水处理技术与环境保护

亚硝酸盐共存下 UV/PS/CNTs 降解 2,6-二氯苯酚及其机理

田孜欣,陈 滢*,郭洪光

(四川大学 建筑与环境学院,四川 成都 610000)

摘要: 在亚硝酸盐(NO₂)共存下采用紫外(UV)协同碳纳米管(CNTs)复合活化过硫酸盐(UV/PS/CNTs) 工艺对 2,6-二氯苯酚(2,6-DCP)进行降解,探究其影响因素及降解机理,考察体系循环活化效能和副产物生成 情况。结果表明,对于 200 mL 0.05 mmol/L 2,6-DCP 水溶液,在反应时间 30 min、反应温度 25 ℃、NO₂ 0.2 mmol/L、 PS 投加量 0.5 mmol/L、CNTs 投加量 50 mg/L 时,UV/PS/CNTs 体系对 2,6-DCP 降解率达 95.9%。该体系中,2,6-DCP 降解率随 PS 和 CNTs 投加量的增加而增大,随 NO₂浓度增大而减小,溶液初始 pH 对目标物降解呈先增大后减 小趋势, pH=9 时, 2,6-DCP 降解率为 99.8%,表观反应速率常数为 0.3483 min⁻¹。CNTs 具有良好的循环使用性, 使用 5 次后, 2,6-DCP 降解率仍可达 89.0%,且在实际水体中对 2,6-DCP 的降解效果较好。该体系对 2,6-DCP 降解遵循以单线态氧为主导的非自由基氧化途径,且反应过程中生成了一氯硝基苯酚副产物。 关键词:亚硝酸盐;UV;过硫酸盐;碳纳米管;2,6-二氯苯酚;非自由基氧化;水处理技术 中图分类号:X703 文献标识码:A 文章编号:1003-5214 (2022) 05-0988-08

Degradation and mechanism of 2,6- dichlorophenol by UV/PS/CNTs in the presence of nitrite

TIAN Zixin, CHEN Ying^{*}, GUO Hongguang

(College of Architecture and Environment, Sichuan University, Chengdu 610000, Sichuan, China)

Abstract: 2,6-Dichlorophenol (2,6-DCP) was degraded in the presence of nitrite (NO₂) by persulfate activated with carbon nanotubes (CNTs) under UV light irradiation (UV/PS/CNTs). Herein, the influencing factors and degradation mechanism were investigated, followed by exploration on cyclic activation potential and by-product generation. The results showed that for 200 mL 0.05 mmol/L 2,6-DCP aqueous solution, the degradation rate of 2,6-DCP by UV/PS/CNTs system was 95.9% under reaction conditions of reaction time of 30 min, reaction temperature of 25 °C, NO₂ concentration of 0.2 mmol/L, PS dosage of 0.5 mmol/L, and CNTs dosage of 50 mg/L. It was also found that the degradation rate of 2,6-DCP was positively influenced by PS and CNTs dosage but negatively by NO₂ concentration. The effect of initial pH of solution on 2,6-DCP degradation showed a trend of first increasing and then decreasing with a degradation rate of 99.8% and an apparent reaction rate constant of 0.3483 min⁻¹ at pH 9. Furthermore, CNTs exhibited good recycling performance. After used 5 times, CNTs could still lead to a degradation rate of 2,6-DCP in this system followed a singlet-oxygen dominated non-radical oxidation pathway, and by-products like monochloronitrophenol were generated during the reaction. **Key words:** nitrite; UV; persulphate; CNTs; 2,6-DCP; non-radical oxidation; water treatment technology

2,6-二氯苯酚(2,6-DCP)作为典型的氯酚类化 合物,是一种重要的有机中间体,已广泛用于木材 防腐剂、除锈剂、防蛀剂等的合成^[1]。水环境残留该物质的相关遗传毒性和"三致效应"可通过地表水

与地下水的迁移扩散与食物链富集,严重威胁生态 环境安全^[2]。先前的研究表明,水中存在亚硝酸盐 的情况下,氯酚类物质可进一步转化为氯代硝基副产 物,造成一定的水生态安全风险^[3-5]。目前,2,6-DCP 已被中国、美国等多个国家列入优先控制污染物名 单,并被列入了中国地表水环境质量标准监测名单^[6]。 常规水处理工艺,如物理法^[7]、生物法^[8]和化学还原 法^[9]等对该类物质的去除具有一定的低效性,亟需 开发新型技术以应对该类物质带来的环境风险。

