催化与分离提纯技术

VO@g-C₃N₄-T 高效可见光催化苯羟基化制苯酚

陈福山^{1,2},杨 涛^{1,2*},胡华南^{1,2}

(1. 九江学院 化学与环境工程学院,江西 九江 332005;2. 江西省生态化工工程技术研究中心,江西 九 江 332005)

摘要: 以尿素和乙酰丙酮氧钒为原料, 将乙酰丙酮氧钒络合在纳米薄片石墨化氮化碳上, 得到系列不同 V 质量 分数的光催化剂(VO@g-C₃N₄-T), 将其与石墨化氮化碳(g-C₃N₄)、钒氧化合物负载在石墨化氮化碳上得到的 催化剂(VO/g-C₃N₄)进行了催化苯羟基化的性能对比。采用 N₂ 吸附-脱附、X 射线衍射光谱(XRD)、傅里叶 变换红外光谱(FTIR)、扫描电镜(SEM)、能谱(EDS)、电感耦合等离子体-原子发射光谱(ICP-AES)对制 备的催化剂进行了表征。考察了所得催化剂可见光下催化苯羟基化制苯酚的性能。结果表明,高比表面积、纳 米薄片状的 VO@g-C₃N₄-T 催化剂具有合适的带差,对可见光下催化苯的 C—H 活化及羟基化具有较好的催化性 能,苯的转化率和苯酚选择性分别可以达到 98.4%、91.1%。由于石墨化氮化碳和钒具有较强的相互作用,减少 了钒的溶脱,所以该催化剂具有很好的可重复使用性,连续使用 5 次后,苯的转化率和苯酚的选择性仍然可以 达到 97.1%和 91.0%。

关键词: C—H 活化; 氮化碳; 光催化; 多相催化剂; 苯羟基化; 催化技术 中图分类号: O643; O644 文献标识码: A 文章编号: 1003-5214 (2018) 09-1535-07

Photocatalytic Synthesis of Phenol by Hydroxylation of Benzene over VO@g-C₃N₄-T under Visible Light

CHEN Fu-shan^{1,2}, YANG Tao^{1,2*}, HU Hua-nan^{1,2}

(1. Department of Chemistry and Environment Engineering, Jiujiang University, Jiujiang 332005, Jiangxi, China;
2. Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang 332005, Jiangxi, China)

Abstract: Oxovanadium-graphitic carbon nitride thin nanosheet (VO@g-C₃N₄-T) of different V mass fractions was prepared using urea and vanadium (IV) oxy acetylacetonate as precursors, and was compared with graphite nitride carbon (g-C₃N₄) and oxovanadium-supported graphite nitride carbon (VO/g-C₃N₄) for catalytic performance of benzene hydroxylation. The samples were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FTIR), N₂ adsorption, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The photocatalytic performances of the obtained samples were tested in the hydroxylation of benzene to produce phenol under visible light. The results showed that VO@g-C₃N₄-T nanosheets possessed large specific surface area and had favorable bandgap, which resulted in a very good photocatalytic activity for the hydroxylation of benzene *via* C–H activation under visible light. 98.4% conversion of benzene was obtained, and the selectivity to phenol was as high as 91.1%. The good reusability of catalyst was attributed to strong interaction between graphitic carbon nitride surface and vanadium metal, which could minimize vanadium leaching. After being reused five times, the conversion of benzene and the selectivity of phenol still could be up to 97.1% and 91.1%, respectively.

Key words: C-H activation; carbon nitride; photocatalysis; heterogeneous catalyst; hydroxylation of benzene; catalysis technology

Foundation item: National Natural Science Foundation of China (21566013)

收稿日期: 2017-09-22; 定用日期: 2018-01-12; DOI: 10.13550/j.jxhg.20170771

基金项目: 国家自然科学基金 (21566013)

作者简介:陈福山(1977—),男,讲师,博士,E-mail: 93626288@qq.com。联系人:杨 涛(1977—),男,副教授,博士,电话: 0792-8314448。

