.6	100.0
二甲基亚砜	24.9	100.0

从表 3 可以看出,在选用的极性溶剂中,以无 水乙醇为反应溶剂时,催化剂的活性最高,苯甲醛 转化率(100.0%)和苯甲醇选择性(99.1%)都很 高;以无水甲醇为反应溶剂时,催化剂的活性也很 高,苯甲醛转化率(100.0%)和苯甲醇选择性 (94.1%)与无水乙醇非常接近。但无水甲醇为溶剂, 毒性较大,无水乙醇作为溶剂更加绿色。因此,选 择无水乙醇作为反应溶剂。

2.2.4 反应H2压力的影响

图 6 为反应 H₂ 压力对 Pd₁/SiC 催化苯甲醛加氢 性能的影响。

从图 6 可以看出,当反应 H₂ 压力为 0.1 MPa 时, 苯甲醛转化率为 30.6%,苯甲醇选择性为 100.0%。 随着反应 H₂ 压力的提高,苯甲醛转化率逐渐增加; 当 H₂ 压力为 0.5 MPa 时苯甲醛转化率达到 100.0%, 此时苯甲醇选择性为 99.1%;继续提高反应 H₂ 压力, 苯甲醇选择性开始降低,这是因为苯甲醇出现过度 加氢,伴随有甲苯生成。因此,选择反应 H₂ 压力为 0.5 MPa。

图 6 反应 H₂压力对 Pd₁/SiC 催化苯甲醛加氢性能的影响 Fig. 6 Effect of reaction H₂ pressure on catalytic performances of Pd₁/SiC for benzaldehyde hydrogenation

表 4 为 Pd₁/SiC 和文献报道的催化剂催化苯甲 醛加氢的反应性能对比。

从表 4 可以看出, Pd₁/SiC 能够在较温和的条件 下高效地将苯甲醛转化为苯甲醇(收率 99.1%),这 可能是 SiC 的半导体特性所致。当 Pd 颗粒均匀地分 散在半导体 SiC 表面上时,它们之间可以形成 Mott-Schottky 异质结,由于 SiC 的功函数(4.00 eV) 低于 Pd (5.12 eV),SiC 的电子会转移给 Pd,从而 使 Pd 呈现富电子状态^[36-38],这有利于 H₂的解离。 而 SiC 表面与 Pd 接触的位点会呈缺电子状态,这可 能有利于苯甲醛的 C==O 吸附在催化剂载体上^[28]。

2.3 Pd₁/SiC 催化机理分析

图 7a 为苯甲醛吸附在不同载体催化剂上的 *in-situ* FTIR 谱图。

从图 7a 可以看出,苯甲醛吸附在 KBr 上时, 苯环中 C==C 键的两个特征吸收带分别位于 1584 和 1597 cm⁻¹ 附近,醛基特征吸收带位于 1720 cm⁻¹ 附 近。通常,1600 cm⁻¹ 处峰是芳环上的 C==C 键的两 个较弱吸收带,1720 cm⁻¹ 处峰为苯甲醛上 C==O 键 的伸缩振动^[44],与文献报道结果一致^[45-47]。

苯甲醛在 SiC 和 Pd₁/SiC 上吸附后产生的特征 吸收带位置完全相同,即苯环中 C==C 键的两个特 征吸收带分别位于 1584 和 1603 cm⁻¹处, 醛基的吸 收带位于 1715 cm⁻¹ 处, 与 KBr 上苯甲醛的 FTIR 谱 图相比, 醛基吸收带向低波数位移了约5 cm⁻¹。苯 甲醛在 Pd₁/SiO₂和 Pd₁/Al₂O₃上吸附时,两者的 FTIR 谱图几乎相同,即苯环中 C==C 的特征吸收峰出现 在 1583、1584 和 1596、1603 cm⁻¹处, 醛基的特征 吸收峰出现在 1701、1702 cm⁻¹ 处。值得注意的是, 醛基的特征吸收带出现了较大的偏移。这说明,苯 甲醛在几种催化剂上吸附时都是醛基发生化学吸 附。苯甲醛在 SiC 和 Pd₁/SiC 上吸附时, 醛基特征 吸收峰位置相同(1715 cm⁻¹),说明吸附发生在 SiC 表面上; 苯甲醛在 Pd₁/SiO₂和 Pd₁/Al₂O₃上吸附时, 醛基特征吸收峰位置相近(1701~1702 cm⁻¹), 说明 吸附发生在金属 Pd 表面上。

