#### 水处理技术与环境保护

# 温敏型表面离子印迹聚合物的制备及性能

尚宏周,张 兴,孙晓然,何俊男,叶欣阳,王皓卿

(华北理工大学 化学工程学院,河北 唐山 063210)

**摘要:** 以多壁碳纳米管为(MWCNTs)为基质, *N*-异丙基丙烯酰胺(NIPAM)为温敏单体,丙烯酰胺、丙烯酸 为功能单体,*N*,*N*-亚甲基双丙烯酰胺为交联剂,Ni<sup>2+</sup>为模板,采用反相悬浮法制得温敏型离子印迹材料(IIPs)。 采用 FTIR、XRD、TG、SEM等对其进行了结构表征,采用丁二酮肟可见分光光度法对印迹聚合物的吸附性能 进行了考察。结果表明,通过改变温度可以控制印迹聚合物的吸附与脱附效率,在最佳吸附温度(40 ℃)下, IIPs 对 Ni<sup>2+</sup>最大吸附量为 33.80 mg/g,该吸附过程符合热力学 Langmuir 模型和准二级动力学模型,在 25 ℃时 脱附效率远大于 50 ℃时脱附效率。在竞争离子 Pb<sup>2+</sup>和 Cd<sup>2+</sup>存在时,Ni<sup>2+</sup>/Pb<sup>2+</sup>和 Ni<sup>2+</sup>/Cd<sup>2+</sup>的选择系数分别为 12.62 和 16.12,说明 IIPs 具有对 Ni<sup>2+</sup>较强的识别能力。

关键词:温度感应;多壁碳纳米管;离子印迹;动力学;热力学;水处理技术与环境保护中图分类号:0647.3 文献标识码:A 文章编号:1003-5214 (2019) 02-0308-08

# Preparation and Properties of Temperature-sensitive Surface Ion Imprinted Polymers

SHANG Hong-zhou, ZHANG Xing, SUN Xiao-ran, HE Jun-nan, YE Xin-yang, WANG Hao-qing (College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China)

**Abstract:** A novel temperature-sensitive nickel ion imprinted polymer (IIPs) based on multi-walled carbon nanotubes (MWCNTs) was synthesized by inverse suspension method using *N*-isopropyl acrylamide (NIPAM), acrylamide and acrylic acid as functional monomers, *N*,*N*-methylene bis-acrylamide as cross-linker, and Ni(II) as template molecule. The sample was characterized by Fourier transform infrared spectrometer(FTIR), X-ray diffraction(XRD), thermogravimetry (TG) and scanning electron microscopy (SEM). The adsorption properties of the imprinted polymer were investigated by ultraviolet-visible spectrophotometry. The adsorption properties of ion imprinted polymer were investigated by dimethylglyoxime visible spectrophotometry. The results indicated that changing the temperature could control the adsorption and desorption efficiency of imprinted polymer. The maximum adsorption capacity of IIPs to Ni<sup>2+</sup> was 33.80 mg/g at the optimum adsorption temperature of 40 °C. The adsorption isotherm obeyed Langmuir model, and the adsorption kinetics could be represented by pseudo second-order kinetic. The desorption efficiency of IIPs to Ni<sup>2+</sup> at 25 °C was much greater than that at 50 °C. In the presence of competitive ions Pb<sup>2+</sup> and Cd<sup>2+</sup>, the selectivity coefficients of Ni<sup>2+</sup>/Pb<sup>2+</sup> and Ni<sup>2+</sup>/Cd<sup>2+</sup> were 12.62 and 16.12, respectively, indicating that IIPs had a strong ability to recognize Ni<sup>2+</sup>.

**Key words:** thermo-responsive; multi-walled carbon nanotubes; ion imprinted polymer; kinetics; thermodynamics; water treatment technology and environmental protection

**Foundation items:** Natural Science Foundation of Hebei Province (B2014209200); Scientific Research Project in Colleges and Universities of Hebei Province (ZD2017059)

随着经济发展,重金属对水体和土壤的污染问 题越来越突出,严重影响了人类生活和身体健康。 Ni 是最常见的重金属元素之一,可在人体内不断富 集,从而干扰人体正常代谢,引起皮炎和湿疹等过 敏性皮肤病,严重者可危及生命<sup>[1-5]</sup>。传统的除去重 金属的方法有化学沉淀法、离子交换法、电解法、 生物法等,可这些方法选择性去除能力较差,不能 做到特异性检测和去除某一种离子。离子印迹技术 的出现有效解决了这一问题,制备方法简单的离子印 迹材料对模板重金属离子具有特异的识别能力,在重 金属离子检测和去除上有着广阔的应用前景<sup>[6-13]</sup>。

