功能材料

CdS/RGO/MoS2复合材料的制备及光催化性能

高 雨¹,张含烟²,林俊英²,丁 茯²,孙亚光²,徐振和^{1*}

(1. 大连大学 环境与化学工程学院, 辽宁 大连 116622; 2. 沈阳化工大学 无机分子基辽宁省重点实验, 辽宁 沈阳 110142)

摘要:采用简单的水热法制备出 CdS/RGO/MoS₂复合材料,通过 XRD、TEM、UV-Vis DRS、电化学阻抗(EIS) 和瞬态光电流响应测试对其进行了表征。结果表明,在可见光照射下,CdS/0.75% RGO/1.0% MoS₂复合材料(百分数均为质量分数,以复合材料质量为基准)对甲基橙(MO)具有显著的光催化降解活性和稳定性,其光降解 速率(0.05777 min⁻¹)分别是 CdS(0.0051 min⁻¹)、MoS₂(0.0031 min⁻¹)、CdS/0.75% RGO(0.0312 min⁻¹)、CdS/1.0% MoS₂(0.0258 min⁻¹)的 11.3 倍、18.6 倍、1.9 倍和 2.2 倍。使用 5 次后,降解效果未见明显变化,证明催化体 系的稳定性良好。光催化剂活性的提高主要归功于复合材料形成时的费米能级拉平效应能够促进不同半导体之 间载流子电子的扩散和转移。

关键词:光催化;复合材料;降解;CdS;还原石墨烯;功能材料 中图分类号:O643.36 文献标识码:A 文章编号:1003-5214 (2022) 04-0734-07

Preparation of CdS/RGO/MoS₂ composite and its photocatalytic performance

GAO Yu¹, ZHANG Hanyan², LIN Junying², DING Fu², SUN Yaguang², XU Zhenhe^{1*}

(1. College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China; 2. Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China)

Abstract: CdS/RGO/MoS₂ composite was prepared by simple hydrothermal method and characterized by XRD, TEM, UV-Vis DRS, electrochemical impedance (EIS) and transient photocurrent response. The results showed that CdS/0.75% RGO/1.0% MoS₂ (mass fraction, based on the mass of composite) composite had significant photocatalytic degradation activity and stability for methyl orange (MO) under visible light irradiation. The photodegradation rate of CdS/0.75% RGO/1.0% MoS₂ composite (0.05777 min⁻¹) was those of CdS (0.0051 min⁻¹), MoS₂ (0.0031 min⁻¹), CdS/0.75% RGO (0.0312 min⁻¹) and CdS/1.0% MoS₂ (0.0258 min⁻¹) 11.3-fold, 18.6-fold, 1.9-fold and 2.2-fold, respectively. After being used for 5 times, the degradation effect had no change significantly, indicating that the catalytic system had good stability. The improvement of activity was mainly due to the flattening effect of Fermi level during the formation of composites, which could promote the diffusion and transfer of carrier electrons between different semiconductors.

Key words: photocatalysis; composite; degradation; CdS; reduced graphene; functional materials

近年来,水污染对生态环境和人们的健康造成 了严重威胁^[1-5]。如何高效且环境友好地清除水中低浓 度、高毒性、难降解的有机污染物是科研学者们十分 关注的研究领域^[6-9]。其中,半导体光催化技术可以利 用半导体光催化剂的强氧化能力和还原能力^[10-12],在 光的照射下将有机污物彻底降解为二氧化碳与水, 而自身无损耗,是一种在能源和环境领域有着重要 应用前景的绿色技术。

