功能材料

沥青基超交联聚合物的制备及其 VOCs 吸附性能

王 琰,刘 欢,刘子欣,于浩然,赵风云,王建英*

(河北科技大学 化学与制药工程学院,河北 石家庄 050018)

摘要: 以沥青为原料, 二氯甲烷 (DCM) 为溶剂和交联剂, 无水三氯化铝为催化剂, 通过改变交联剂用量制备 出一系列沥青基超交联聚合物 (HCPs) (HCP-1、HCP-2、HCP-3、HCP-4和HCP-5)。用 FTIR、N₂吸附-脱附、 SEM 和 TGA 对 HCPs 进行了结构表征。结果表明, DCM 与沥青成功交联, 制得的 HCPs 的最高比表面积为 467 m²/g, 孔道以介孔为主, HCPs 热稳定性较高。静态吸附实验表明, HCPs 对含芳环类、酯类、醇类挥发性有机 物均有较好的吸附性能。其中, 对邻二甲苯吸附量最高, 为 437.89 mg/g, 对甲醇吸附量最小, 为 190.48 mg/g。 由 0.3091 g 沥青和 30 mL DCM 制得的 HCP-4 对邻二甲苯进行 4 次循环吸附实验, 其对邻二甲苯的吸附量为新 鲜 HCP-4 吸附量的 91.51%。

关键词:沥青基超交联聚合物;多孔介质;挥发性有机气体;吸附剂;功能材料 中图分类号:TQ424.3 文献标识码:A 文章编号:1003-5214 (2023) 01-0087-06

Synthesis and VOCs adsorption performance of pitch-based hyper-cross-linked polymers

WANG Yan, LIU Huan, LIU Zixin, YU Haoran, ZHAO Fengyun, WANG Jianying*

(School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China)

Abstract: A series of pitch-based hyper-cross-polymers (HCPs) (HCP-1, HCP-2, HCP-3, HCP-4 and HCP-5) were prepared from anhydrous aluminum chloride catalyzed reaction of pitch and crosslinker dichloromethane (DCM) by changing crosslinker content. The HCPs were then characterized by FTIR, N₂ adsorption-desorption, SEM and TGA. The results showed that DCM was successfully cross- linked with pitch, and the HCPs displayed a main mesoporous structure with the highest specific surface area of 467 m²/g as well as a high thermal stability. Meanwhile, the static adsorption experiment indicated that HCPs showed good adsorption capacities for VOCs such as aromatic rings, esters and alcohols, among which the adsorption capacity of *o*-xylene and methanol was 437.89 mg/g and 190.48 mg/g respectively. The adsorption capacity of HCP-4, prepared from 0.3091 g pitch and 30 mL DCM, still remained at 91.51% after 4 recycles.

Key words: pitch-based hyper-cross-linked polymers; porous media; volatile organic gas; adsorbents; functional materials

挥发性有机物 (VOCs) 是一类有机化合物的统称^[1],主要来自石油化工行业、汽车制造业、涂料加工业、家具制造业以及日常生活等^[2-3]。近几年,随着工业生产规模加大,VOCs的排放量呈现增长趋势^[4]。VOCs多含酮类、烃类、芳环类、醛类、醇类、脂类、胺类等^[5]有害物质,对人们生活环境和身体健康易造成极大危害。因此,对 VOCs的治理

迫在眉睫。吸附法是处理 VOCs 经济有效的方法之 一^[6-7],吸附剂的选用是关键。传统吸附剂^[8]有活性 炭、沸石和分子筛等。市场应用量较大的活性炭存 在孔隙易堵塞和引发火灾等问题;沸石或分子筛价 格昂贵。因此,研发更高效、低成本的 VOCs 吸附 剂一直是研究热点。