近年来,基于碳纳米材料的过硫酸盐非自由基 活化工艺受到了研究者的广泛关注[10-13]。该工艺具 有无毒、环境友好、高活性、高选择性、优异的稳 定性及处理效率等优点[14],对酚类物质具有显著的 特异性降解优势,但反应后碳纳米材料表面活性官 能团的减少限制了该工艺的长效应用。周阳等[15]和 朱杰等[16]采用不同工艺联合活化过硫酸盐,已弥补 了单一工艺活化效果的不足, 增强了活化效果, 从 而提高了处理效率。CHENG 等^[17]研究表明,紫外 活化过硫酸盐在产生 SO₄•和•OH 的同时, 也能够对 碳纳米材料表面的活性基团起到再生作用,弥补了 单独碳纳米管活化过硫酸盐的不足。因此,紫外协 同碳纳米材料的复合活化工艺有望构成循环活化工 艺,以达到持续高效降解有机物的目的。此外,亚 硝酸盐(NO₂)普遍存在于土壤、地下水、天然水 体和废水中,受地质条件、农业和微生物活动的影响, 其在环境中的浓度在 0.001~1 mmol/L 之间^[3,18]。因此, 在修复治理土壤及该类水体时可能无法避免 NO5的 影响。此外, NO2与 SO4+等自由基具有高反应活性, 能生成具有显著攻击特性的•NO2^[5]。JI 等^[4]研究发 现,NO5的存在可导致热活化过硫酸盐降解苯酚时 生成一系列硝基副产物,从而改变相关反应物质的 降解路径,然而具体反应机理与影响效能迄今尚不 清楚。因此, 需对 NO5背景下水中有机物降解进行 研究,以减轻硝基副产物生成带来的潜在环境风险。

本研究拟采用紫外/碳纳米管协同活化过硫酸盐(UV/PS/CNTs)工艺对 NO2共存背景下的 2,6-DCP 进行降解。通过单因素实验,探究不同反应体系及影响因素对 2,6-DCP 降解效能的影响;进一步通过催化剂的重复利用实验、自由基猝灭实验及质谱分析,探究该工艺的循环活化潜能、降解机理及副产物的生成情况,阐明副产物的生成途径;研究不同实际水体背景下 2,6-DCP 的降解水平,考察该工艺的实际应用潜力。为 NO2共存下,过硫酸盐复合活化工艺降解氯酚类污染物提供理论与技术支撑。

1 实验部分

1.1 试剂与仪器

2,6-DCP、过硫酸钠(PS)、NaNO₂、2-氯-4-硝

基苯酚、2-氯-6-硝基苯酚、糠醇,分析纯,4-羟基-2,2,6,6-四甲基哌啶(TMP),色谱纯,阿拉丁试剂(上 海)有限公司;甲醇,色谱纯,Sigma-Aldrich公司; 硫代硫酸钠、浓盐酸、NaOH、无水乙醇、叔丁醇, 分析纯,成都市科隆化学品有限公司;多壁碳纳米 管(CNTs)(纯度为98%,外径10~20 nm,长度10~ 30 μm),中国科学院成都有机化学有限公司;实验 用水为去离子水。

N4 紫外-可见分光光度计、雷磁 PHB-4 型酸度 计,上海仪电科学仪器有限公司;GPH212T5L/4 型 低压汞灯(10 W,发射波长 254 nm),德国 Heraeus 公司;Essentia LC-16 高效液相色谱仪,岛津仪器(苏 州)有限公司;Triple Quad 4500 三重四极杆质谱仪, 美国 SCIEX 公司;Liqui TOC II 型总有机碳(TOC) 分析仪,德国 Elementar Analysensysteme GmbH 公 司;H1850 台式高速离心机,湖南湘仪离心机仪器 有限公司;Lab-1A-50E 真空冷冻干燥机,北京博医 康实验仪器有限公司。