苯酚主要用于酚醛树脂、双酚 A、环氧树脂等 的生产^[1]。工业合成苯酚的常用方法为三步异丙苯 氧化法^[2-3]。该工艺具有能耗高、装置复杂、苯酚收 率低、副产物多和污染环境等缺点。氧化苯制苯酚 的反应中,以空气、H₂O₂为清洁氧化剂,唯一的副 产物是水,所以,其是代替异丙苯法生产苯酚的新 途径。钛硅分子筛(TS-1)在苯一步羟基化过程中, 对 H₂O₂具有较好的活化能力,但是由于苯酚在热力 学上比苯更容易氧化,因此,此方法的工业应用仍然 具有较大的难度^[4-6]。Rajaram^[7]等以空气为氧源, CuO/CuCr₂O₄ 对苯一步羟基化具有较好的催化效 果,但反应条件苛刻,收率也不高。可见光催化具 有室温催化性能好、二次污染小、运行成本低和有 望利用太阳光为反应光源等优点,因此受到更多关 注^[8]。g-C₃N₄由于具有 2.7 eV 的带差(禁带和导带 的差值),在可见光区域也能进行吸收,很大程度上 利用了光能^[8],在光催化有机反应中受到研究者广 泛关注^[9]。王心晨^[10]等在可见光下,以 Fe-g-C₃N₄ 为催化剂,H₂O₂为氧源,可见光对苯直接羟基化制 苯酚具有明显的促进作用,且H2O2的利用率较高。 Verma^[11-12]等发现,在可见光和 H₂O₂ 作用下, VO@g-C₃N₄催化剂对烃类C-H具有较好的活化氧 化能力,且其具有优良的稳定性,可重复使用多次。 Ajayan^[13]等发现,用大量溶剂对大块g-C₃N₄进行液 相超声剥离后,纳米薄片 g-C₃N₄具有很好的可见光 催化活性。Verma^[14]等发现,用大量水对 g-C₃N₄进行 超声剥离后,负载 Cu 和 Ag 纳米颗粒,制成 CuAg@g-C₃N₄催化剂,用其在可见光下催化苯羟基 化反应, 0.5h 后苯的转化率就能达到 99%, 具有极 高的活性。

本文以尿素和乙酰丙酮氧钒为原料,制得纳米 薄片 VO@g-C₃N₄-T 催化剂,以苯一步羟基化为探 针反应,在可见光和 H₂O₂条件下,考察了催化剂对 苯羟基化反应的光催化性能。

1 实验部分

1.1 试剂和仪器

苯、乙腈、尿素: AR, 国药集团化学试剂有限 公司; H₂O₂ (质量分数 30%)、乙酰丙酮氧钒 〔VO(acac)₂]: AR, 阿拉丁化学试剂有限公司。

1.2 制备

参照文献[12]、[13]制备催化剂。

1.2.1 g-C₃N₄的制备

10g尿素研细后装入坩埚中,盖上盖子,放入 马弗炉,升温速率为15℃/min,升到500℃,保温 3h,冷却后将产物在玛瑙研钵中研细,得到淡黄色 粉末。然后盖上盖子,再放入马弗炉,升温速率为 15 ℃/min, 升到 500 ℃, 保温 3 h, 冷却后得到淡黄 色粉末即为 g-C₃N₄, 收集待用。

1.2.2 VO/g-C₃N₄的制备

将 0.265 g VO(acac)₂加入到 50 mL 体积分数为 50%的甲醇水溶液中,搅拌溶解,再加入 0.5 g g-C₃N₄,以 700 r/min 搅拌 30 min,过滤,滤饼用甲醇洗涤,然后在真空烘箱中,50 ℃干燥 12 h,产物 即为 VO/g-C₃N₄。

1.2.3 VO@g-C₃N₄-T 的制备

将 0.5 g g-C₃N₄放入装有 500 mL 体积分数为 50%的甲醇水溶液的烧杯中超声 2 h。将 0.265 g VO(acac)₂加入到 50 mL 体积分数为 50%的甲醇水溶 液中,搅拌溶解。将上述 2 种溶液混合后再超声分 散 6 h。混合物过滤,滤饼用甲醇洗涤,然后在真空 烘箱中 50 °C干燥 12 h,产物即为 V 负载量为 10% (以 g-C₃N₄的质量为基准,下同)的 VO@g-C₃N₄-T,标记为 VO@g-C₃N₄-T (10.0% V)。

改变 VO(acac)₂的用量,其他实验方法同上, 制得 V 负载量分别为 2.5%、5.0%、20.0%的 VO@g-C₃N₄-T,分别标记为 VO@g-C₃N₄-T(2.5% V)、VO@g-C₃N₄-T(5.0% V)和 VO@g-C₃N₄-T (20.0% V)。

1.3 催化剂活性评价

将 25 mg VO@g-C₃N₄-T 催化剂与 0.0391 g (0.5 mmol)苯、2 mL 乙腈超声混合均匀后,倒入 自制的光催化反应器内,加入 0.0680 g (0.6 mmol) H₂O₂ (质量分数 30%),以 700 r/min 速度搅拌,用 30 W 白炽灯泡直接光照 12 h,反应结束后,离心分 离出催化剂。用气-质联用仪对产物进行定性,以甲 苯为内标物,用气相色谱仪对产物进行定量。苯的转 化率、苯酚的选择性及苯酚的收率计算公式如下:

 $\operatorname{Conv./\%} = \frac{n_{\text{phenol}} + n_{\text{by-product}}}{n_{\text{benzene}} + n_{\text{phenol}} + n_{\text{by-product}}} \times 100$ $\operatorname{Sel./\%} = \frac{n_{\text{phenol}}}{n_{\text{phenol}} + n_{\text{by-product}}} \times 100$ $\operatorname{Yield/\%} = \operatorname{Conv.} \times \operatorname{Sel.} \times 100$