在半导体光催化材料中,硫化镉(CdS)因具 有较窄的带隙(2.3 eV)和适宜的价带/导带位置, 现已成为最受欢迎的光催化材料之一[13-15]。然而, CdS 的光腐蚀性以及光生电子和空穴易于在极短时 间内复合等缺点限制了它的实际应用[15]。基于上述 问题,科学家们通过将 CdS 纳米粒子与其他材料复 合,来降低电子空穴对的复合速率,使其光催化性 能得到提升。同时,伴随着复合材料导电性能的增 强,其稳定性显著提高,大幅度减少光腐蚀现象的 发生。纳米尺度的硫化钼(MoS₂)是一种性能良好 的助催化剂,可以提升 CdS 光催化性能^[12]。此外, 近年来报道的还原氧化石墨烯(RGO)具有较大的 比表面积,稳定的化学性质和良好的电子或空穴传 递性能[13],不仅可以增加复合材料的活性位点和电 导率,而且可以加速光催化剂内部产生的电子-空穴 对的快速分离^[14-16]。因此,将 MoS₂和 RGO 同时引 入到 CdS 体系中, 可以克服上述 CdS 的缺点, 改善 CdS 的光催化活性和稳定性。

本 文 通 过 水 热 合 成 方 法 制 备 一 系 列 的 CdS/RGO/MoS₂复合材料,采用光降解甲基橙(MO) 实验,评价 CdS/RGO/MoS₂复合材料的光催化活性和 稳定性。通过 XRD、TEM、UV-Vis DRS、电化学阻 抗(EIS)和瞬态光电流响应测试对制备样品进行表征,找到光催化活性最高的 CdS/RGO/MoS₂复合材料的复 合比例。

1 实验部分

1.1 试剂与仪器

石墨粉、硫酸(H_2SO_4)、盐酸(HCl)、氯化钡 ($BaCl_2$)、过硫酸钾($K_2S_2O_8$)、硝酸钠($NaNO_3$)、 高锰酸钾($KMnO_4$)、乙二胺四乙酸二钠(Na_2EDTA)、 叔丁醇(t-BuOH)、对苯醌(BQ)和无水乙醇购自 国药集团试剂有限公司;五氧化二磷(P_2O_5)、过氧 化氢(H_2O_2)、乙酸镉[$Cd(Ac)_2 \cdot 2H_2O$]、硫化钠 ($Na_2S \cdot 9H_2O$)、硫 脲(CH_4N_2S)、磷 钼 酸 ($H_3PMo_{12}O_{40}$)购自 Aladdin 试剂有限公司。所有 化学品均为分析纯。实验过程中所用水均为去离子水。

D8 Advance 型 X 射线多晶衍射分析仪〔XRD, 德国 Bruker 公司,辐射源为 Cu K_a,步长为 0.02 (°)/min, 2 θ =5°~80°〕; JEOL JEM 2010 EX 型透射电子显微镜 (TEM)和高分辨率透射电子显微镜(HRTEM, 日 本电子公司); UV2550 型紫外-可见漫反射光谱仪 (UV-Vis DRS, 日本岛津公司); CHI 660E 型电化 学工作站(上海辰华仪器有限公司); PLS-SXE 300 型 300 W 氙灯(北京泊菲莱科技有限公司)。

1.2 步骤

1.2.1 氧化石墨烯(GO)的合成

采用 Hummers 法制备 GO^[16]。

1.2.2 MoS₂的合成

将 0.2 g (0.11 mmol) H₃PMo₁₂O₄₀ 溶于 20 mL 去离子水中,加入 0.2 g (2.64 mmol) CH₄N₂S,混合 搅拌 30 min 后转移至高压釜中在 180 ℃反应 24 h^[16]。 待高压釜冷却至室温后,取出反应液,用去离子水 和无水乙醇洗涤 3~4 次至上层清液无杂质。然后在 80 ℃下干燥 12 h,即得 MoS₂纳米粒子。