1.2 实验方法

配制 200 mL 浓度为 0.05 mmol/L 的 2,6-DCP 水 溶液于 250 mL 烧杯中,加入 0.08 mL 0.5 mol/L 的 NaNO₂ 水溶液、0.2 mL 0.5 mol/L 的 PS 水溶液和 0.01 g CNTs (投加量为 50 mg/L),25 ℃控温下置 于预热 20 min 后的紫外灯(10 W)及恒温加热磁力 搅拌器(转速 200 r/min)中开始反应。分别在反应 0、2、5、10、15、20、30 min 时,取 1.0 mL 经 0.22 µm 聚四氟乙烯滤膜过滤的反应液于离心管中,加入 过量硫代硫酸钠水溶液终止反应。然后,通过高效 液相色谱仪测定反应液中剩余 2,6-DCP 的浓度。以 式(1)计算 2,6-DCP 的降解率,拟一级反应动力学 方程如式(2)所示:

$$\eta / = \frac{c_0 - c}{c_0} \times 100 \tag{(1)}$$

$$\ln\frac{c}{c_0} = -kt \tag{2}$$

式中: η 为 2,6-DCP 的降解率,%; *c*为 *t* 时刻反应 体系中 2,6-DCP 浓度, mmol/L; *c*₀为 2,6-DCP 初始 浓度, mmol/L; *k*为 2,6-DCP 降解的拟一级表观反 应速率常数, min⁻¹; *t*为反应时间, min。数据为 3 次实验的平均值, 相关误差在置信区间范围内。

进行催化剂的重复使用性实验时,在 UV/PS/ CNTs 体系降解 2,6-DCP 的反应完成后,将反应液自 然冷却并静置沉淀,经高速离心(3500 r/min)及抽 滤后回收使用过的 CNTs;然后,用去离子水和无水 乙醇依次清洗回收后的 CNTs,分别清洗 5 次以上, 以去除残留在 CNTs 表面的 PS 分子和 2,6-DCP 分 子;最后,将其置于-50 ℃的真空冷冻干燥机,干 燥 12 h 后备用。

在实际水体的影响实验中,采用自来水、四川 大学某中心湖湖水和成都市某城镇污水处理厂二沉 池出水代替去离子水进行研究,水样经静置沉淀 48h并过 0.45 μm 水系混合纤维素滤膜抽滤处理后 备用,相关水质参数如表1所示。

	表 1	实际水体水质参数
Table 1	Qual	ity parameters of actual water

	рH	TOC/(mg/L)	$UV_{254}/(cm^{-1})$	Cl ⁻ /(mg/L)	$NO_{3}^{-}/(mg/L)$	$NO_{2}/(mg/L)$	$Ca^{2+}/(mg/L)$	$Mg^{2+}/(mg/L)$
白卖水	8.04			93.52	2 306		25 797	12 931
日水水	0.04	0.780	0.040	00.59	2.500	0.024	23.777	11.476
砌水	8.32	9.789	0.049	90.58	0.571	0.034	24.299	11.476
二沉池出水	8.96	4.272	0.065	173.60	19.933	0.007	16.092	13.191

注:"一"表示未检出; UV₂₅₄是指水中一些有机物在 254 nm 波长紫外光下的吸光度,反映的是水中天然存在的腐殖质类大分子有机物以及含 C==C 和 C==O 双键的芳香族化合物的含量。

1.3 分析方法

2,6-DCP 的液相色谱检测方法如下:使用 C18 液相色谱柱(4.6 mm×150 mm×5.0 μ m),波长为 280 nm,流动相为甲醇/水〔V(甲醇):V(水)=65:35], 流速为 1.0 mL/min,柱温温度恒定在 40 ℃,保留时 间为 6 min。使用三重四极杆质谱仪检测反应过程中 生成的产物,选取负电喷雾电离模式(ESI⁻),一级 质谱 m/Z范围为 100~400。