催化剂	催化剂用量 /mg	H ₂ 压力/MPa	温度/℃	苯甲醛转化率/%	苯甲醇选择性/%	参考文献
Co/y-Al ₂ O ₃ -72% SiO ₂	180	3	130	95.8	91.1	[13]
Pd/Ni-MCM-41	40	0.2	100	65.1	100	[18]
Pd-Ru/C	500	0.5	40	39.6	80.6	[21]
Pt/MIL101	40	4	25	59.4	99	[39]
Cu-Al-O	100	2	156	78.0	96	[40]
Ru/FDU-15	50	4	60	71.0	83	[41]
Pd/C-2#	20000	2	120	99.0	98	[42]
Pt-Pd/Ni/C	50	1	25	100	100	[43]
Pd ₁ /SiC	30	0.5	60	100.0	99.1	本文

表 4 Pd₁/SiC 和文献报道的催化剂催化苯甲醛加氢的反应性能对比 Table 4 Comparison of catalytic performances of Pd₁/SiC and the reported catalysts for benzaldehyde hydrogenation

为了进一步探究吸附在 SiC 表面上的苯甲醛能 否直接加氢形成苯甲醇,先用氩气对 Pd₁/SiC 催化 剂进行吹扫处理,然后在 60 ℃下使常压 H₂通过吸 附了苯甲醛的 Pd₁/SiC 催化剂,同时记录 FTIR 谱图,如图 7b 所示。从图 7b 可以看出,随着通入 H₂时间的增加,1715 cm⁻¹处对应于苯甲醛 C=O 键的特征

吸收峰强度逐渐减弱,说明苯甲醛分子中的 C==O 键发生加氢反应时仍然是在 SiC 表面上。

文献^[27-28]结果表明, SiC 表面可以发生氢溢流。 对 Pd/SiC 来说, H₂在 Pd 颗粒表面解离后,可溢流 到 SiC 表面上。在 30 ℃、10 mL/min H₂下,不同 催化剂还原 WO₃的照片见图 8。颜色越深,表明氢 溢流现象越明显,解离的活性氢越多,反应越快。 从图 8 可以看出, Pd_{0.1}/SiC、Pd_{0.5}/SiC 和 Pd₁/SiC 都 可使 WO₃变色,而且随着催化剂中 Pd 负载量的提 高,混合物的颜色变化越明显。这是因为,催化剂 中 Pd 负载量提高,可以解离 H₂的活性位点相应增 加,单位时间内溢流到 SiC 表面上的活性氢增多, 因此混合物变色明显。

- 图 7 苯甲醛吸附在不同载体催化剂上的 *in-situ* FTIR 谱 图(a)、通入 H₂后吸附在 Pd/SiC 上苯甲醛的 *in-situ* FTIR 谱图(b)
- Fig. 7 In-situ FTIR spectra of benzaldehyde adsorbed on different supported catalysts before (a) and after (b) passing H_2

由以上结果推测, Pd/SiC 催化苯甲醛加氢生成 苯甲醇的反应机理可能为:载体 SiC 表面吸附苯甲 醛分子并将其活化, Pd 颗粒解离 H₂产生活性氢物 种;在 Pd 表面解离的 H₂会溢流到 SiC 表面上,与 吸附在 SiC 表面上苯甲醛中的 C=O 键进行反应, 从而高选择性地得到苯甲醇。