超交联聚合物(HP)具有大比表面积、高孔隙

率、结构多样、热稳定性好和高机械强度等优点, 在吸附领域引起关注。目前, HP 的制备和应用研究 已广泛开展^[9-11]。LUO 等^[12]以杂环芳烃分子(吡咯、 呋喃和噻吩)为单体制得 HP,其比表面积达 726 m²/g; RATVIJITVECH 等^[13]以苯和苯胺混合物为原料,二 甲氧基甲烷为交联剂制得 HP, 酰胺化反应提高了产 物比表面积和孔径,为气体吸附提供更多吸附位点; 李步怡等[14]用简单的含芳环化合物(苯、联苯、甲 苯、氯苯等)制得 HP,比表面积高达 1300 m²/g; 辛凡文等[15]以含官能团更复杂的煤裂化沥青为原料 制得 HP,将其用于甲烷吸附研究,吸附量达到 4.62 mmol/g; 高惠^[16]则是采用沥青和煤焦油作为构 筑单元制得 HP,其对环己烷的吸附量可达 1115 mg/g; 杨斌^[17]采用酚醛树脂制得 HP,将其用于苯吸附性能 研究, 吸附量达 472 mg/g。然而, 文献报道中关于 HP的制备普遍存在着原材料(构筑单元)合成困难、 生产成本高、单体选择范围窄等问题, 而以沥青为 构筑单元制备 HP 具有原料廉价易得的优势, 且沥 青基的 HP 对烷烃显示出了一定的吸附能力。目前, 以沥青为原料制备 HP 并应用于气体吸附的研究相 对较少,而对于芳烃类、酯类及醇类 VOCs 的吸附 研究还鲜见报道。

本文以廉价的沥青为原料,二氯甲烷(DCM) 为溶剂和交联剂,利用外交联法制备 HCPs,并对 HCPs 进行了结构表征;探讨了溶剂用量对 HCPs 结 构、形貌以及对 VOCs(芳环类如邻二甲苯、甲苯, 酯类如乙酸乙酯、乙酸甲酯,醇类如甲醇、异丙醇) 吸附性能的影响。该方法对研究 HCPs 具有重要意 义,且制备的聚合物在 VOCs 治理领域具有重要的 应用价值。

1 实验部分

1.1 试剂与仪器

DCM(质量分数≥99.5%),分析纯,上海阿拉 丁生化科技有限公司;邻二甲苯、甲苯、乙酸乙酯、 乙酸甲酯、甲醇、异丙醇、无水乙醇、无水三氯化 铝(AlCl₃),分析纯,天津市大茂化学试剂厂。

Nicolet iS5 型傅里叶变换红外光谱仪,美国赛 默飞世尔科技公司; TriStar II 3020 型全自动比表 面积与孔隙度分析仪,美国麦克默瑞提克(上海) 仪器有限公司; SDT Q600 型热重分析仪,美国 TA 仪器公司; S-4800- I 型扫描电子显微镜,日本日立 公司。

1.2 HCPs 的合成

HCPs 的合成路线如下所示。

向三口烧瓶中加入 0.3091 g 沥青和一定量的 DCM,磁力搅拌 30 min 后再向反应体系中加入 4.6365 g 无水三氯化铝,升温至 38 ℃反应 24 h,停 止反应,冷却至室温。所得的固体用无水乙醇洗涤 3 次并索氏提取 24 h,然后在 80 ℃真空干燥 24 h, 得到黑色粉末产物 HCPs。溶剂 DCM 不同用量(10、 20、26.5、30、40 mL)下得到的产物分别标记为 HCP-1、HCP-2、HCP-3、HCP-4 和 HCP-5,产物统 称为 HCPs。

1.3 表征方法

采用 FTIR 对聚合物的表面官能团进行测定, 使用衰减全反射法(ATR)进行样品测试,利用 ATR 附件能够对固体和液体样品直接取样分析。利用全 自动比表面积与孔隙度分析仪在-196 ℃下进行 HCPs 比表面积和孔结构的测试和分析。热性能测 试:利用热重分析仪进行热稳定性测试,升温速率 10 ℃/min,升温范围为室温~800 ℃。SEM 测试: 利用扫描电子显微镜在加速电压 200 kV 下测定 HCPs 形貌。