传统的印迹聚合物存在模板离子包覆过深、不 易脱附、印迹材料不易回收等问题。为了克服这些 缺点,利用磁性碳纳米管在外加磁场下易分离的特 点,在磁性碳纳米管表面制备印迹聚合物<sup>[14-19]</sup>。同 时,引入温敏型功能单体,所制备的印迹聚合物在 不同温度下发生可逆的溶胀和收缩,进而影响印迹 孔穴的大小,解决了传统印迹材料弊端的同时,实 现了对模板离子特异性结合与释放的自动化。目前, 鲜见将磁性碳纳米管、温敏单体同时与表面离子印 迹技术相结合的报道。*N*-异丙基丙烯酰胺(NIPAM) 是一种热缩型温敏单体,当温度<临界温度(LCST) 时,聚合物上的印迹位点互相远离,聚合物处于溶胀 失忆状态;当温度>LCST时,聚合物上的印迹位点相 互靠近,聚合物处于收缩记忆状态<sup>[20-31]</sup>。

本文以磁性多壁碳纳米管(Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH)为基质,NIPAM 为温敏单体,丙烯酰胺 (AM)、丙烯酸(AA)为功能单体,Ni<sup>2+</sup>为模板, 在磁性碳纳米管表面制备离子印迹聚合物(IIPs)。 并对印迹材料进行了性能测定,从而可以通过温度 变化智能吸附、分离水体中的 Ni<sup>2+</sup>,达到检测和去 除 Ni<sup>2+</sup>的目的。

#### 1 实验部分

#### 1.1 试剂与仪器

羧基化碳纳米管(MWCNTs-COOH,外径为 20~30 nm,质量分数 95%),北京博宇高科新材料技 术有限公司; NIPAM、AM、过硫酸铵、亚硫酸氢 钠,AR、上海瀚思化工有限公司;*N*,*N*-亚甲基双丙 烯酰胺,AR,上海麦克林试剂有限公司;环己烷、 AA、硫酸亚铁、三氯化铁、氯化镍、乙二胺四乙酸 二钠(EDTA),AR,天津永大化学试剂厂。

VERTEX70 红外光谱仪,德国 Burker 公司;双 光束紫外-可见光谱仪,北京普析通用仪器有限责任 公司;S-4800 型扫描电子显微镜,日本 Hitachi 公司; AA-6500 型原子吸收光谱仪,日本 Shimadzu 公司; D/MAX2500PC X 射线衍射仪,日本 Rigaku 公司; STA449F3 热综合分析仪,德国 Netzsch 公司。

## 1.2 离子印迹聚合物制备

参考文献[14],采用共沉淀法制备 Fe<sub>3</sub>O<sub>4</sub>/ MWCNTs-COOH。

采用反相悬浮聚合法制备 IIPs。首先,量取 50 mL 环己烷与 2 mL Span-80 乳化剂于三口烧瓶中 配制成油相, 40 ℃下搅拌 30 min。称取 80 mg AM、 100 mg NIPAM、0.4 mL AA、1.5 mL 0.1 mol/L 镍离 子溶液、200 mg Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH 倒入烧杯 中,再用 20 mL 蒸馏水溶解配制为水相。将其超声 振荡 15 min,均匀搅拌后倒入三口烧瓶中,形成油 包水型乳液,通氮除氧。然后滴加10mL复合引发 剂(过硫酸铵和亚硫酸氢钠质量比为1:1,各0.1g 溶于 10 mL 蒸馏水中 )。随后,将 50 mg 交联剂 N,N-亚甲基双丙烯酰胺(溶解于10mL蒸馏水中)加入 三口烧瓶中,继续反应8h。粗产物分别用无水乙醇 和蒸馏水洗涤数次,随后用体积分数为2%盐酸溶液 在常温下浸泡脱除镍离子, 直到通过紫外-可见光谱 仪检测不到上清液中 Ni<sup>2+</sup>,洗涤后真空干燥 24 h 得 最终产物(IIPs)。非离子印迹复合材料(NIIPs)的 制备过程中不加入模板离子 Ni<sup>2+</sup>,其他条件同上。 实验过程如图1所示。





灰色小球代表模板中镍离子; 白色小球代表模板镍离子被脱除, 留下的印迹空穴

图 1 Ni(Ⅱ)印迹聚合物的制备过程

Fig. 1 Preparation process for Ni( II ) imprinted polymer

#### 1.3 温敏型 IIPs 的性能测试

1.3.1 标准曲线绘制

标准曲线绘制参考 GB/T223.23, 拟合得到 Ni<sup>2+</sup> 标准曲线方程:

 $Y=0.19984X+0.04394 (R^2=0.99161)$ 

式中: Y 为吸光度; X 为镍离子质量浓度, mg/L;  $R^2$  为相关系数。

1.3.2 吸附性能测试

采用水浴振荡法对 IIPs 吸附 Ni<sup>2+</sup>进行测试。取 20 mg IIPs 放入测试瓶中,加入 20 mL 质量浓度为 50 mg/L 的 Ni<sup>2+</sup>溶液,在振荡器上振荡 3 h 后,过滤 出待测水样,采用丁二酮肟分光光度法<sup>[5]</sup>在波长 530 nm 处测定水样的吸光度,根据标准曲线得到印 迹材料吸附后水样中 Ni<sup>2+</sup>质量浓度。