1.4 表征与测试

采用 X-Pert Pro 型 X 射线衍射仪(荷兰 PNAlytical 公司, Ni 滤波, Cu K_a 辐射源, 工作电压 40 kV, 工作电流 30 mA)进行样品晶体结构测定(2 θ = 10°~80°); 采用 VERTEX 70 傅里叶变换红外光谱仪 (德国 Bruker 公司, 压片法)进行 FTIR 测试; 采 用 3Flex 型表面性质分析仪(美国 Micromeritics 公 司)对样品进行比表面积测定, 样品先在 150 ℃脱 气预处理 4 h,比表面积通过 Brunauer-Emmett-Teller 方法^[15]求得; 采用 S-4700 II 扫描电子显微镜(日本 Hitachi 公司)对样品进行 SEM 表征; 采用能谱仪 (S-4700 II 扫描电子显微镜配套) 对样品进行 EDS 测试;采用 Optima-8000 电感耦合等离子体-原子发 射光谱仪(美国 Perkin-Elmer 公司) 对样品进行元 素含量分析;采用 TRACE1310-TSQ8000Evo 气相色 谱-质谱联用仪(美国 Thermo Fisher 公司) 对产物 成分进行定性检测;采用 6890N 气相色谱仪(美国 Agilent 公司,进样口温度 250 ℃, FID 温度 300 ℃, 色谱柱 HP-5) 对产物成分进行定量检测。

2 结果与讨论

2.1 表征结果

2.1.1 BET 分析

图 1 为 g-C₃N₄、VO/g-C₃N₄和 VO@g-C₃N₄-T (10.0% V)的 N₂吸附-脱附等温线。由图 1 可知, 上述3个样品的吸附-脱附等温线属于Ⅳ类型,表明 3种样品均具有介孔结构。等温线为H3回滞环,说 明3种样品可能均是层状结构的聚集体,这种类型的 回滞环是片状颗粒的非刚性聚集体的典型特征[16-17]。 表1是样品 g-C₃N₄、VO/g-C₃N₄及 VO@g-C₃N₄-T 的 比表面积、孔容及孔径的测试结果。样品 g-C₃N₄、 VO/g-C₃N₄及 VO@g-C₃N₄-T 的比表面积(S_{BET})分别 为 37.8、37.2 和 76.1 m²/g。可以看出, VO@g-C₃N₄-T 的 SBET 显著提高。这主要是由于大块的 g-C₃N₄通过甲 醇水溶液超声剥离成纳米薄层 g-C₃N₄所致^[13]。具有 大的比表面积对光催化剂是至关重要的,其既有利 于光的捕获,也有利于对反应物和产物的吸附和传 输^[13,18-19]。由表1可知, VO@g-C₃N₄-T的孔容(V_p) 是 0.597 cm³/g, 比 g-C₃N₄ (0.223 cm³/g)、VO/g-C₃N₄ (0.205 cm³/g)高约3倍。这可能是由于g-C₃N₄剥 离后,纳米薄碎片堆积所造成。VO@g-C₃N₄-T的平 均孔径 (D_p) 比 g-C₃N₄小,这主要是剥离后薄片堆 积形成较多的小孔所致。

图 1 (A) g-C₃N₄、(B) VO/g-C₃N₄和(C) VO@g-C₃N₄-T 的 N₂吸附-脱附等温线

Fig. 1 Nitrogen adsorption-desorption isotherms of (A) g-C₃N₄,(B) VO/g-C₃N₄ and (C) VO@g-C₃N₄-T 表 1 g-C₃N₄、VO/g-C₃N₄及 VO@g-C₃N₄-T 的比表面积、 孔容及孔径

Table 1Specific surface area, pore volume and pore size
distribution of g-C3N4,VO/g-C3N4 and VO@g-C3N4-T

	$S_{\rm BET}^{\rm a}/({\rm m}^2/{\rm g})$	$V_p^{\rm b}/({\rm cm}^3/{\rm g})$	$D_{\rm p}^{\rm c}/{\rm nm}$	
$g-C_3N_4$	37.8	0.223	34.5	
$VO/g-C_3N_4$	37.2	0.205	24.8	
VO@g-C ₃ N ₄ -T	76.1	0.597	31.7	