1.2.3 CdS/RGO 的合成

以制备 CdS/0.75% RGO(百分数为质量分数, 以复合材料的质量计,下同)为例,将 182.6 mg(0.685 mmol)的 Cd(Ac)₂•2H₂O和 164.5 mg(0.685 mmol) 的 Na₂S•9H₂O固体加入到含有 20 mL 去离子水的离 心管中并超声处理 30 min。再加入 0.75 mL 质量浓度 为 1 g/L 的 GO 悬浊液(称取 40 mg GO 粉末放入 40 mL 去离子水中,超声 40 min),并搅拌 30 min 后, 放入反应釜中 180 ℃下反应 6 h,冷却到室温后取出, 用去离子水和无水乙醇洗涤 3~4 次至上层清液无 杂质,在 50 ℃下干燥 12 h 后得到 CdS/0.75% RGO 样品。此外,在同样条件下改变 GO 加入量(0.5、 1.0 mL)可制备 CdS/0.5% RGO、CdS/1.0% RGO 样 品,不加入 GO 可制备纯 CdS。

1.2.4 CdS/MoS2的合成

以制备 CdS/1.0% MoS₂ (质量分数)为例,将 182.6 mg(0.685 mmol)的 Cd(Ac)₂•2H₂O 和 164.5 mg (0.685 mmol)的 Na₂S•9H₂O 固体加入到含有 20 mL 去离子水的离心管中,再加入 10 mL 质量浓度为 0.1 g/L 的 MoS₂ 悬浊液(称取 10 mg MoS₂ 粉末加入 100 mL 去离子水),并超声处理 30 min,放入反应釜中 180 ℃ 下反应 12 h,冷却到室温后取出,用去离子水和无 水乙醇洗涤 3~4 次至上层清液无杂质。在 50 ℃下 干燥 12 h 后得到 CdS/1.0% MoS₂样品。此外,在同 样的条件下改变 MoS₂ 的量(5、15 mL)可制备 CdS/0.5% MoS₂、CdS/1.5% MoS₂。

1.2.5 CdS/RGO/MoS2复合材料的合成

以制备 CdS/0.75% RGO/1.0% MoS₂ 为例,将 99 mg CdS/0.75% RGO 样品和 1 mg MoS₂加入到含 有 20 mL 去离子水的离心管中并超声处理 30 min, 然后转移到反应釜中 180 ℃下反应 12 h,冷却至室 温后取出,用去离子水和乙醇洗涤 3~4 次至上层清 液无杂质。在 50 ℃下干燥 12 h 后得到 CdS/0.75% RGO/1.0% MoS₂样品。在相同条件下加入不同质量 的 MoS₂ (0.5 、1.5 mg)可以得到 CdS/0.75% RGO/0.5% MoS₂、CdS/0.75% RGO/1.5% MoS₂样品。 上述合成过程示意如图 1 所示。

图 1 CdS/RGO/MoS₂复合材料的合成示意图 Fig. 1 Schematic illustration of fabrication of CdS/RGO/ MoS₂ composite

1.3 光电化学性能测试

采用三电极(工作电极、Pt 丝与饱和甘汞电极) 体系进行光电流实验。首先制备工作电极,取10 mg 复合材料加入1 mL 乙醇并超声15 min,涂抹在氟掺 杂的氧化锡(FTO)导电玻璃上。使用 300 W 氙灯和 紫外滤光片(λ >420 nm)为可见光光源,测试时长 300 s,光照间隔 20 s。通过电化学工作站进行电化学 阻抗谱(EIS)测试,频率范围为 0.1~1×10⁶ Hz,交 流振幅为 0.2 V。

1.4 光催化降解 MO 实验

将 10 mg 光催化剂均匀分散到 20 mL MO (质量 浓度 10 mg/L) 水溶液中, 随后转移到 100 mL 石英反 应器中(反应温度控制在 30 ℃)并避光持续搅拌 1 h, 用 300 W 氙灯 (带 λ > 420 nm 滤光片)模拟太阳光照 射,每隔10min取1mL悬浊液,高速离心。通过紫 外-可见分光光度计测定溶液在 464 nm 处的吸光度, 再根据标准曲线方程得到溶液中 MO 的质量浓度,并 计算不同样品对 MO 的降解速率。首先,绘制 ρ/ρ_0 随 时间 t 的降解折线图,其中 $\rho_0(g/L)$ 和 $\rho(g/L)$ 分别 是初始 MO 质量浓度和时间 $t(\min)$ 时的 MO 质量浓 度。再根据降解反应一级动力学方程: $\ln(\rho/\rho_0) = -kt$, 其中 k 为反应速率 (min⁻¹), 以 ln(ρ/ρ_0)与反应时间 t 作图,斜率即为反应速率。此外,为确定光催化剂降 解 MO 时产生的活性物质, 根据文献[8]方法, 进行自 由基捕获实验。催化剂循环使用实验中,因剩余沉淀 物经离心、烘干称重,质量没有明显变化,损耗可 以忽略, 故可以直接使用。