2.4 Pd1/SiC 催化稳定性分析

图 9 为 Pd₁/SiC 催化苯甲醛加氢的循环稳定性 能考察结果。从图 9 可以看出,经过 5 次使用后, Pd₁/SiC 的活性略有下降,苯甲醛转化率为从首次的 100.0%降低至 93.0%,但苯甲醇选择性非常稳定 (>99.0%),说明 Pd₁/SiC 催化剂具有较好的循环稳 定性。

图 9 Pd₁/SIC 催化本中醛加氢的循环稳定性能 Fig. 9 Cycling stability of Pd₁/SiC for benzaldehyde hydrogenation

一般来说,当 Pd 纳米颗粒在液相中进行催化反应时,会面临聚集和浸出的问题^[48-49]。表 5 为新制备的和经过 5 次循环使用的 Pd₁/SiC 中的 Pd 负载量的 ICP-OES 测试数据。从表 5 可以看出,Pd₁/SiC 中 Pd 负载量非常稳定,5 次循环使用的 Pd₁/SiC 的 Pd 负载量由 1.00%降至 0.99%,几乎没有变化,说明催化剂失活的原因不是 Pd 颗粒浸出。

表 5 Pd₁/SiC 使用前后的 Pd 负载量 Table 5 Pd loading before and after Pd/SiC

	8	
催化剂	Pd 理论负载量	Pd 实际负载量
	/%	/%
Pd ₁ /SiC (新制)	1	1.00
Pd ₁ /SiC(5次循环使用 后)	1	0.99

将第 5 次循环使用后的催化剂在 60 ℃的无水 乙醇中加热搅拌 1 h,以便将吸附在催化剂表面的反 应中间体脱除,然后立即用无水乙醇对回收的催化 剂进行多次洗涤。将回收干燥的催化剂用于苯甲醛 加氢反应,发现催化剂的活性有所提升,苯甲醛转 化率从 93.0%提升至 97.0%。据上述实验和分析推 测 Pd₁/SiC 循环使用过程中活性降低的原因为,在 反应过程中,催化剂表面吸附和聚集的中间产物部 分覆盖了 Pd 纳米颗粒,进而导致催化剂活性降低。

图 10 为放大实验条件下, Pd₁/SiC 催化苯甲醛 加氢的循环稳定性能考察结果。

从图 10 可以看出, 在底物苯甲醛的浓度放大至 6 倍的情况下, 反应时间从 30 min 延长至 1 h, 苯甲 醛转化率从首次的 93.0%降至使用 5 次的 91.0%。 表明 Pd₁/SiC 在较大规模反应物浓度下也可以保持 较好的循环使用稳定性。

- 图 10 放大实验条件下, Pd₁/SiC 催化苯甲醛加氢的循环 稳定性能
- Fig. 10 Cycling stability of Pd₁/SiC for benzaldehyde hydrogenation under amplified conditions

3 结论

(1)采用液相还原法成功制备了 Pd 颗粒平均 粒径为4.8 nm、均匀分散负载于载体 SiC 的 Pd₁/SiC。 在反应温度 60 ℃、反应 H₂压力 0.5 MPa 条件下, Pd₁/SiC 催化苯甲醛加氢反应,苯甲醛转化率为 100.0%,苯甲醇选择性 > 99.0%。

(2) SiC 与 Pd 之间会形成 Mott-Schottky 接触, 导致 SiC 导带电子向 Pd 转移,富电子的 Pd 颗粒具 有更好的活化和解离 H₂能力,提高了催化剂的性能。

(3) Pd₁/SiC 在催化苯甲醛加氢过程中表现出明显的金属-载体协同催化作用:金属 Pd 解离 H₂, SiC 表面吸附并活化苯甲醛分子;活性氢在 Pd 表面形成后溢流到 SiC 表面与活化了的苯甲醛发生反应,形成苯甲醇。

本文可为催化芳香醛选择性加氢催化剂的制备 提供一定的参考。

参考文献:

- BHANUSHALI J T, PRASAD D, PATIL K N, et al. Simultaneous dehydrogenation of 1,4-butanediol to *y*-butyrolactone and hydrogenation of benzaldehyde to benzyl alcohol mediated over competent CeO₂-Al₂O₃ supported Cu as catalyst[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12874-12888.
- [2] LIM K R G, KAISER S K, WU H C, et al. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation[J]. Nature

Catalysis, 2024, 7(2): 172-184.