1.3.3 脱附性能测试

取 20 mg 饱和吸附的 IIPs 投入到装有 20 mL 体 积分数 2%盐酸溶液中,在 50 和 25 ℃下恒温水浴 振荡,在不同时间段取样,过滤出待测水样,采用 上述丁二酮肟分光光度法测试 Ni<sup>2+</sup>浓度,然后计算 脱除率。

平衡吸附量及脱除率的计算公式如下:

$$q_{\rm e} = \frac{V(\rho_0 - \rho_{\rm e})}{m} \tag{1}$$

$$E / \% = \frac{\rho_0 - \rho_e}{\rho_0} \times 100$$
 (2)

式中: $q_e$ 为平衡吸附量, mg/g; E 为脱除率, %;  $\rho_0$ 为 Ni<sup>2+</sup>的初始质量浓度, mg/L;  $\rho_e$ 为吸附达到平衡 时 Ni<sup>2+</sup>的质量浓度, mg/L; V 为 Ni<sup>2+</sup>溶液的体积, L; *m* 为吸附材料质量, g。

#### 1.4 温敏型离子印迹聚合物的性能测试

红外光谱分析:溴化钾压片法,测试范围为 400~4000 cm<sup>-1</sup>。X 射线衍射分析:测试角度范围 10°~90°。热重分析:氮气保护,温度为40~1000 ℃。 扫描电镜分析:将 MWCNTs-COOH、Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH、IIPs 进行喷金处理,观察其表面形貌。

# 2 结果与讨论

#### 2.1 FTIR 分析

MWCNTs-COOH 和 IIPs 的红外光谱见图 2。



图 2 MWCNTs-COOH(a)和 IIPs(b)的 FTIR 图 Fig. 2 FTIR spectra of MWCNTs-COOH (a) and IIPs (b)

分析曲线 a 和 b 发现,在 557 cm<sup>-1</sup> 处是 Fe— O—Fe 键的伸缩振动特征峰,说明 Fe<sub>3</sub>O<sub>4</sub> 成功修饰 到羧基化碳纳米管上。在 3413 cm<sup>-1</sup> 处出现的强吸收 峰是—NH 和—OH 的伸缩振动特征峰发生重叠所 致,由于羟基峰和氨基峰的相互影响,使得键合的 羟基谱带较宽,1631 cm<sup>-1</sup> 处吸收峰归因于—COOH 的伸缩振动,1384 cm<sup>-1</sup> 处吸收峰由不对称的 C==O 剪切振动产生,1172 cm<sup>-1</sup> 处为 C—O 伸缩振动吸收 峰,634 cm<sup>-1</sup> 处较宽的吸收峰为 N—H 面外弯曲振 动吸收峰。红外分析说明,IIPs 成功修饰在碳纳米 管表面。

#### 2.2 XRD 分析

利用 X 射线衍射仪对 MWCNTs-COOH、Fe<sub>3</sub>O<sub>4</sub>/ MWCNTs-COOH、IIPs 进行晶形结构分析,结果见 图 3。



图 3 MWCNTs-COOH(a)、Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH(b)和 IIPs(c)的 XRD 图

Fig. 3 XRD patterns of MWCNTs-COOH (a),  $Fe_3O_4/MWCNTs$ -COOH (b) and IIPs (c)

图 3a 中, 2*θ*=26.2°(002)处是 MWCNTs-COOH 中 碳的衍射峰。纯 Fe<sub>3</sub>O<sub>4</sub> 有 6 个特征衍射峰,分别在 2*θ*=30.1°(220)、35.5°(311)、43.3°(400)、53.4°(422)、 57.2°(511)、62.5°(440)处出峰<sup>[14]</sup>。由图 3b 和 3c 可知, Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH 与 IIPs 表现出典型的 Fe<sub>3</sub>O<sub>4</sub> 立方结构,说明磁性颗粒 Fe<sub>3</sub>O<sub>4</sub> 成功负载在 MWCNTs-COOH 表面,同时附着在碳纳米管表面的 IIPs 不改变 Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH 的表面晶型。

#### 2.3 热重分析

采用热综合分析仪分别对 Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH、IIPs 进行 TG 分析,结果如图 4 所示。





由图 4a 可知,磁性碳纳米管的 TG 曲线主要分

为两个阶段:在 50~600 ℃分解较为缓慢,主要是占 比较少的羧基化部分受热挥发所致,失重约 6%; 600 ℃后,分解逐渐加快,碳纳米管开始大量分解。 由图 4b 可知, IIPs 的 TG 曲线随温度升高分解较为 明显,分解主要分为 3 个阶段:在 50~200 ℃,失重 较为缓慢,主要是磁性碳纳米管表面物理吸附的水 分蒸发所致,失重约 8%;200~500 ℃质量大幅度降 低,可以推测碳纳米管表面的凝胶层开始分解,失 重约 70%;500 ℃后失重速率减缓,推测为碳纳米 管开始分解。由于 Fe<sub>3</sub>O<sub>4</sub>的熔点大于 1000 ℃,因此, 在接近 1000 ℃时, Fe<sub>3</sub>O<sub>4</sub>并未发生分解,推测此时 剩余部分为 Fe<sub>3</sub>O<sub>4</sub>。从 200~500 ℃的失重率可推测 出,离子印迹材料在碳纳米管表面的自组装率约为 70%。