1.4 VOCs 吸附实验

静态吸附实验:取 200 mg HCP-1 放到预先称量 好的玻璃片上,然后将其放置到含有饱和 VOCs 蒸 汽的密闭环境中(25 ℃下分别将 200 mL 的邻二甲 苯、甲苯、乙酸乙酯、乙酸甲酯、甲醇、异丙醇液 体装入口内径为 210 mm 干燥皿中密闭静置 24 h, 使干燥皿中 VOCs 气体达到饱和),在一定的时间段 (2、5、16、28、43 和 48 h)将 HCPs 取出并称重。 HCP-2、HCP-3、HCP-4、HCP-5 均采用与 HCP-1 相同的实验步骤。利用式(1)计算 VOCs 的静态饱 和吸附量(以下简称吸附量)。

$$Q = (m' - m_0) / m_0 \tag{1}$$

式中: *Q*一静态饱和吸附量, mg/g; *m*₀一吸附前 HCPs, 质量, g; *m*'一吸附后 HCPs 质量, g。

吸附循环实验:将静态吸附后的 HCPs 称重(净 重,记录质量为 m_1)放入玻璃管内,在 110 °C下通 入氮气进行吹扫脱附 5 h 后,将其放入真空干燥箱 内 100 °C脱附 5 h,记录脱附后样品质量(净重, 记录质量为 m_2)。通过对比脱附前后 HCPs 质量的差 值(m_1-m_2)判断脱附是否完全,脱附前后 HCPs 的 质量差值越接近已吸附 VOCs 的质量说明脱附越完 全。将脱附后的 HCPs 进行下一次静态吸附实验, 记录相应的吸附、脱附量,循环操作4次。

2 结果与讨论

2.1 HCPs 的结构表征

图 1 为 HCPs 和沥青的 FTIR 谱图。可以看出, 与沥青的 FTIR 谱图相比,HCPs 产物中位于 3035 cm⁻¹ 处芳环上 C—H 的伸缩振动峰消失,在 1689 cm⁻¹ 处出现芳环上 C==C 的伸缩振动峰,在 2960 cm⁻¹ 处出现亚甲基的伸缩振动峰,表明成功合成了 HCPs。在 686 cm⁻¹处出现 C—CI 的伸缩振动吸收峰, 表明产物中成功引入了氯元素,与高惠^[16]报道的 HCPs 的 C—CI 伸缩振动峰一致。

Fig. 1 FTIR spectra of pitch and HCPs

图 2 为 HCPs 的氮气吸附-脱附等温线和孔径分 布图;表1为 HCPs 的孔结构参数。根据 IUPAC 对 多孔材料吸附曲线分类,由图 2 可知,HCPs 具有 II 型吸附等温线特征,HCPs 的氮气吸附-脱附曲线在 低压区呈现上升趋势,表明 HCPs 中存在一定的微 孔结构,在中压区该曲线出现回滞环,表明 HCPs 存在介孔结构^[18],孔径分布比较均匀。由表1可知, 随着 DCM 用量加大,反应交联程度加大,孔径增 大。当 DCM 用量增加到 30 mL 时,产物比表面积 增大到 467 m²/g。HCPs 中介孔越多,比表面积越大, 与 WANG 等^[19]制备的 HCPs 结果一致。但当 DCM 用量增加到 40 mL 时,HCP-5 比表面积降低到 447 m²/g,表明在合成过程中溶剂用量增加到一定程 度之后,可能会对 HCPs 孔结构造成堵塞,使沥青 过度交联,降低了产物的比表面积^[20]。