- [3] GONG L, ZHANG C Y, LI J, et al. Enhanced electrochemical hydrogenation of benzaldehyde to benzyl alcohol on Pd@Ni-MOF by modifying the adsorption configuration[J]. ACS Applied Materials & Interfaces, 2024, 16(6): 6948-6957.
- [4] LONGO L, TAGHAVI S, RIELLO M, et al. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation[J]. Catalysis Today, 2023, 420: 114038.
- [5] RODRIGUES C J C, DE CARVALHO C C C R. Process development for benzyl alcohol production by whole-cell biocatalysis in stirred and packed bed reactors[J]. Microorganisms, 2022, 10(5): 966.
- [6] MA H Z, WANG B, LIANG Y Q. Synthesis of benzyl alcohol by indirect electrochemical catalyzed oxidation of toluene in basic methanol solvent[J]. Catalysis Communications, 2004, 5(10): 617-620.
- [7] SANYAL U, YUK S F, KOH K, et al. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase[J]. Angewandte Chemie International Edition, 2021, 60(1): 290-296.
- [8] YANG Q, GE B Q, YUAN P, et al. Amine coordinated electron-rich palladium nanoparticles for electrochemical hydrogenation of benzaldehyde[J]. Advanced Functional Materials, 2023, 33(25): 2214588.
- [9] KOH K, SANYAL U, LEE M S, et al. Electrochemically tunable proton-coupled electron transfer in Pd-catalyzed benzaldehyde hydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(4): 1501-1505.
- [10] SINGH N, SANYAL U, RUEHL G, et al. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals[J]. Journal of Catalysis, 2020, 382: 372-384.
- [11] YAN F (鄢峰), ZHAO C X (赵才贤), YI L H (易兰花), et al. Effect of the degree of dispersion of Pt over MgAl₂O₄ on the catalytic hydrogenation of benzaldehyde[J]. Chinese Journal of Catalysis (催 化学报), 2017, 38(9): 1613-1620.
- [12] HAO Y, PISCHETOLA C, CÁRDENAS-LIZANA F, et al. Selective liquid phase hydrogenation of benzaldehyde to benzyl alcohol over alumina supported gold[J]. Catalysis Letters, 2020, 150(3): 881-887.
- [13] KONG X J, CHEN L G. Chemoselective hydrogenation of aromatic aldehydes over SiO₂ modified Co/γ-Al₂O₃[J]. Applied Catalysis A: General, 2014, 476: 34-38.
- [14] LIK (李恺), JIAO Y L (矫义来), YANG Z M (杨振明), et al. Effect of preparation methods on Ni-distribution and catalytic performance of foam structured catalyst Ni/Al₂O₃-SiC for hydrogenation of benzaldehyde[J]. Chinese Journal of Materials Research (材料研究 学报), 2018, 32(11): 811-819.
- [15] WANG Y X (王颖侠), PAN L Y (潘柳依), SU T (苏涛), et al. Preparation of Ni/CeO₂-Al₂O₃ by hydrothermal method and its catalytic selective hydrogenation of acetylene[J]. Fine Chemicals (精 细化工), 2024, 41(11): 2472-2478.
- [16] SADOU M, SAADI A, HADJ MELIANI M, et al. Facile preparation of supported copper-modified SBA-15 catalysts for efficient benzaldehyde hydrogenation[J]. Surfaces and Interfaces, 2022, 30: 101955.
- [17] YUK S F, LEE M S, AKHADE S A, et al. First-principle investigation on catalytic hydrogenation of benzaldehyde over Pt-group metals[J]. Catalysis Today, 2022, 388/389: 208-215.
- [18] WANG N (王宁), LI B S (李保山). Preparation of Pd/Ni-MCM-41 and its catalytic activity for benzaldehyde hydrogenation[J]. Industrial Catalysis (工业催化), 2018, 26(9): 23-29.
- [19] WU H (吴慧), ZHENG J N (郑君宁), ZUO Y H (左佑华), et al. Preparation of NiPd/TiO₂ catalyst and its catalyzing formic acid decomposition to hydrogen generation[J]. Fine Chemical (精细化 工), 2024, 41(6): 1302-1309.