#### 2.4 扫描电镜分析

采用扫描电子显微镜对 MWCNTs-COOH、 Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH和IIPs进行形貌分析,结果 见图 5。



图 5 MWCNTs-COOH(a)、Fe<sub>3</sub>O<sub>4</sub>/MWCNTs-COOH(b)和 IIPs(c)的 SEM 图 Fig. 5 SEM images of MWCNTs-COOH (a), Fe<sub>3</sub>O<sub>4</sub>/ MWCNTs-COOH (b) and IIPs (c)

通过图 5a、b 可以看到,图 5b 中碳纳米管的表面附着许多直径较小的颗粒,证明 Fe<sub>3</sub>O<sub>4</sub> 颗粒成功修饰到碳纳米管上。图 5c 中碳纳米管表面变得更加粗糙,凹凸不平,与图 5a 相比,图 5c 中碳纳米管外层的管壁厚度略微增加,其表面被一层有机材料覆盖,说明聚合物成功修饰到碳纳米管表面上。

### 2.5 吸附机理研究

#### 2.5.1 吸附热力学研究

称取 20 mg IIPs,加入到 50 mL 质量浓度分别 为 10、20、30、40、50、60、70 mg/L 的 Ni<sup>2+</sup>溶液 中,40 ℃下水浴振荡 3 h,过滤,测定滤液中 Ni<sup>2+</sup> 的含量,吸附热力学曲线如图 6 所示。

由图 6 可知,在 10~20 mg/L 的 Ni<sup>2+</sup>质量浓度范 围内,IIPs 与 NIIPs 的吸附量相近。当吸附材料与 Ni<sup>2+</sup>接触时,由于碳纳米管本身具有一定的吸附性, 可以通过物理吸附方式直接吸附适量的 Ni<sup>2+</sup>,一般 条件下物理吸附速率要高于化学吸附作用。这是由 于化学吸附需要发生化学反应,生成化学键,需要 更多的能量,而物理吸附不需要发生化学反应,需要的能量较少,因此物理吸附率先完成<sup>[32]</sup>;其次是 在碳纳米管的表面无论是 IIPs 或 NIIPs 都存在与金 属离子发生鳌合的官能团,均可以对 Ni<sup>2+</sup>进行吸 附。在较低浓度时,印迹和非印迹材料的吸附能力 接近。在 20~70 mg/L 的 Ni<sup>2+</sup>溶液中, IIPs 和 NIIPs 的吸附量随着 Ni<sup>2+</sup>质量浓度的增加而增加,直到质 量浓度为 70 mg/L 时基本达到平衡, IIPs 的平衡吸 附量为 40.12 mg/g,而在此质量浓度范围内比较 IIPs 与 NIIPs 的吸附能力, IIPs 明显优于 NIIPs。这 可能是由于印迹材料与 Ni<sup>2+</sup>结合后,通过交联和洗 脱,在印迹材料表面形成空穴,空穴的活性位点更 易于与 Ni<sup>2+</sup>结合,大大提高了印迹材料的选择吸附 性能。

采用公式(3) Langmuir 吸附热力学模型和公式(4) Freundlich 吸附热力学模型拟合 IIPs 和 NIIPs 对 Ni<sup>2+</sup>的平衡吸附量的数据,结果见图 7、8,相关 吸附热力学参数见表 1。







图 7 IIPs 和 NIIPs 吸附 Ni<sup>2+</sup>过程的 Langmuir 热力学吸附 拟合线

Fig. 7 Langmuir isotherms fit curves of Ni<sup>2+</sup> adsorption on IIPs and NIIPs



图 8 IIPs 和 NIIPs 吸附 Ni<sup>2+</sup>过程的 Freundlich 吸附热力学 拟合线

Fig. 8 Freundlich isotherms fit curves of Ni<sup>2+</sup> adsorption on IIPs and NIIPs

#### 表 1 IIPs 和 NIIPs 对 Ni<sup>2+</sup>的吸附热力学参数

Table 1 Adsorption isotherm parameters of Ni<sup>2+</sup> on IIPs and NIIPs

|       | Langmuir 等温吸附模型    |                           |                     | Freundlich 等温吸附模型 |                     |      |       |
|-------|--------------------|---------------------------|---------------------|-------------------|---------------------|------|-------|
| _     | $q_{ m e}/$ (mg/g) | $q_{ m m'} \ ({ m mg/g})$ | <i>b/</i><br>(L/mg) | $R^2$             | $K_{\rm f}/$ (mg/g) | n    | $R^2$ |
| IIPs  | 40.12              | 42.63                     | 0.42                | 0.984             | 19.32               | 3.85 | 0.915 |
| NIIPs | 26.13              | 26.32                     | 1.81                | 0.981             | 12.82               | 4.49 | 0.715 |