2 结果与讨论

2.1 结构表征

图 2 为 RGO、MoS₂、CdS、CdS/1.0% MoS₂、 CdS/0.75% RGO和CdS/0.75% RGO/1.0% MoS₂复合 材料的 XRD 谱图。CdS 的特征衍射峰为六方相的 CdS,并且与标准卡片(JCPDS No.41-1049)相一致。 六方相 CdS 在 2θ = 24.81°、26.51°、28.18°、43.68°、 47.84°、51.82°处的特征衍射峰分别对应于 CdS 的 (100)、(002)、(101)、(110)、(103)和(112) 晶面,峰形高且尖锐,表明 CdS 结晶性较好^[17-18]。 MoS₂在 2θ = 13.97°、33.09°、39.11°、58.82°处的特 征衍射峰分别对应于 MoS₂的(002)、(100)、(103) 和(110)晶面,并且与标准卡片(JCPDS No.37-1492) 相一致^[16]。RGO 在 2θ = 20.7°处出现特征衍射峰, 表示 GO 被还原成 RGO。但是,在 CdS/1.0% MoS₂、 CdS/0.75% RGO和 CdS/0.75% RGO/1.0% MoS₂复合 材料中看不到 RGO和 MoS₂的特征衍射峰。这可能 是由于 CdS 的衍射峰较高,而 RGO和 MoS₂的衍射 峰较弱或掺量较少导致的。综上所述,经过水热处 理后的 CdS 纳米粒子结构的物相未见明显变化。

- 图 2 RGO、MoS₂、CdS、CdS/MoS₂、CdS/RGO 和 CdS/ RGO/MoS₂复合材料的 XRD 谱图
- Fig. 2 XRD patterns of RGO, MoS₂, CdS, CdS/MoS₂, CdS/RGO and CdS/RGO/MoS₂ composite

2.2 复合材料形貌分析

图 3a~c 是在不同分辨率下对样品的形态和微观结构进行分析。从图 3a 和 b 中能清楚地看出,材料由直径约为 49.6 nm 球状 CdS 和直径约为 28.2 nm 球状 MoS₂ 以及膜状的 RGO 组成。图 3c 为 CdS/0.75% RGO/1.0% MoS₂的 HRTEM 图,可以同时看到 CdS 的(101)晶面(晶面间距为 0.33 nm)与 MoS₂的(002)的晶面(晶面间距为 0.62 nm)^[19-21]。如图 3d 所示,通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)得到 CdS/0.75% RGO/1.0% MoS₂ 的图像,结合元素映射(图 3e~g)和能谱(EDS)分析(图 3h),表明该复合材料是由 S、Cd、C 和 Mo 元素均匀分布组成。

- 图 3 CdS/0.75% RGO/1.0% MoS₂复合材料在不同分辨率下的 TEM 图(a、b)、HRTEM 图(c)、HAADF-STEM 映射 图(d)、STEM-EDX 图[S(e)、Cd(f)、Mo(g)]和 EDS 图(h)
- Fig. 3 TEM images (a, b) at different magnification rates, HRTEM image (c), HAADF-STEM image (d), STEM- EDX mapping of S (e), Cd (f), Mo (g) elements and EDS spectrum (h) of CdS/0.75% RGO/1.0% MoS₂ composite