HCPs 热稳定性测定结果如图 3 所示。由于 HCP-1和HCP-2制备过程中交联剂用量少,稳定性 较差,故只给出HCP-3、HCP-4和 HCP-5 热重分析 结果。可以看出,HCPs的质量随着温度增加呈缓慢 下降趋势,在100℃前的轻微质量下降是由于吸附 水的蒸发;300℃时失重率小于13%,这是由于有 机骨架的分解所致^[21];在800℃时失重率不到 30%,表明 HCPs 具有较高的热稳定性。热稳定性大 小顺序为 HCP-3>HCP-4>HCP-5。热稳定性不同的 原因与 HCPs 材料的交联程度有关,在交联反应时, 更多的 DCM 加入量会使反应体系更加分散,进而 使 HCPs 的交联度降低,交联度越低的产品热稳定 性越差^[22]。

图 2 HCPs 的氮气吸附-脱附曲线(a)和孔径分布图(b) Fig. 2 N₂ adsorption-desorption isotherms (a) and pore size distribution curves (b) of HCPs

表 1 不同 HCPs 的孔结构参数

Table 1 Pore structure parameters of different HCPs

		—		
样品	溶剂用 量/mL	比表 面积/(m ² /g)	平均 孔径/nm	孔体积/ (cm ³ /g)
HCP-1	10	21	1.4	0.032
HCP-2	20	58	1.7	0.084
HCP-3	26.5	152	1.8	0.207
HCP-4	30	467	2.6	0.545
HCP-5	40	447	2.6	0.478

HCPs 的 SEM 图见图 4。可以看出, HCPs 是由 形状不规则的微小颗粒组成的松散团聚体^[23],表面 形态类似岩石;与 HCP-3、HCP-5 相比, HCP-4 有 大量颗粒团聚,表面更加粗糙,能提供更大的比表 面积。

图 4 HCP-3 (a)、HCP-5 (b)和HCP-4 (c、d)的SEM图 Fig. 4 SEM images of HCP-3 (a), HCP-5 (b) and HCP-4 (c, d)

2.2 HCPs 对不同 VOCs 吸附性能研究

图 5 为 HCPs 对邻二甲苯、甲苯、乙酸乙酯、 乙酸甲酯、甲醇、异丙醇的静态吸附曲线。可以看 出, HCPs 对 VOCs 吸附量均随吸附时间延长而增 加。其中, HCPs 对邻二甲苯、乙酸乙酯、乙酸甲酯、 甲醇、异丙醇的吸附量呈现缓慢增长趋势,约在 40 h 吸附达到饱和; HCPs 对甲苯的吸附量在前 5 h 增长 速率较快,随后速率增加减缓,在43h后达到吸附 饱和状态。这是由于开始时吸附主要在 HCPs 表面 进行,吸附速率较快;随着吸附时间的延长,HCPs 表面 VOCs 浓度升高,吸附过程转为以内部扩散为 主,由于内部阻力较大,致使吸附速率降低^[24]。另 外, HCP-4 比表面积最大, 对 VOCs 吸附量也最大。 同一 HCP 对含芳香环 VOCs 吸附量均大于对醇类 VOCs 的吸附量, HCP-4 对邻二甲苯的吸附量为 437.89 mg/g, 而对甲醇的吸附量为 190.48 mg/g。将 HCP-4 对甲苯的吸附量与已报道文献结果进行对比 (见表 2)可看出, HCP-4 对甲苯的吸附量优于比 表面积相近的活性炭[25]和分子筛[26],但远低于咔唑 基 HP^[27]对甲苯的吸附量,进一步说明吸附剂结构是 影响其吸附量的关键因素。

- 图 5 HCPs 对芳环类、酯类、醇类 6 种 VOCs 静态吸附 曲线
- Fig. 5 Static adsorption curves of HCPs on aromatic ring, ester and alcohol 6 kinds of VOCs