Langmuir 等温吸附模型:

$$\frac{\rho_{\rm e}}{q_{\rm e}} = \frac{1}{bq_{\rm m}} + \frac{\rho_{\rm e}}{q_{\rm m}} \tag{3}$$

Freundlich 等温吸附模型:

$$\ln q_{\rm e} = \frac{\ln \rho_{\rm e}}{n} + \ln K_{\rm f} \tag{4}$$

式中:  $q_m$ 为饱和吸附量, mg/g; b为 Langmuir 方程 的平衡常数, L/mg; n为 Freundlich 方程的常数;  $K_f$ 为 Freundlich 方程的常数。

由图 7、8 可知, Langmuir 热力学拟合曲线的线 性程度明显比 Freundlich 吸附热力学的线性程度高。

由表 1 可知, Langmuir 等温吸附模型对 IIPs 吸附过程拟合的相关系数( $R^2$ =0.984)大于 Freundlich 等温吸附模型的相关系数( $R^2$ =0.915)。同时, Langmuir 等温吸附模型所拟合的饱和吸附量  $q_m$ = 42.63 mg/g,与实际值接近,说明 IIPs 对 Ni<sup>2+</sup>的等 温吸附过程更适用于 Langmuir 等温吸附模型,从而 证明 IIPs 均匀附着在碳纳米管表面,对模板离子的 吸附是单分子层吸附。

2.5.2 吸附动力学研究

称取 20 mg IIPs 投入到装有 20 mL 50 mg/L Ni<sup>2+</sup> 的水溶液中,40 ℃恒温水浴振荡,在不同时间段取 样,过滤,测试 Ni<sup>2+</sup>质量浓度,其吸附动力学曲线 如图 9 所示。



如图 9 所示,在 0~100 min 内,随着吸附时间 的增加,印迹材料的吸附量逐渐增加,100 min 以 后,吸附速率逐渐减慢,直到达到吸附平衡。为了 进一步探索 IIPs 对 Ni<sup>2+</sup>的吸附动力学,分别采用公 式(5)(准一级动力学方程)和公式(6)(准二级 动力学方程)拟合实验数据,结果如图 10、11 所示, 吸附动力学参数见表 2。

准一级吸附动力学方程:

$$\ln(q_e - q_t) = \ln q_{ei} - k_1 t$$
(5)  
准二级吸附动力学方程:

$$\frac{t}{q_t} = \frac{1}{k_2 q_{\rm ei}^2} + \frac{t}{q_{\rm ei}}$$
(6)

式中:  $q_t$ 为 t 时刻的吸附容量, mg/g;  $q_{ei}$ 为达到吸 附平衡时的理论吸附容量, mg/g;  $k_1$ 为准一级速率 方程常数,  $h^{-1}$ ;  $k_2$ 为准二级速率方程常数, g/(mg ·h); t为吸附时间, h。



图 10 IIPs 对 Ni<sup>2+</sup>准一级动力学吸附拟合曲线 Fig. 10 Pseudo-first-order kinetic curve of IIPs for Ni<sup>2+</sup>



图 11 IIPs 对 Ni<sup>2+</sup>准二级动力学吸附拟合曲线 Fig. 11 Pseudo-second-order kinetic curve of IIPs for Ni<sup>2+</sup>

表 2 吸附动力学参数 Table 2 Constants and correlation coefficients for the kinetic models

| _ | KI                       | netic inc | Jueis |                          |       |       |  |
|---|--------------------------|-----------|-------|--------------------------|-------|-------|--|
|   | 准一级动力学                   |           |       | 准二级动力学                   |       |       |  |
|   | $q_{\rm e}/({\rm mg/g})$ | $k_1$     | $R^2$ | $q_{\rm e}/({\rm mg/g})$ | $k_2$ | $R^2$ |  |
|   | 115.10                   | 0.080     | 0.806 | 38.46                    | 0.002 | 0.995 |  |

由准一级动力学吸附动力学拟合曲线(图 10) 可知, k<sub>1</sub>=0.080, 相关系数 R<sup>2</sup>=0.806, q<sub>e</sub>=115.10 mg/g; 由准二级动力学吸附动力学拟合曲线(图 11)可知, k<sub>2</sub>=0.002, 相关系数 R<sup>2</sup>=0.995, q<sub>e</sub>=38.46 mg/g。结果 证明, 准一级动力学模型的相关系数小于准二级动 力模型。并且由实验得知,印迹材料的饱和吸附量 为 33.80 mg/g, 由表 2 可知, 准二级动力学模型拟 合的饱和吸附量更接近实验值。所以, 推断印迹材 料的吸附过程符合准二级动力学模型。