2.3 紫外-可见漫反射(UV-Vis DRS)光谱分析

图 4 为 CdS、CdS/1.0% MoS₂、CdS/0.75% RGO、CdS/0.75% RGO/1.0% MoS₂的紫外-可见漫反射光 谱和 CdS 的带隙图。

图 4 CdS、CdS/MoS₂、CdS/RGO 和 CdS/RGO/MoS₂复合 材料的 UV-Vis DRS 谱图(a)和 CdS 的带隙图(b)

在图 4a 中, CdS 在 520 nm 左右显示出吸收边缘^[22-23],而其他样品相较 CdS 在更长的波长下显示 出吸收边缘,这表明所合成的复合材料均使吸收光 波长发生轻微红移。更重要的是,在 CdS/0.75% RGO/1.0% MoS₂ 复合材料中,由于 RGO 和 MoS₂ 共同负载在 CdS 上,使其光响应范围得到进一步拓 宽,太阳能利用率提高^[17-18, 24-25]。

图 4b 为使用 Kubelka-Munk 函数估算 CdS 的带 隙能 (E_{σ} , 单位 eV):

 $\alpha hv = A(hv - E_g)^{n/2}$

式中:a为吸收系数;h为普朗克常数(6.626×10^{-34} J·s); v为光频率(m/s); A为常数; n取决于半导体特性^[6], $n_{CdS}=1$ 。因此,计算得出 CdS 的带隙值约为 2.3 eV, 这与文献结果一致^[26]。

2.4 光催化降解 MO 性能

光催化活性通过在可见光(λ>420 nm)照射下 降解 MO 来评估。首先,对纯 MO 进行降解实验发 现其自身不具备降解能力,在黑暗条件下很稳定。 然后,对 CdS/RGO 复合材料进行降解 MO 测试,如 图 5a 和 b 所示,光降解速率排列顺序为:CdS/0.75% RGO(0.0312 min⁻¹)>CdS/1.0% RGO(0.0246 min⁻¹) >CdS/0.5% RGO(0.0185 min⁻¹)>CdS(0.0051 min⁻¹) >RGO(0)。CdS/0.75% RGO 在 40 min 可降解约 69.3% 的 MO,是降解性能最佳的复合比例。CdS/0.75% RGO(0.0312 min⁻¹)是纯 CdS(0.0051 min⁻¹)的 6.1 倍,而 RGO 没有降解性能。由此可见,二者复合后, RGO 起到电子传导的作用,从而提高 CdS 的降解速 率。接下来,对 CdS/MoS₂复合材料进行降解 MO 测 试,结果如图 5c 和 d 所示,光降解速率排列顺序分别 为: CdS/1.0% MoS₂(0.0258 min⁻¹) > CdS/0.5% MoS₂ (0.0145 min⁻¹) > CdS /1.5% MoS₂(0.0097 min⁻¹) > CdS(0.0051 min⁻¹) > MoS₂(0.0031 min⁻¹)。CdS/1.0% MoS₂在 40 min 可降解约 64.4%的 MO,是降解性能 最佳的复合比例。CdS/1.0% MoS₂(0.0258 min⁻¹) 是 纯 CdS(0.0051 min⁻¹) 和纯 MoS₂(0.0031 min⁻¹) 的 5.1 倍和 8.3 倍。由此可见,二者复合后,MoS₂起 到加快电子-空穴对分离的作用,从而提高 CdS 的降 解速率。此外,CdS/0.75% RGO(0.0312 min⁻¹) 降 解 MO 的速率大于 CdS/1.0% MoS₂(0.0258 min⁻¹), 所以,选择先合成 CdS/RGO 样品,之后再复合 MoS₂, 形成三元复合材料,并再对其进行降解 MO 测试。