图 5 中, HCP-4 对不同 VOCs 的吸附量大小顺 序为: 邻二甲苯>甲苯>乙酸乙酯>乙酸甲酯>异丙醇> 甲醇。这一结果与吸附质的相对分子质量、动力学

直径、沸点、极化率等因素^[28]有关。HCP-4 结构多 为介孔,孔径在 2.6 nm 附近,远大于所选 VOCs(邻 二甲苯、甲苯、乙酸乙酯、乙酸甲酯、甲醇、异丙 醇)分子的动力学直径(0.4~0.6 nm 之间), VOCs 分子可以在孔道内自由出入,所以 HCPs 直径对吸 附性能的影响不大^[29]:HCP-4 有效吸附点位是定值, 当吸附点位上 VOCs 数量相近时, VOCs 分子相对 分子质量越大,饱和吸附量越高,因此相对分子质 量较高的邻二甲苯的饱和吸附量高于其他吸附 质^[30-32]。VOCs 的沸点也影响 HCPs 对其的吸附 量^[33]。吸附时与含有芳环结构的 HCPs 分子间易形 成 π-π 耦合, 分子间作用力较强, 也是 HCP-4 对芳 环类物质吸附性能高的原因之一。另外,吸附质分 子的极化率对吸附剂和吸附质之间的作用力强弱也 有影响[12,34], 邻二甲苯极化率最大, 分散力也最大, 所以 HCP-4 对其的吸附量也最高。表 3 中列出了不 同 VOCs 的物性参数。

表 2 HCP-4 与活性炭、分子筛和咔唑基 HP 的孔结构及 其对甲苯吸附量的比较

Table 2Comparison of pore structure and their adsorption
capacity for toluene of HCP-4, activated carbon,
molecular sieve and carbazole-based HP

吸附剂	比表面积/ (m ² /g)	孔径/ nm	甲苯吸附量/(mg/g)	参考 文献
HCP-4	467	2.6	385.40	本文
颗粒活性炭	332	3.7	210.40	[25]
13X 分子筛	425	3.9	123.80	[26]
ZSM-5 分子筛	464	2.8	80.40	
咔唑基 HP	1180	0.6	1470.00	[27]

表 3 不同吸附质的物性参数^[35]

Table 3 Physical property parameters of different adsorbates							
VOCs	相对分子 质量	动力学 直径/nm	沸点/℃	极化率/ (×10 ²⁴ cm ³)			
邻二甲苯	106.16	0.601	144.6	14.23			
甲苯	92.14	0.568	110.6	12.20			
乙酸乙酯	88.11	0.539	77.2	8.86			
乙酸甲酯	74.08	0.497	56.8	7.02			
甲醇	32.04	0.408	64.7	3.32			
异丙醇	60.10	0.516	82.45	6.91			

2.3 吸附循环实验

为探讨 HCPs 的循环使用性能,以 HCP-4 吸附邻 二甲苯为例,进行了 4 次吸附循环实验,结果见图 6。 首次 HCP-4 对邻二甲苯的吸附量为 437.89 mg/g,随 着吸附次数的增加,对邻二甲苯的吸附量逐渐降低, 4 次吸附循环后吸附量为 400.71 mg/g,是新鲜 HCP-4 吸附量的 91.51%。吸附量下降的原因是,邻 二甲苯与 HCP-4 形成 π-π 耦合,占据了吸附活性位 点,再生时脱附不完全所致。安昭辉^[8]制备的微介 孔碳材料对甲苯进行 4 次循环吸附后,平衡吸附量 为新鲜样品的 90%; WANG 等^[36]制备了聚二乙烯基 苯交联聚合物,用其对苯进行 4 次循环吸附,4 次 循环吸附后,吸附量仅是新鲜样品的 75%。所以, HCP-4 有着良好的吸附再生性能。