#### 2.6 温敏性能测定

```
2.6.1 温度对吸附性能的影响
```

不同温度对 IIPs 吸附 Ni<sup>2+</sup>的影响见图 12。



Fig. 12 Effect of temperature on the adsorption of  $Ni^{2+}$  on IIPs

由图 12 可以看出,从 25 ℃开始时,聚合物的 吸附量随着温度的升高逐渐增加。当温度为 40 ℃ 时,吸附量达到最大,随即吸附量迅速下降。IIPs 的吸附性受温度的影响较大,说明制备的印迹材料 具有温敏性。温敏高分子聚合物通过外界温度的改 变,使其在水溶液中发生溶胀或收缩现象。产生这 一现象的原因是,当温度低于 LCST 时,高分子链 中酰胺基与水分子之间通过氢键作用, 使整个聚合 物亲水性增强,从而发生吸水溶胀,使印迹孔穴变 大; 当温度大于其 LCST 时, 氢键作用逐渐减弱, 同时分子链中疏水性的异丙基作用力逐渐增强[33], 由于疏水作用使得高分子链互相聚集起来,在溶液 中形成疏水层,从而使整个材料团聚在一起发生收 缩现象,印迹孔穴变小。不同温度下印迹孔穴大小 的不同可引起吸附量的变化。当温度较低时,离子 印迹材料呈溶胀态,印迹孔穴变大,包裹的 Ni<sup>2+</sup>不 稳定,所以吸附量较低;温度较高时,印迹材料逐 渐收缩,印迹孔穴变小,Ni<sup>2+</sup>不易进入空穴内,故 吸附量下降。

2.6.2 温度对脱除性能的影响

不同温度对 IIPs 脱除 Ni<sup>2+</sup>的影响见图 13。

由图 13 可以得出, IIPs 在 25 ℃时的脱除率接 近 90%, 远大于在 50 ℃时的脱除率, 这说明在温度 为 25 ℃、小于 LCST(40 ℃)时, 温敏型印迹聚合 物发生溶胀, 印迹孔穴极大扩张, 内部的作用位点 相互远离, 从而使模板离子与聚合物之间的螯合作 用减弱,更加容易脱附; 当温度在 50 ℃,大于 LCST (40 ℃)时, 温敏型印迹聚合物发生收缩, 印迹孔 穴变小, 其内部的作用位点相互接近, 阻碍模板离 子的脱附。因此, 该印迹聚合物对温度具有敏感特 性,可以实现通过温度变化来控制聚合物的脱附效 率,提高聚合物的再生性能。



图 13 不同温度对 IIPs 脱附 Ni<sup>2+</sup>的影响 Fig. 13 Effect of temperature on the release of Ni<sup>2+</sup> on IIPs

#### 2.7 pH 对吸附性能的影响

不同 pH 对 IIPs 和 NIIPs 吸附 Ni<sup>2+</sup>的影响见图 14。如图 14 所示,在 pH 为 6 时,IIPs 与 NIIPs 对 Ni<sup>2+</sup>的吸附量最大,分别达到 30.31、14.93 mg/g。 当 pH 在 2~3 时,IIPs 与 NIIPs 对 Ni<sup>2+</sup>的吸附量均较 低。当 pH 接近中性时,两者的吸附能力逐渐增强。 说明在酸性环境中,IIPs 吸附 Ni<sup>2+</sup>时,离子螯合能 力弱,离子不易被吸附。因此,IIPs 适合在中性环 境中使用。



图 14 不同 pH 对 IIPs 和 NIIPs 吸附 Ni<sup>2+</sup>的影响 Fig. 14 Effect of pH on the adsorption of Ni<sup>2+</sup> on IIPs and NIIPs

#### 2.8 吸附再生性能

IIPs 的循环吸附能力见图 15。

如图 15 所示,经过 3 次吸附循环后,IIPs 对 Ni<sup>2+</sup>的吸附量从 32.13 mg/g 下降到 30.53 mg/g。吸附 量变化较小,说明 IIPs 具有较好的循环吸附性能。 脱附过程中,通过温度的变化可提高脱附效率,提 高再生能力,吸附量略有下降可能是在体积分数为 2%盐酸溶液中脱附时,对其识别位点造成了一定的 破坏所致。



图 15 IIPs 的循环吸附能力

Fig. 15 Regenerability of IIPs in three successive cycles of desorption-adsorption

#### 2.9 选择性吸附性能考察

称取 20 mg IIPs 与 NIIPs, 分别投入到 20 mL 30 mg/L 的 Ni<sup>2+</sup>、Pb<sup>2+</sup>、Cd<sup>2+</sup> 3 种重金属离子混合溶 液中进行吸附,过滤后的水溶液用原子吸收分光光 度计检测溶液中 Ni<sup>2+</sup>、Pb<sup>2+</sup>、Cd<sup>2+</sup>的浓度,吸附结果 见表 3。

表 3 IIPs、NIIPs 的选择吸附性能

Table 3Selective adsorption properties of IIPs and NIIPs

|                     | IIPs/NIIPs               |             |            |            |  |  |
|---------------------|--------------------------|-------------|------------|------------|--|--|
|                     | $q_{\rm e}/({\rm mg/g})$ | <i>E/%</i>  | $K_{ m d}$ | Κ          |  |  |
| Ni <sup>2+</sup>    | 25.13/7.31               | 83.77/24.37 | 5.16/0.32  | _          |  |  |
| $Pb^{2+} \\$        | 8.71/7.22                | 29.03/23.87 | 0.41/0.317 | 12.62/1.01 |  |  |
| $\mathrm{Cd}^{2^+}$ | 7.25/7.18                | 24.16/24.00 | 0.32/0.315 | 16.12/1.02 |  |  |