- [20] KAISER S K, VAN DER HOEVEN J E S, YAN G, et al. Identifying the optimal Pd ensemble size in dilute PdAu alloy nanomaterials for enzaldehyde hydrogenation[J]. ACS Catalysis, 2023, 13(18): 12092-12103.
- [21] MIRONENKO R M, BELSKAYA O B, GULYAEVA T I, et al. Liquid-phase hydrogenation of benzaldehyde over Pd-Ru/C catalysts: Synergistic effect between supported metals[J]. Catalysis Today, 2017, 279: 2-9.
- [22] YANG L N, LI L, QIN S, et al. Palladium single-atom catalysts synthesized by a gas-assisted redispersion strategy for efficient benzaldehyde hydrogenation[J]. Chemical Communications, 2023, 59(38): 5693-5696.
- [23] ZHANG Y J, ZHOU J C, LI K, et al. Synergistic catalysis of hybrid nano-structure Pd catalyst for highly efficient catalytic selective hydrogenation of benzaldehyde[J]. Catalysis Today, 2020, 358: 129-137.
- [24] ZHOU F (周放), ZHU Y C (朱玉超), ZHOU Y H (周永华), et al. Performance of palladium catalysts with different supports for the hydrogenation of benzaldehyde[J]. Applied Chemical Industry (应用 化工), 2013, 42(4): 606-609.
- [25] GUO X Y (郭向云). Silicon carbide with high specific surface area[M]. Beijing: Chemical Industry Press (化学工业出版社), 2020.
- [26] TUCI G, LIU Y, ROSSIN A, *et al.* Porous silicon carbide (SiC): A chance for improving catalysts or just another active-phase carrier?[J]. Chemical Reviews, 2021, 121(17): 10559-10665.
- [27] HAO C H, GUO X N, SANKAR M, et al. Synergistic effect of segregated Pd and Au nanoparticles on semiconducting SiC for efficient photocatalytic hydrogenation of nitroarenes[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23029-23036.
- [28] LI L, JIAO Z F, ZHAO J X, et al. Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support[J]. Journal of Catalysis, 2023, 425: 314-321.
- [29] WANG J R, ZHU S H, WANG Y W, et al. Enhanced activity of Ru-Ir nanoparticles over SiC for hydrogenation of levulinic acid at room-temperature[J]. Materials Research Bulletin, 2021, 135: 111128.
- [30] JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous and Mesoporous Materials, 2003, 60(1): 207-212.
- [31] CAI W J (蔡文静), JIAO Z F (焦志锋), ZHANG C D (张成都), et al. Selective hydrogenation of phenylacetylene on Pd/SiC catalysts[J]. Petrochemical Technology (石油化工), 2021, 50(7): 629-634.
- [32] GUO Z L, LIU Y F, LIU Y, et al. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene[J]. Applied Surface Science, 2018, 442: 736-741.
- [33] SHAIK H, THULASI RAMAN K H, RAO G M. Influence of Si—C bond density on the properties of α-Si_{1-x}C_x thin films[J]. Applied Surface Science, 2012, 258(7): 2989-2996.
- [34] KRASOVSKII P V, LEBEDEV A M. Evidence for heterogeneous oxidation on the surface of a plasma SiC nanopowder based on synchrotron-excited XPS[J]. Ceramics International, 2023, 49(24): 40995-41000.
- [35] WANG B J, YIN H J, CHEN D H, et al. Optical and surface properties of 3C-SiC thin epitaxial films grown at different temperatures on 4H-SiC substrates[J]. Superlattices and Microstructures, 2021, 156: 106960.