图 6 HCP-4 对邻二甲苯的吸附循环利用性能 Fig. 6 Adsorption cycles of HCP-4 on *o*-xylene

3 结 论

利用傅克烷基化反应制备 HCPs, 探讨了溶剂 (DCM)用量对聚合物的比表面积和孔径分布的影 响。其中, HCP-4 的比表面积最高,为467 m²/g; HCPs 孔径均以介孔为主。不同 VOCs 静态吸附实验 结果表明,吸附时间越长,吸附量越大,48 h 后 HCPs 的静态吸附达到饱和。HCPs 对邻二甲苯的饱和吸附 量最高达 437.89 mg/g,对甲醇饱和吸附量仅为 190.48 mg/g。HCP-4 经 4 次循环吸附邻二甲苯后的 吸附量仅降低 8.49%。因此,HCPs 用于吸附含芳环 类 VOCs 有较为广阔的应用前景。

参考文献:

[35]

- YANG C, MIAO G, PI Y, *et al.* Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153.
- [2] LI H G (李和国), WANG L Y (王立莹), ZHAO Y (赵越), et al. A kind of novel low-cost hypercrosslinked polymers with efficient lodine adsorption[J]. Journal of Ordnance Equipment Engineering (兵器装备工程学报), 2021, 42(7): 269-273.
- [3] WANG S S, ZHANG L, LONG C, *et al.* Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents[J]. Journal of Colloid and Interface Science, 2014, 428: 185-190.
- [4] XU M Y (徐梦晏). Comparative study on the harm of industrial volatile organic compounds VOCs and preventive measures[J]. Technology Innovation and Application (科技创新与应用), 2021, 11(12): 143-145.
- [5] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology,

2020, 235: 116213.

- [6] LU S C, LIU Q L, HAN R, *et al.* Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds[J]. Journal of Environmental Sciences, 2021, 105: 184-203.
- [7] CUI X L (崔希利), XING H B (邢华斌). Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal (化 工学报), 2018, 69(6): 2339-2352.
- [8] AN Z H (安昭辉). Preparation and characterization of micro-mesoporous carbon and the dynamic adsorption performance for toluene gas[D]. Shanghai: Shanghai Institute of Technology (上海应用技术大学), 2020.
- [9] VINODH R, JUNG E M, GANESH M, et al. Novel microporous hypercross-linked polymers as sorbent for volatile organic compounds and CO₂ adsorption[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1231-1238.
- [10] LIJH (李建惠), LANTH (兰天昊), CHENY (陈杨), et al. Research progress of MOF-based composites for gas adsorption and separation[J]. CIESC Journal (化工学报), 2021, 72(1): 167-179.
- [11] FAN W D, WANG X, XU B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance[J]. Journal of Materials Chemistry A, 2018, 6(47): 24486-24495.
- [12] LUO Y L, LI B Y, WANG W, *et al.* Hypercrosslinked aromatic heterocyclic microporous polymers: A new class of highly selective CO₂ capturing materials[J]. Advanced Materials, 2012, 24(42): 5703-5707.
- [13] RATVIJITVECH T, DAWSON R, LAYBOURN A, et al. Postsynthetic modification of conjugated microporous polymers[J]. Polymer, 2014, 55(1): 321-325.
- [14] LI B Y (李步怡), GONG R N (龚瑞妮), TAN B E (谭必恩). Preparation of microporous polymer material of woven aromatic compound network[C]//Abstracts of the 2011 National Polymer Academic Papers Conference (2011 年高分子学术论文报告会), 2011: 499.
- [15] XIN F W (辛凡文), LI K J (李克健), SHU G P (舒歌平), et al. Preparation and gas adsorption of super activated carbons derived from coal liquefaction asphaltene[J]. Coal Conversion (煤炭转化), 2017, 40(2): 47-52.
- [16] GAO H (高惠). Preparation and application of hyper-cross-linked micro porous polymers[D]. Xiamen: Xiamen University (厦门大学), 2017.
- [17] YANG B (杨斌). Study on preparation and properties of pitch/resinbased activated carbons[D]. Tianjin: Tianjin University (天津大学), 2013.
- [18] WEI D Y, WANG F, SUN H X, *et al.* Ionic hyper-cross-linked polymers monoliths for efficient solar steam generation[J]. European Polymer Journal, 2021, 147: 110281.
- [19] WANG S L, ZHANG C X, SHU Y, et al. Layered microporous polymers by solvent knitting method[J]. Science Advances, 2017, 3(3): 1602610.
- [20] HOU S S, RAZZAQUE S, TAN B E. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties[J].