注:一表示没有数据。

静态分配系数(K<sub>d</sub>)和选择性系数(K)计算公式 如下:

$$K_{\rm d} = q_{\rm e} / \rho_{\rm e} \tag{7}$$

$$K = K_{d}(M^{n+}) / K_{d}(N^{n+})$$
 (8)

式中: $K_d$ 为静态分配系数;K为选择性系数; $K_d[M^{n+1}]$ 为模板离子的分配系数; $K_d[N^{n+1}]$ 为竞争离子的分配系数。

由表 3 可知, 在竞争离子 Pb<sup>2+</sup>和 Cd<sup>2+</sup>共同存在 时, IIPs 对 Ni<sup>2+</sup>/Pb<sup>2+</sup>、Ni<sup>2+</sup>/Cd<sup>2+</sup>的选择性系数分别 为 12.62 和 16.12,数值均远大于 1,表明 IIPs 对 Ni<sup>2+</sup> 具有较强的选择吸附能力; 而 NIIPs 对 Ni<sup>2+</sup>/Pb<sup>2+</sup>、 Ni<sup>2+</sup>/Cd<sup>2+</sup>的选择性系数分别为 1.01 和 1.02,数值均 略大于 1,表明 NIIPs 对 Ni<sup>2+</sup>的选择性远远低于 IIPs。

# 3 结论

(1)通过FTIR、XRD、TG、SEM 对产物结构 进行了表征,证明在碳纳米管表面制备出了温敏型 的 IIPs。IIPs 的吸附过程符合 Langmuir 模型,准二 级动力学模型,相关系数分别为 0.984, 0.995,证

#### 明该吸附过程属于单分子层化学吸附。

(2) IIPS 具有较强的温度敏感性,在 40 ℃时 吸附量达到最佳,在 25 ℃时脱附效率远大于 50 ℃ 时的脱附效率,实现了通过改变温度来控制对 Ni<sup>2+</sup> 的吸附和脱附。

(3) IIPs 在中性溶液中吸附效果较好,且具有 较好的重复使用性;当竞争离子 Pb<sup>2+</sup>和 Cd<sup>2+</sup>存在时, Ni<sup>2+</sup>/Pb<sup>2+</sup>和 Ni<sup>2+</sup>/Cd<sup>2+</sup>的选择系数分别为 12.62 和 16.12,说明 IIPs 对 Ni<sup>2+</sup>具有较强的识别能力。

#### 参考文献:

- Meouche W, Laatikainen K, Margaillan A, *et al.* Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization[J]. European Polymer Journal, 2016, 87: 124-135.
- [2] Guo N, Su S J, Liao B, et al. Preparation and properties of a novel macro porous Ni<sup>2+</sup>-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution[J]. Carbohydrate Polymers, 2017, 165: 376-383.
- [3] Rahangdale D, Kumar A. Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickelcadmium battery waste[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 1828-1839.
- [4] Abbasi S, Roushani M, Khani H, et al. Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions[J]. Spectrochimica Acta,Part A:Molecular & Biomolecular Spectroscopy, 2015, 140(5): 534-543.
- [5] Shang Hongzhou (尚宏周), He Junnan (何俊男), Zhao Jingdong (赵敬东), et al. Preparation and properties of multi-walled carbon nanotubes and chitosan self-assembled ion imprinted polymers[J]. Fine Chemicals (精细化工), 2016, 34(10): 1213-1218.
- [6] Shang Hongzhou (尚宏周), Zhao Jingdong (赵敬东), He Junnan (何 俊男), et al. Absorption properties of Cd<sup>2+</sup> ion imprinted poly (fulvic acid)[J]. CIESC Journal (化工学报), 2017, 68(5): 1940-1945.
- [7] Luo X, Liu L, Deng F, et al. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb( II ) ions in real environmental water samples[J]. Journal of Materials Chemistry A, 2013, 1(28): 8280-8286.
- [8] Luo X, Luo S, Zhan Y, et al. Novel Cu(II) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol-gel process[J]. Journal of Hazardous Materials, 2011, 192(3): 949-955.
- [9] Gao B, Meng J, Xu Y, et al. Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions[J]. Journal of Industrial & Engineering Chemistry, 2015, 24(4): 351-358.
- [10] Wang J, Han Y, Li J, et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization[J]. Separation & Purification Technology, 2017, 177: 62-70.
- [11] Li M, Meng X, Li B, et al. A novel In(III) ion-imprinted polymer (IIP) for selective extraction of In(III) ions from aqueous solutions[J]. Hydrometallurgy, 2018, 176: 243-252.
- [12] Shakerian F, Kim K H, Kwon E, et al. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions[J]. Trends in Analytical Chemistry, 2016, 83: 55-69.
- [13] Liu H, Kong D, Sun W, et al. Effect of anions on the polymerization and adsorption processes of Cu(II) ion-imprinted polymers[J]. Chemical Engineering Journal, 2016, 303: 348-358.
- [14] He J N, Shang H Z, Zhang X, et al. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion[J]. Applied Surface Science, 2018, 428: 110-117.
- [15] Taghizadeh M, Hassanpour S. Selective adsorption of Cr(VI) ions

from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes[J]. Polymer, 2017, 132: 1-11.