图 6a 和 b 为 CdS/RGO/MoS2复合材料进行降解 MO测试。由图 6 可见, MoS₂负载量不同光降解速 率也发生变化,光降解速率大小排列顺序为: CdS/0.75% RGO/1.0% MoS_2 (0.05777 min^{-1}) > CdS/0.75% RGO/1.5% MoS_2 (0.03756 min^{-1}) > CdS/0.75% RGO/0.5% MoS_2 (0.03124 min^{-1}) > CdS/0.75% RGO (0.0312 min⁻¹) > CdS/1.0% MoS₂ $(0.0258 \text{ min}^{-1}) > \text{CdS} (0.0051 \text{ min}^{-1}) > \text{MoS}_2$ $(0.0031 \text{ min}^{-1}) > RGO (0)_{\circ} CdS/0.75\% RGO/ 1.0\%$ MoS2在40 min 可降解约 90.5%的 MO, 为降解性能最 佳的三元复合比例,其光降解速率是 0.05777 min⁻¹, 分别是 CdS (0.0051 min⁻¹)、MoS₂ (0.0031 min⁻¹)、 CdS/0.75% RGO (0.0312 min^{-1}), CdS/1.0% MoS₂ (0.0258 min⁻¹)的11.3 倍、18.6 倍、1.9 倍和 2.2 倍。 结合二元实验数据分析得知,当 RGO 和 MoS₂作为 助催化剂共同负载在 CdS 上时, 其降解性能均优于 单独复合其中一个助催化剂的性能,所以证明 CdS/RGO/MoS2复合材料使降解 MO 速率得到有效 提升。这是由于 CdS/RGO/MoS2 复合材料的形成导 致更快的电子传输和更有效的光生电子-空穴对分 离。另外,对光降解性能最佳的样品进行稳定性测 试。如图 6c 所示,经过 5 次使用后,其降解效果 未见明显变化,证明催化体系的稳定性良好。

- 图 5 二元复合材料的 MO 光降解活性随时间的变化(a、 c)和降解 MO 的速率(b、d)
- Fig. 5 Photodegradation activities of MO over binary composites with time (a, c) and photocatalytic degradation rates of MO (b, d)

为更好地了解光催化机理,使用降解效果最佳的样品(CdS/0.75% RGO/1.0% MoS₂)进行活性物质捕获实验^[8]。用 *t*-BuOH(1 mmol/L)、Na₂EDTA(1 mmol/L)和 BQ(1 mmol/L)分别作为羟基自由基(•OH)捕获剂、空穴(h^+)捕获剂和超氧自由基(•O₂)捕获剂,结果见图 6d。

- 图 6 不同光催化剂的 MO 光降解活性随时间的变化(a), 降解 MO 的速率(b), CdS/0.75% RGO/1.0% MoS₂ 复合材料光降解循环性能(c), 3 种类型捕获剂对 CdS/0.75% RGO/1.0% MoS₂ 复合材料光降解 MO 的影响(d)
- Fig. 6 Photodegradation activities of MO over different photocatalysts with time (a), rates of MO photocatalytic degradation over different photocatalysts (b), cycling performances (c) and photodegradation in the presence of three types of scavengers (d) of MO over CdS/0.75% RGO/1.0% MoS₂ composite

如图 6d 所示,与不含捕获剂的体系相比,加入 Na₂EDTA 的样品在 40 min 光降解活性降低了 87.2%; 加入 BQ 的样品在 40 min 光降解活性降低了 82.8%。 然而,加入 *t*-BuOH 对 MO 的降解活性几乎没有影 响。结果表明,•OH 对 MO 的降解作用可忽略不计, h⁺和•O₂在降解 MO 过程中起到主要作用。