a: BET 法比表面积, b: BJH 法脱附测定的孔容, c: BJH 法脱附测定的平均孔径。

2.1.2 XRD 分析

图 2 为样品 g-C₃N₄、VO/g-C₃N₄及 VO@g-C₃N₄-T (10.0% V)的 XRD 图谱。3个样品的 XRD 图中均 有两个特征峰,分别位于 2θ为 13.1°和 27.2°处,对 应 g-C₃N₄(JCPDS 87-1526) 卡片中的(002) 和(100) 晶面。其中, 27.2°处的衍射峰最强, 为芳香物层间 堆积特征峰,对应层间距 d = 0.33 nm,说明 g-C₃N₄ 具有类似石墨的层状结构。13.1°处的衍射峰是缩聚 碳氮环 (melon) 类物质的特征峰, 对应均三嗪结构 中氮孔间距 (d=0.67 nm), 是结构中存在较小倾斜 角引起的^[8]。样品 VO@g-C₃N₄-T 只有 27.2°处的衍 射峰,且衍射峰的强度明显减弱,无定型程度增加。 主要是由于样品被剥离后,芳香物层间堆积程度变 弱,大块厚的g-C₃N₄被剥离成纳米薄片^[13],这和BET 测试结果基本吻合。VO@g-C₃N₄-T在13.1°处的衍射 峰消失,主要是由于被液相剥离后 g-C₃N₄的(100) 晶面被破坏,结构缺陷形成引起的^[20]。VO/g-C₃N₄和 VO@g-C₃N₄-T 样品均未出现明显的钒的衍射峰, 主 要是由于钒化合物和 g-C₃N₄ 较强的络合作用,没有 晶体状钒氧化物生成,说明钒化合物在g-C₃N₄表面 得到了高度的分散^[12]。

- 图 2 (A)g-C₃N₄、(B)VO/g-C₃N₄和(C) VO@g-C₃N₄-T XRD 谱图
- Fig. 2 XRD patterns of (A) g-C₃N₄, (B)VO/g-C₃N₄ and (C) VO@g-C₃N₄-T

2.1.3 FTIR 分析

图 3 为 g-C₃N₄ 和 VO@g-C₃N₄-T(10.0% V)的

红外光谱图。3000~3500 cm⁻¹处峰归属于 g-C₃N₄中 部分 N—H 的伸缩振动^[21], 2150 cm⁻¹处吸收峰归属于 g-C₃N₄末端的 C=N^[21],在 1250、1325、1420、1573 和 1635 cm⁻¹处较强的吸收峰归属于 g-C₃N₄中碳氮 杂环的振动,在 816 和 892 cm⁻¹处吸收峰归属于 g-C₃N₄中三嗪环的骨架振动^[22]。表明未剥离的 g-C₃N₄ 和剥离络合后纳米薄片 VO@g-C₃N₄-T 中 g-C₃N₄的 FTIR 光谱极其相似,说明剥离前、后 g-C₃N₄的化 学结构基本保持一致。VO@g-C₃N₄-T 在 982 cm⁻¹ 处观察 到独有的、较弱的吸收峰,这归属于 VO(acac)₂中 V=O 的伸缩振动,与文献报道^[23]的纯 VO(acac)₂中 V=O 伸缩振动峰(997 cm⁻¹)相比向高 波数偏移,这可能是 VO(acac)₂和纳米薄片 g-C₃N₄发 生了明显的络合作用所致,与文献报道基本相符^[24]。

图 3 g-C₃N₄和 VO@g-C₃N₄-T 的红外光谱图 Fig. 3 FTIR spectra of g-C₃N₄ and VO@g-C₃N₄-T

2.1.4 SEM、EDS及ICP-AES分析

图 4 是 g-C₃N₄、VO/g-C₃N₄及 VO@g-C₃N₄-T (10.0% V)样品的 SEM 照片。由图 4A 可见,样 品 g-C₃N₄是不规则的块状结构,表面是较厚的片状 固体,片的表面光滑平整,片与片之间堆积得非常 致密。图 4B、C 显示,样品 VO/g-C₃N₄呈现相对分 散的、大小不一的碎片结构,碎片上面有许多不规 则的空隙。由图 4D、E 看出,样品 VO@g-C₃N₄-T 表面有许多褶皱弯曲的纳米薄片,在片上有大量的 小空隙,片与片之间得到了非常好的分散。这表明 通过简单的超声溶剂剥离法成功制备出了大比表面 积的纳米薄片 VO@g-C₃N₄-T 光催化剂,和 BET、 XRD 测试结果基本一致。图 4F 显示,催化剂 VO@g-C₃N₄-T 套用 5 次后保持了大比表面积的纳米 薄片状结构,未发生明显团聚现象。

- 图 4 g-C₃N₄ (A)、VO/g-C₃N₄ (B, C)、VO@g-C₃N₄-T (D, E)及套用 5 次后 VO@g-C₃N₄-T (F)的 SEM 图
- Fig. 4 SEM images of g-C₃N₄ (A), VO/g-C₃N₄(B, C), VO@g-C₃N₄-T (D, E) and recycled five times VO@g-C₃N₄-T (F)