- [16] Fayazi M, Taher M A, Afzali D, et al. Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions[J]. Materials Science & Engineering C, 2016, 60: 365-373.
- [17] Usman I B, Matsoso B, Ranganathan K, et al. Magnetic properties of aligned iron containing nitrogen-doped multi-walled carbon nanotubes[J]. Materials Chemistry & Physics, 2018, 209: 280-290.
- [18] Rybak A, Rybak A, Kaszuwara W, et al. Poly(2, 6-dimethyl-1, 4-phenylene oxide) hybrid membranes filled with magnetically aligned iron-encapsulated carbon nanotubes (Fe@MWCNTs) for enhanced air separation[J]. Diamond & Related Materials, 2018, 83: 21-29.
- [19] Ma Licheng (马立成), Zheng Qi (郑其), Che Xiaokui (车小奎), et al. Characterization and properties of Cu<sup>2+</sup> ion-imprinted magnetic chitosan beads and their Cu<sup>2+</sup> adsorption performance[J]. Journal of Chemical Engineering of Chinese Universities (高校化学工程学报), 2016, 30(1): 174-181.
- [20] Wang Z, Wu J, Zhao P, et al. Improving cracking resistance of cement mortar by thermo-sensitive poly N-isopropyl acrylamide (PNIPAM) gels[J]. Journal of Cleaner Production, 2018, 176: 1292-1303.
- [21] Yarin A L, Agarwal S. Buckling and unraveling poly(*N*-isopropyl acrylamide)-thermoplastic polyurethane bilayers[J]. Polymer, 2016, 97: 604-613.
- [22] Ermatchkov V, Ninni L, Maurer G. Thermodynamics of phase equilibrium for systems containing *N*-isopropyl acrylamide hydrogels[J]. Fluid Phase Equilibria, 2010, 296(2): 140-148.
- [23] Nistor M T, Chiriac A P, Nita L E, et al. Characterization of the semi-interpenetrated network based on collagen and poly(*N*isopropyl acrylamide-co-diethylene glycol diacrylate)[J]. International Journal of Pharmaceutics, 2013, 452(1/2): 92-101.
- [24] Cuggino J C, Strumia M C, Igarzabal C I A. Synthesis, characterization and slow drug delivery of hydrogels based in *N*-acryloyl-tris-(hydroxymethyl) aminomethane and *N*-isopropyl acrylamide[J]. Reactive & Functional Polymers, 2011, 71(4): 440-446.
- [25] Nistor M T, Pamfil D, Schick C, et al. Study of the heat-induced denaturation and water state of hybrid hydrogels based on collagen and poly (*N*-isopropyl acrylamide) in hydrated conditions[J]. Thermochimica Acta, 2014, 589(10): 114-122.
- [26] Gupta B, Mishra S, Saxena S. Preparation of thermosensitive membranes by radiation grafting of acrylic acid/N-isopropyl acrylamide binary mixture on PET fabric[J]. Radiation Physics & Chemistry, 2008, 77(5): 553-560.
- [27] Lu J, Wu Y, Lin X, et al. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions[J]. Journal of Hazardous Materials, 2018, 353: 244-253.
- [28] Lin X H, Aik S X L, Angkasa J, et al. Selective and sensitive sensors based on molecularly imprinted poly(vinylidene fluoride) for determination of pesticides and chemical threat agent simulants[J]. Sensors & Actuators B Chemical, 2018, 258: 228-237.
- [29] Song W Q, Qian L W. Synthesis of l-phenylalanine imprinted hydrogels with anti-biofouling capability by using a novel zwitterionic functional monomer[J]. Separation & Purification Technology, 2017, 182: 247-254.
- [30] Wang J, Wang Q M, Tian L L, et al. Research progress of the molecularly imprinted cryogel[J]. Chinese Journal of Analytical Chemistry, 2015, 43(11): 1777-1784.
- [31] Wang Yujie (王于杰), Jiang Guoqiang (蒋国强), Sun Jiali (孙佳丽), et al. Research development of in situ implant drug delivery based on thermosensitive hydrogel[J]. Fine Chemicals (精细化工), 2013, 30(1): 1-7.
- [32] Liu Dazhong (刘大中), Wang Jin (王锦). Physisorption and chemisorption[J]. Journal of Shandong Institute of Light Industry (齐 鲁工业大学学报), 1999, 13(2): 22-25.
- [33] Yang Zichun (杨紫淳), Gao Yunling (高云玲), Yao Kejian (姚克俭). Temperature-sensitive molecularly imprinted hydrogels[J]. Chemical Industry & Engineering Progress (化工进展), 2014, 33(1): 117-123.