2.5 光电化学实验

为深入研究复合材料光生电荷的分离情况,测试了其在光照条件下表面电子迁移形成的瞬态光电

流情况,如图 7a 所示。可以看出,样品的电流密度 大小排列顺序为: CdS/0.75% RGO/1.0% MoS₂ $(1.174 \ \mu A/cm^2) > CdS/0.75\% \ RGO \ (0.532 \ \mu A/cm^2) >$ CdS/1.0% MoS₂(0.456 μ A/cm²)> CdS(0.227 μ A/cm²)_o 其中,光电流最高的 CdS/0.75% RGO/1.0% MoS2分 别是 CdS、CdS/0.75% RGO 和 CdS/1.0% MoS2 光电 流密度的 5.2 倍、2.2 倍和 2.6 倍。结果表明, CdS/ RGO/MoS2复合材料中,界面间电荷转移情况得到改 善,有效抑制了载流子复合。电化学阻抗谱的结果 如图 7b 所示,与光电流-时间响应曲线图相对应。 无论是光照还是黑暗条件下, CdS/0.75% RGO/1.0% MoS₂的弧半径比CdS、CdS/1.0% MoS₂和CdS/0.75% RGO 的弧半径都要小,说明电子和空穴转移电阻 小。以上结果说明,复合材料的构建可以加速光生 电子和空穴的迁移速率,抑制电子空穴的复合,有 利于光催化活性的提高。

- 图 7 CdS、CdS/MoS₂、CdS/RGO 和 CdS/RGO/MoS₂复 合材料的瞬态光电流密度响应图(a)和电化学阻 抗谱图(b)
- Fig. 7 Transient photocurrent density response (a) and electrochemical impedance spectra (b) of CdS, CdS/MoS₂, CdS/RGO and CdS/RGO/MoS₂ composite

2.6 光催化机理

光催化降解 MO 性能的提高在很大程度上取决于材料在吸收可见光时产生的电子-空穴对能否快速分离。图 8 为三元 CdS/RGO/MoS₂复合材料光催化降解 MO 的机理示意图。

图 8 光催化降解 MO 的机理示意图 Fig. 8 Mechanism diagram of photocatalytic degradation of MO

由图 8 可见,首先,CdS 吸收可见光后,在价带 (VB=1.58 eV)^[26]上产生电子(e⁻),电子吸收能量跃 迁到导带(CB= 0.72 eV)^[26]上,助催化剂 RGO 捕 获电子,再转移到更低导带位置的MoS2上(CB=0.65 eV)^[26], 空穴留在 CdS 的价带上, 实现电子-空穴 对的快速分离,从而抑制了 CdS 光催化剂吸收可见 光时产生的电子-空穴对的快速复合,由此更多的电 子能够参与到光催化剂降解 MO 的过程中。MoS2 导带上的电子可以与半导体表面的氧气反应形成·O₂ 对有机物进行降解。而留在 CdS 价带上的 h⁺是良好 的氧化剂可以氧化吸附在半导体表面的有机物达到 降解的作用。此外,由于 RGO 是良好的导体,可以 作为电子捕获层直接捕获光生电子 e⁻, 也可以在 CdS和MoS2之间充当桥梁作用,从而进一步促进光 生载流子的有效分离,使得更多的光生载流子参与 催化反应。并且复合材料形成时的费米能级拉平效 应能够促进不同半导体之间载流子电子的扩散和转 移,从而有效提高催化活性^[25-27]。

3 结论

通过简单的水热法成功合成 CdS/RGO/MoS₂复 合材料。该制备方法成本低廉,操作简便且可控。 水热法使得 RGO 和 MoS₂两种助催化剂与 CdS 紧密 地结合在一起,可以促进光生电子-空穴对快速分 离,从而显著提高催化剂的可见光降解 MO 速率和 稳定性。降解实验结果表明,CdS/0.75% RGO/1.0% MoS₂表现出最佳的光催化降解活性,降解速率分别 是纯 CdS 和 MoS₂的 11.3 倍和 18.6 倍。通过对催化 机理进行分析,可以推测出光催化效率增强的原因: 一方面是三元复合材料具有良好的光响应能力;另 一方面,RGO 作为电子受体和转运体在光催化材料 中能很好地传输电子,从而抑制光生电子-空穴的重 组,再负载 MoS₂又进一步降低了 CdS 中电子-空穴 对的复合。因此,所制备的 CdS/RGO/ MoS₂复合材 料光催化剂在可见光降解有机物领域和环境保护与 应用等方面是很有前途的材料。