图 5 是 VO/g-C₃N₄和 VO@g-C₃N₄-T 的 EDS 谱 图。结果表明, VO/g-C₃N₄和 VO@g-C₃N₄均由 V、 O、N、C 这 4 种元素组成。ICP-AES 测试表明, VO/g-C₃N₄和 VO@g-C₃N₄-T 中 V 元素质量分数分别 是 7.76%、9.78%。结合 FTIR 及 XRD 可知, 钒氧 化物被很好地固定在纳米薄片 g-C₃N₄上,并达到了 高度的分散。

2.2 催化剂的活性评价

以 H₂O₂作为绿色氧化剂,不同催化剂及不同反应条件对苯羟基化反应的影响见表 2。

表 2 苯羟基化催化剂的筛选 ^a Table 2 Screening of catalysts for hydroxylation of benzene^a

No.	Catalyst	Conv./%	Sel./%	Phenol yield/%
1	g-C ₃ N ₄	0	—	_
2	VO(acac) ₂	<3.0	98.5	<3.0
3	$VO/g-C_3N_4 (10.0\% V)$	27.9	97.2	27.1
4 ^b	VO@g-C ₃ N ₄ (10.0% V)	84.5	94.6	79.9
5	VO@g-C ₃ N ₄ -T (2.5% V)	28.6	97.0	27.7
6	VO@g-C ₃ N ₄ -T (5.0% V)	72.4	96.5	69.9
7	VO@g-C ₃ N ₄ -T(10.0% V)	98.4	91.1	89.6
8	VO@g-C ₃ N ₄ -T(20.0% V)	96.8	91.4	88.5
9°	VO@g-C ₃ N ₄ -T(10.0% V)	83.8	94.3	79.0
10^{d}	VO@g-C ₃ N ₄ -T(10.0% V)	94.7	91.6	86.7
11 ^e	VO@g-C ₃ N ₄ -T(10.0% V)	<3.0	98.4	<2.9

a -C₆H₆(0.5 mmol), CH₃CN (2 mL), w(H₂O₂)=30%(0.6 mmol), 30 W 白炽灯泡,催化剂(25 mg),室温,反应时间(12 h), V 负载量为质量分数; b-由焙烧 1 次的 g-C₃N₄所制; c-H₂O 为溶剂; d-乙醇为溶剂; e-反应在暗室中进行。

由表 2 中 No.1、2 可看出, 大块较厚的 g-C₃N₄、 VO(acac)2 催化剂在可见光作用下,对苯羟基化完 全没有活性或活性极弱。No.3 显示,负载型 VO/g-C₃N₄(10.0% V)催化剂有可见光催化活性, 苯转化率可以达到 27.9%, 苯酚的选择性和收率 分别为 97.2%、27.1%。No.5~8 表明, VO@g-C₃N₄-T 随着 V 负载量的增加,其可见光催化活性也增 强, VO@g-C₃N₄-T (10.0% V)具有最高的苯转化率 (98.4%), 苯酚选择性有部分下降, 降为 91.1%, 副产 物是苯二酚和苯醌, 苯酚收率为 89.6%, VO@g-C₃N₄-T (20.0% V)活性略有下降。这可能是由于 g-C₃N₄ 剥离 成大比表面积的、具有较高光催化活性的纳米薄片 后,络合了高度分散的 VO(acac)₂ 分子^[12],形成了 具有较强协同效应的特殊材料。这种材料可能具有 对可见光催化苯羟基化合适的带差^[13]。选择性较高 的原因可能是疏水性石墨化氮化碳表面对于非极性 苯分子容易吸附, 而对于极性苯酚分子易于脱附所 致^[24-25]。由 No.4 可看出,由只焙烧 1 次的 g-C₃N₄ 制备的 VO@g-C₃N₄ (10% V)催化剂活性有所降低, 与没有经过热氧化刻蚀的 g-C₃N₄相比, g-C₃N₄经过 热氧化刻蚀后光催化活性明显提高,这与文献报道 基本一致^[26]。当把溶剂由乙腈换成水和乙醇后,由 No.9、10 可以看出,苯转化率都有部分下降。如果 在暗室中进行反应,由 No.11 可以看出,反应具有极 低的苯转化率(小于 3.0%),和 No.2 基本一致。这 可能是由于钒元素本身在室温下对苯羟基化具有较 弱的催化作用所致^[25]。

将 VO@g-C₃N₄-T 可见光下催化苯羟基化反应 结果与文献报道的其他 g-C₃N₄类催化剂苯羟基化反 应结果进行比较,结果见表 3。

表 3 光催化剂 VO@g-C₃N₄-T 催化苯羟基化结果与文献 比较

Fable	3	Results	of	hydroxylation	of	benz	zene	over
		photoact	ive	$VO@g-C_3N_4-T$	cat	alyst	com	pared
	with those of literatures							