- [36] JIAO Z F, TIAN Y M, ZHANG B, et al. High photocatalytic activity of a NiO nanodot-decorated Pd/SiC catalyst for the Suzuki-Miyaura cross-coupling of aryl bromides and chlorides in air under visible light[J]. Journal of Catalysis, 2020, 389: 517-524.
- [37] JIAO Z F, GUO X N, ZHAI Z Y, et al. The enhanced catalytic performance of Pd/SiC for the hydrogenation of furan derivatives at ambient temperature under visible light irradiation[J]. Catalysis Science & Technology, 2014, 4(8): 2494-2498.
- [38] JIAO Z F, ZHAI Z Y, GUO X, et al. Visible-light-driven photocatalytic Suzuki-Miyaura coupling reaction on Mott-Schottkytype Pd/SiC catalyst[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3238-3243.
- [39] PAN H Y, LI X H, YIN Y, et al. Pt nanoparticles entrapped in mesoporous metal-organic frameworks MIL-101 as an efficient catalyst for liquid-phase hydrogenation of benzaldehydes and nitrobenzenes[J]. Journal of Molecular Catalysis A: Chemical, 2015, 399: 1-9.
- [40] HADDAD N, SAADI A, LÖFBERG A, et al. Benzaldehyde reduction over Cu-Al-O bimetallic oxide catalyst. Influence of pH during hydrothermal synthesis on the structural and catalytic properties[J]. Journal of Molecular Catalysis A: Chemical, 2015, 396: 207-215.
- [41] SONG L Y, LI X H, WANG H N, *et al.* Ru nanoparticles entrapped in mesopolymers for efficient liquid-phase hydrogenation of unsaturated compounds[J]. Catalysis Letters, 2009, 133(1): 63-69.
- [42] WANG L F (王柳枫), XU Z C (徐志超), LI Q (李琪), et al. Effect of acid/base impregnation conditions on hydrogenation performance of palladium carbon catalysts[J]. Precious Metals (贵金属), 2021, 42(2): 56-61.
- [43] ZHENG T, WU F S, FU H, et al. Rational design of Pt-Pd-Ni trimetallic nanocatalysts for room-temperature benzaldehyde and styrene hydrogenation[J]. Chemistry-An Asian Journal, 2021, 16(16): 2298-2306.
- [44] LICHTENBERGER J, HARGROVE-LEAK S C, AMIRIDIS M D. In-situ FTIR study of the adsorption and reaction of 2'-hydroxyacetophenone and benzaldehyde on MgO[J]. Journal of Catalysis, 2006, 238(1): 165-176.
- [45] KANG Y Y, WANG Z W, SHI Y Z, et al. Synthesis of aluminum doped MIL-100(Fe) compounds for the one-pot photocatalytic conversion of cinnamaldehyde and benzyl alcohol to the corresponding alcohol and aldehyde under anaerobic conditions[J]. Journal of Catalysis, 2022, 406: 184-192.
- [46] LUO H X, CHEN W D, HU J M, et al. Highly selective oxidation of toluene to benzaldehyde in alkaline systems[J]. Industrial & Engineering Chemistry Research, 2023, 62(26): 10051-10056.
- [47] BOULHO C, GIBSON E K, MCALLISTER M I, et al. The application of attenuated total reflection infrared spectroscopy to investigate the liquid phase hydrogenation of benzaldehyde over an alumina-supported palladium catalyst[J]. Topics in Catalysis, 2020, 63(3): 386-393.
- [48] ZHANG N, XU Y J. Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO₂ as a robust nanocatalyst achieved by a hollow core-shell strategy[J]. Chemistry of Materials, 2013, 25(9): 1979-1988.
- [49] TIE K, PAN X L, HE L, et al. Pd supported on NC@SiC as an efficient and stable catalyst for 4-carboxybenzaldehyde hydrogenation[J]. Catalysis Communications, 2018, 110: 79-82.