Polymer Chemistry, 2019, 10(11): 1299-1311.

- [21] YANG K, XUE F, SUN Q, et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 713-718.
- [22] GHAFARI M, ATKINSIN J D. One-step hyper-cross-linking of porous styrenic polymers using dichloroalkane cross-linkers to maintain hydrophobicity[J]. Polymer, 2017, 116: 278-286.
- [23] WANG W Q, WANG J, CHEN J G, et al. Synthesis of novel hypercross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical Engineering Journal, 2015, 281: 34-41.
- [24] GONG W (龚伟), LI M L (李美兰), YUAN L (袁浪), et al. Adsorption behavior of β-CD/CTS crosslinked polymers for Pb²⁺ in water[J]. Thermosetting Resin (热固性树脂), 2019, 34(3): 37-42.
- [25] ZHANG D B (张定邦). Preparation of lignin-based activated carbon and study on its adsorption performance for toluene[D]. Hefei: Hefei University of Technology (合肥工业大学), 2021.
- [26] ZHU Z J (朱子俊). Study on toluene adsorption of metal modified zeolite molecular sieve[D]. Kunming: Kunming Precious Metals Research Institute (昆明贵金属研究所), 2019.
- [27] ZHU J H, CHEN Q, SUI Z Y, et al. Preparation and adsorption performance of cross-linked porous polycarbazoles[J]. Journal of Materials Chemistry A, 2014, 2(38): 16181-16189.
- [28] LEE S W, CHEON J K, PARK H J, et al. Adsorption characteristics of binary vapors among acetone, mek, benzene, and toluene[J]. The Korean Journal of Chemical Engineering, 2008, 25(5): 1154-1159.
- [29] LI Z(李智), WANG J Y(王建英), WANG Y(王勇), et al. Application of NaY zeolite molecular sieve in VOCs treatment[J]. Chinese Journal of Environmental Engineering (环境工程学报), 2020, 14(8): 2211-2221.
- [30] LIU P Y (刘佩莹), GE Y Y (葛圆圆), LI Z L (李志礼), et al. Preparation of geopolymer microspheres and its adsorption for dye[J]. Fine Chemicals (精细化工), 2020, 37(8): 1697-1702.
- [31] CHEN Y Q (陈益清), GAO X Y (高晓阳), WU J W (伍健威), et al. Adsorption performance of alkali modified activated carbon to VOCs[J]. Environmental Protection of Chemical Industry (化工环 保), 2019, 39(2): 202-207.
- [32] LILQ(李立清), GUQW(顾庆伟), SHIR(石瑞), et al. Adsorption of VOCs onto activated carbons with thermal treatment[J]. CIESC Journal (化工学报), 2012, 63(6): 1749-1756.
- [33] WANG X J, MA C, XIAO J, et al. Benzene/toluene/water vapor adsorption and selectivity of novel C-PDA adsorbents with high uptakes of benzene and toluene[J]. Chemical Engineering Journal, 2018, 335:970-978.
- [34] ROSE M, KLEIN N, BOHLMANN W, et al. New element organic frameworksvia Suzuki coupling with high adsorption capacity for hydrophobic molecules[J]. Soft Matter, 2010, 6(16): 3918-3923.
- [35] LIU G Q (刘光启). Chemical and chemical physical property data manual-Organic Volume[M]. Beijing: Chemical Industry Press (化学 工业出版社), 2013: 428-475.
- [36] WANG G, DOU B, WANG J, et al. Adsorption properties of benzene and water vapor on hyper-cross-linked polymers[J]. RSC Advances, 2013, 3(43): 20523-20531.