No.	Catalyst	t/h	Result of Hydroxylation/%	Reference
1	Fe-g-C ₃ N ₄	4	4.8 ^c	[10]
2	Fe-g-C ₃ N ₄ /SBA-15	4	11.9 ^c	[27]
3	Fe-MCN	12	14.4 ^y	[28]
4	Fe-C ₃ N ₄ /TS-1	4	10.0 ^y	[29]
5	VO@g-C ₃ N ₄	_	91.6 ^y	[11]
6	$CuAg@g-C_3N_4$	0.5	99.0°	[14]
7	VO@g-C ₃ N ₄ -T (10.0% V)	4	57.5°(56.3 ^y)	this work
8	VO@g-C ₃ N ₄ -T (10.0% V)	12	98.4°(89.6 ^y)	this work

c, y分别指转化率和收率。

由表3可见,No.1~4中为g-C₃N₄基铁系催化剂, 在可见光催化下都具有较低的苯转化率或苯酚收 率。最低的为 Fe-g-C₃N₄, 苯转化率只有 4.8%, Fe-MCN 具有较高的苯酚收率,为 14.4%。No.5 VO@g-C₃N₄催化剂在可见光条件下,以 H₂O₂为氧 化剂,苯羟基化的收率达到了 91.6%,可是文献未 提到反应时间。No.6显示,CuAg@g-C₃N₄催化剂 对于苯羟基化具有最高的可见光催化活性,0.5h后 苯的转化率就达到 99.0%,但文献没有报道选择性 和收率。与表3文献报道的其他g-C₃N₄基催化剂相 比,No.7 VO@g-C₃N₄-T(10.0%V)催化剂不仅具有较 高的催化活性,还有较高的选择性,4h苯转化率和 苯酚收率可达到 57.5%、56.3%,12h可达到 98.4%、 89.6%。

反应结束后,离心分离出催化剂,50℃下真空 干燥,然后在相同条件下重复使用,结果如图 6 所示。 循环套用 5 次后,苯酚的转化率和选择性仍然保持 在 97.1%、91.0%。结果表明,催化剂 VO@g-C₃N₄-T 具有较好的稳定性和多相性。通过对使用 5 次后的 催化剂进行 ICP-AES 分析可知, VO@g-C₃N₄-T 催 化剂中 V 质量分数仍能达到 9.69%,和新鲜的 9.78% 相比,说明催化剂中钒元素在反应中基本没有溶脱, 这与文献报道基本一致^[11]。在对反应液进行 ICP-AES 测试发现,反应液中没有发现钒元素的存在,可能 是钒化合物和 g-C₃N₄具有非常强的结合力所致。结 合套用 5 次后的 SEM (图 4F)表征可知,该催化剂 套用前、后其形貌没有明显改变,这可能是该催化 剂稳定性较好的重要原因。

反应条件: C₆H₆(0.5 mmol), CH₃CN (2 mL), w(H₂O₂)=30% (0.6 mmol), 30 W 白炽灯泡, 催化剂(25 mg), 室温, 反应时间 (12 h)

图 7 是参照文献[14]提出的苯羟基化可能的光 催化机理。

图 7 苯羟基化可能的光催化机理 Fig. 7 Possible photocatalytic mechanism of hydroxylation of benzene under visible light

H₂O₂ 在 VO@g-C₃N₄-T 催化剂表面被光照产生 羟基自由基,在石墨化氮化碳表面通过非共价键作 用及催化剂的作用,苯分子的 C—H 得到活化。产 生的羟基自由基和活化的苯分子作用形成了苯酚。

3 结论

采用简单的尿素热解、超声液相剥离及与乙酰 丙酮氧钒络合的方法制备了 VO@g-C₃N₄-T 催化剂。 并用于可见光下催化苯羟基化反应,具有较高的光 催化活性。剥离成薄片的 g-C₃N₄和乙酰丙酮氧钒络 合可能形成一种特殊的结构,且具有较强的协同效 应,导致这种催化剂具有合适的带差,对可见光催 化苯羟基化具有较好的响应。富含氮原子的纳米薄 片石墨化氮化碳表面对于吸收可见光、扩散反应介 质也具有重要的作用,促进了苯羟基化中 C-H 的 活化。

参考文献:

- Ehrich H, Berndt H, Pohl M-M, *et al.* Oxidation of benzene to phenol on supported Pt-VO_x and Pd-VO_x catalysts [J]. Applied Catalysis A: General, 2002, 230(1/2): 271-280.
- [2] Herron N, Tolman C A. A highly selective zeolite catalyst for hydrocarbon oxidation. A completely inorganic mimic of the alkane ω-hydroxylases [J]. Journal of the American Chemical Society, 1987, 109(9): 2837-2839.
- [3] Mimoun H, Saussine L, Daire E, et al. Vanadium(V) peroxy complexes. New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons [J]. Journal of the American Chemical Society, 1983, 105(10): 3101-3110.
- [4] Tani M, Sakamoto T, Mita S, *et al.* Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphoric acid [J]. Angewandte Chemie International Edition, 2005, 44(17): 2586-2588.
- [5] Bal R, Tada M, Sasaki T, *et al.* Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst [J]. Angewandte Chemie International Edition, 2006, 45(3): 448-452.
- [6] Balducci L, Bianchi D, Bortolo R, *et al.* Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite [J]. Angewandte Chemie, 2003, 115(40): 5087-5090.
- [7] Acharyya S S, Ghosh S, Tiwari R, et al. Synergistic effect between ultrasmall Cu(II) oxide and CuCr₂O₄ spinel nanoparticles in selective hydroxylation of benzene to phenol with air as oxidant [J]. ACS Catalysis, 2015, 5(5): 2850-2858.
- [8] Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89.
- [9] Dai Xiaoqiang (戴小强), Zhu Yabo (朱亚波), Xu Xiaoliang (许孝良), et al. Photocatalysis with g-C₃N₄ applied to organic synthesis
 [J]. Chinese Journal of Organic Chemistry (有机化学), 2017, 37(3): 577-585.
- [10] Chen Xiufang, Zhang Jinshui, Fu Xianzhi, et al. Fe-g-C₃N₄-Catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light [J]. Journal of the American Chemical Society, 2009, 131(33): 11658-11659.
- [11] Verma S, Nasir Baig R B, Nadagouda M N, et al. Photocatalytic C–H activation of hydrocarbons over VO@g-C₃N₄ [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2333-2336.
- [12] Verma S, Baig R B N, Han C, *et al.* Oxidative esterification *via* photocatalytic C—H activation[J]. Green Chemistry, 2016, 18(1): 251-254.
- [13] Yang S, Gong Y, Zhang J, *et al.* Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light [J]. Advanced Materials, 2013, 25(17): 2452-2456.
- Verma S, Nasir Baig R B, Nadagouda M N, et al. Hydroxylation of benzene via C—H activation using bimetallic CuAg@g-C₃N₄ [J].
 ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3637-3640.
- [15] Sing K S W, Everett D H, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of

surface area and porosity [J].Pure and Applied Chemistry, 1985, 57(4): 603-619.

- [16] Yu J, Xiang Q, Ran J, *et al.* One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO₂ hollow microspheres and tabular anatase single micro-crystals with high-energy facets [J]. Cryst Eng Comm, 2010, 12(3): 872-879.
- [17] Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO₂ nanosheets with exposed (001) facets [J]. The Journal of Physical Chemistry C, 2010, 114(30): 13118-13125.
- [18] Qi L, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H₂-production activity of CdS-sensitized Pt/TiO₂ nanosheets with exposed (001) facets [J]. Physical Chemistry Chemical Physics, 2011, 13(19): 8915-8923.
- [19] Li X, Huang R, Hu Y, *et al.* A templated method to Bi₂WO₆ hollow microspheres and their conversion to double-shell Bi₂O₃/Bi₂WO₆ hollow microspheres with improved photocatalytic performance [J]. Inorganic Chemistry, 2012, 51(11): 6245-6250.
- [20] Ge L. Synthesis and photocatalytic performance of novel metal-free g-C₃N₄ photocatalysts [J]. Materials Letters, 2011, 65(17/18): 2652-2654.
- [21] Li Y, Zhang J, Wang Q, *et al.* Nitrogen-rich carbon nitride hollow vessels: synthesis, characterization, and their properties [J]. The Journal of Physical Chemistry B, 2010, 114(29): 9429-9434.
- [22] Ding J, Liu Q, Zhang Z, et al. Carbon nitride nanosheets decorated with WO₃ nanorods: Ultrasonic-assisted facile synthesis and catalytic

(上接第1534页)

- [6] Sablok K, Bhalla V, Sharma P, et al. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene[J]. Journal of Hazardous Materials, 2013, 248: 322-328.
- [7] Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose by amorphous carbon bearing SO₃H, COOH, and OH groups [J]. Journal of the American Chemical Society, 2008, 130(38): 12787-12793.
- [8] Zhang W H, He P P, Wu S, et al. Graphene oxide grafted hydroxyl-functionalized ionic liquid: a highly efficient catalyst for cycloaddition of CO₂ with epoxides[J]. Applied Catalysis A: General, 2016, 509: 111-117.
- [9] Zhang F, Jiang H, Wu X, et al. Organoamine-functionalized graphene oxide as a bifunctional carbocatalyst with remarkable acceleration in a one-pot multistep reaction[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1669-1677.
- [10] Hu Ling (胡令), Jiang Pingping (蒋平平), Zhang Pingbo (张萍 波), et al. Synthesis and properties of waterborne polyurethane modified by aminated graphene [J]. Fine Chemicals (精细化工), 2017, 34(1): 20-27.
- [11] Wei D, Liu Y, Wang Y, *et al.* Synthesis of *N*-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758.
- [12] Zhang Yu (张玉), Yang Jianjun (杨建军), Wu Qingyun (吴庆云), et al. Preparation and performance study of reduced silanizedgrapheneoxide waterborne polyurethane composites[J]. Fine Chemicals (精细化工), 2016, 33(3): 241-246.
- [13] Zhu Xingxing (朱星兴), Zhu Jiagui (朱家贵), Gu Yaokun (顾耀 坤), et al. Transesterification of ethylene carbonate catalyzed by graphite oxide [J]. Journal of Changzhou University (Natural Science Edition)(常州大学学报:自然科学版), 2016, 28(2): 41-45.
- [14] Liu P, Chang W T, Wu M Y, et al. A highly efficient Pd/graphene oxide catalyst with abundant oxygen groups for the hydrogenation of olefins [J]. Reac Kinet Mech Cat, 2015, 116: 409-419.
- [15] Dreyer D R, Park S J, Bielawski W B, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39: 228-240.