参考文献:

- GAO Y, LIN J Y, ZHANG Q Z, *et al.* Facile synthesis of heterostructured YVO₄/g-C₃N₄/Ag photocatalysts with enhanced visible-light photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 224: 586-593.
- [2] LIUSL(刘淑玲), YANW(严薇), GUOJ(郭洁), et al. Synthesis, characterization and photocatalytic properties of In₂O₃/CdS composites[J]. Fine Chemicals (精细化工), 2018, 35(9): 1473-1477.
- [3] XU Z H, KIBRIA M G, ALOTAIBI B, et al. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect[J]. Applied Catalysis B: Environmental, 2018, 221: 77-85.
- [4] ALI I, GUPTA V K. Advances in water treatment by adsorption technology[J]. Nature Protocols, 2007, 1(6): 2661-2667.
- [5] QIU P X, YAO J H, CHEN H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn₂S₄/g-C₃N₄ photocatalyst[J]. Journal of Hazardous Materials, 2016, 317:158-168.
- [6] SUN Y G (孙亚光), ZHANG H Y (张含烟), MING T (明涛), et al. Synthesis of ZnIn₂S₄/g-C₃N₄ nanocomposites with efficient photocatalytic H₂ generation activity by a simple hydrothermal method[J]. Chem J Chinese Universities (高等学校化学学报), 2021,42 (10): 3160-3166.
- [7] GAO Y, XU B T, CHERIF M, et al. Atomic insights for Ag interstitial/ substitutional doping into ZnIn₂S₄ nanoplates and intimate coupling with reduced graphene oxide for enhanced photocatalytic hydrogen production by water splitting[J]. Applied Catalysis B: Environmental, 2020, 279: 119403.
- [8] GAO Y, QIAN K, XU B T, et al. Designing 2D-2D g-C₃N₄/Ag: ZnIn₂S₄ nanocomposites for the high-performance conversion of sunlight energy into hydrogen fuel and the meaningful reduction of pollution[J]. RSC Advances, 2020, 10 (54): 32652-32661.
- [9] YANG H, YANG C, ZHANG N, et al. Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods [J]. Applied Catalysis B: Environmental, 2020, 285: 119801.
- [10] SHARMA P. High performance H₂O₂ production achieved by sulfurdoped carbon on CdS photocatalyst *via* inhibiting reverse H₂O₂ decomposition[J]. Applied Catalysis B: Environmental, 2020, 284: 119690.
- [11] WANG X, MAEDA K, THOMAS A, *et al.* A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.
- [12] LI S S, SUN J R, GUAN J Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2021, 42: 511-556.
- [13] JAMIL A, MUSTAFA F, ASLAM S, *et al.* Structural and optical properties of thermally reduced graphene oxide for energy devices[J]. Chinese Physics B, 2017, 26(8): 086501.
- [14] COLINA-RUIZ R A, TOLENTINO-HERNANDEZ R V, GUARNEROS-AGUILAR C, et al. Chemical bonding and electronic structure in CdS/GO and CdSSe/GO multilayer films[J]. The Journal of Physical Chemistry C, 2019, 123(22): 13918-13924.
- [15] ZHAO X L, GAO W Q, LIU Q L, *et al.* Enhanced photo-induced carrier separation of CdS/MoS₂ via micro-potential of Mo microsheet derived from electromagnetic induction[J]. Chemical Engineering Journal, 2020, 404: 126972.
- [16] LIANG H J, HUA P, ZHOU Y F, et al. Fabrication of Cu/RGO/MoS₂ nanohybrid with energetic visible-light response for degradation of rhodamine B[J]. Chinese Chemical Letters, 2019, 30: 2245-2248.
- [17] TANG Y J, WANG Y, WANG X L, et al. Molybdenum disulfide/ nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(12): 1600116.