application in the green manufacture of dialdehydes [J]. Applied Catalysis B-Environmental, 2015, 165: 511-518.

- [23] Bao Y H, Jiang H, Xing W H, et al. Liquid phase hydroxylation of benzene to phenol over vanadyl acetylacetonate supported on amine functionalized SBA-15 [J]. Reaction Kinetics Mechanisms and Catalysis, 2015, 116(2): 535-547.
- [24] Xu J, Jiang Q, Chen T, et al. Vanadia supported on mesoporous carbon nitride as a highly efficient catalyst for hydroxylation of benzene to phenol [J]. Catalysis Science & Technology, 2015, 5(3): 1504-1513.
- [25] Ding G D, Wang W T, Jiang T, *et al.* Highly selective synthesis of phenol from benzene over a vanadium-doped graphitic carbon nitride catalyst [J]. Chem Cat Chem, 2013, 5(1): 192-200.
- [26] Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities [J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.
- [27] Ding Z, Chen X, Antonietti M, et al. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation [J]. Chem Sus Chem, 2011, 4(2): 274-281.
- [28] Ye X, Cui Y, Wang X. Ferrocene-modified carbon nitride for direct oxidation of benzene to phenol with visible light [J]. Chem Sus Chem, 2014, 7(3): 738-742.
- [29] Ye X, Cui Y, Qiu X, *et al.* Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation [J]. Applied Catalysis B: Environmental, 2014, 152/153(25): 383-389.
- [16] Bao Hongjuan (包红娟), Shi Fuxia (史福霞), Zhou Lijia (周丽 佳), et al. Development of liquid organic organic substances for determination of hazardous substances in pesticide emulsifiable concentrates and determination of valuation methods[J]. World Pesticides (世界农药), 2017, 39(1): 37-39.
- [17] Zhang D D, Ma Q, Fan H B, *et al.* Millimeter-long multilayer graphene nanoribbons prepared by wet chemical processing[J]. Carbon, 2014, 71: 120-126.
- [18] Han N R, Cho J W. Click coupled stitched graphene sheets and their polymer nanocomposites with enhanced photothermal and mechanical properties[J]. Composites: Part A, 2016, 87: 78-85.
- [19] Li Z Q, Qi M Y, Tu C Y, et al. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO₂ composite: properties and mechanism[J]. Applied Surface Science, 2017, 425: 765-775.
- [20] Li L X, Liu B Y, Wu Z W, et al. Preparation of keggin-type mono-lacunary phosphotungstic ammonium salt and its catalytic performance in ammoximation of cyclohexanone[J]. Chemical Engineering Journal, 2015, 280: 670-676.
- [21] Du T Y, Qu H X, Liu Q, et al. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH₃-SCR [J]. Chemical Engineering Journal, 2015, 262: 1199-1207.
- [22] Islam S M, Roy A S, Dey R C, et al. Graphene based material as a base catalyst for solvent free aldolcondensation and Knoevenagel reaction at room temperature[J]. Journal of Molecular Catalysis A, 2014, 394: 66-73.
- [23] Zhu Meixia (朱美霞), Zhang Ruibo (张瑞波), Xin Chunwei (辛春 伟). Synthesis and characterization of octocrilene derivatives as UV absorber[J]. Journal of Tianjin University of Technology (天津理工 大学学报), 2015, 31(3): 55-58.
- [24] Lasperas M, Llorett T, Chaves L, et al. Amine functions linked to MCM-41-type silicas as a new class of solid base catalysts for condensation reactions[J]. Studies in Surface Science and Catalysis, 1997, 108: 75-82.
- [25] Ellen V D, Hugo P C, Luiz G L. Mechanism of the piperidinecatalyzed Knoevenagel condensation ceaction in methanol: the role of iminium and enolate ions[J].Journal of Physical Chemistry B, 2017, 121: 5300-5307.