2 结果与讨论

2.1 不同反应体系对 2,6-DCP 降解率的影响

按照 1.2 节实验方法,保持其他条件不变,考 察了单独 UV、单独 PS、单独 CNTs、UV/PS、 UV/CNTs、PS/CNTs、UV/PS/CNTs 体系对 2,6-DCP 的降解效果,结果如图1所示。由图1a可知,单独 PS 体系几乎不能降解 2.6-DCP, 30 min 内仅降解了 3.5%的 2,6-DCP, 单独 CNTs 体系仅能吸附去除 16.4%的 2,6-DCP, 且在 15 min 时基本达到吸附平 衡;单独 UV、UV/CNTs 及 PS/CNTs 体系对 2,6-DCP 有一定的降解效果,反应 30 min 时 3 种体系对 2,6-DCP的降解率分别为 33.0%、43.5%和 53.6%。 其中, 单独 UV 体系因其主要辐射波长(254 nm) 处于 2.6-DCP 的吸光度吸收波长范围内, 故对 2,6-DCP 具有一定的降解效果^[19]; PS/CNTs 体系中 CNTs 作为催化剂能够以非自由基路径激活 PS,从 而提高氧化降解效率^[11]; UV/PS 和 UV/PS/CNTs 体 系对 2.6-DCP 的降解效果较好, 30 min 时降解率达 到了 91.8%和 95.9%,降解效果得到显著提高。由 图 1b 可知, UV/PS/CNTs 工艺对 2,6-DCP 的降解效 果最好,反应 30 min 时 2.6-DCP 能基本去除完全, 表观反应速率常数达 0.1194 min⁻¹,表明相较于单一 体系, UV、CNTs 协同活化 PS 的工艺能更快速、高 效地去除 2,6-DCP。

- 图 1 不同反应体系对 2,6-DCP 的降解率(a)及拟一级 表观反应速率常数(b)
- Fig. 1 Degradation rate of 2,6-DCP by different reaction systems (a) and pseudo-first-order apparent reaction rate constant (b)

2.2 PS 浓度对 2,6-DCP 降解率的影响

按照 1.2 节实验方法,保持其他条件不变,考 察了 UV/PS/CNTs 体系中不同 PS 浓度对 2,6-DCP 降 解效果的影响,结果如图 2 所示。由图 2 可知,该 体系对 2,6-DCP 的降解率和表观反应速率常数均随 PS 浓度的增加而增大,当 PS 浓度为 0.5 和 1.0 mmol/L 时,2,6-DCP 降解率分别达到 95.9%和 98.8%,表观反应速率常数分别为 0.1194 和 0.2093 min⁻¹。这是因为,体系中 PS 浓度的增加将 诱导产生更多的活性氧物质以氧化攻击 2,6-DCP 分 子,从而促进其降解。但当 PS 浓度从 0.5 mmol/L 升至 1.0 mmol/L 时, 2,6-DCP 的降解率无明显提高, 这可能是受制于反应活性位点。此外,杨成海等^[20] 和王敬荃^[21]研究发现,当 PS 浓度过高时,体系中 的反应活性位点已达到饱和,过量的 PS 会与目标污 染物竞争吸附活性位点,同时可能会与 CNTs 反应 使催化剂表面氧化,从而影响 CNTs 的活化效果。 综合考虑成本及反应速率问题,后续实验的 PS 投加 量如无特别说明,均采用 0.5 mmol/L。

图 2 PS 浓度对 2,6-DCP 降解率(a) 及拟一级动力学拟 合(b) 的影响

Fig. 2 Effects of PS concentration on degradation rate of 2,6-DCP (a) and pseudo first-order kinetic fitting (b)

2.3 CNTs 投加量对 2,6-DCP 降解率的影响

按照 1.2 节实验方法,保持其他条件不变,考 察了 CNTs 投加量(25、50、80、100及 120 mg/L) 对 UV/PS/CNTs 体系中 2,6-DCP 降解率的影响,结 果如图 3 所示。由图 3 可知,该体系对 2,6-DCP 降 解率和表观反应速率常数均随 CNTs 投量的增加而 增大,当 CNTs 投加量从 25 mg/L 增至 120 mg/L 时, 30 min 时 2,6-DCP 降解率由 91.8%升高至 99.9%,其 降解速率明显增大,表观反应速率常数由 0.0745 min⁻¹ 增至 0.3288 min⁻¹。这主要是由于催化材料增多能提 供更多的反应活性位点,使得体系中氧活性物质浓 度显著增加(如单线态氧),有效促进了 PS 的非自 由基活化,从而加速了污染物的降解^[21-22]。先前部 分研究表明,过多的催化剂会抑制目标物的降解率, 但基于 NO₂存在时氯酚类物质的特异性去除机理, 使得此抑制作用被减轻。所以,在本研究中尚未观 察到相关现象。综合考虑体系经济性,后续实验的 CNTs 投加量如无特别说明,均采用 50 mg/L(此时, 2,6-DCP 降解率为 95.9%)。

图 3 CNTs 投加量对 2,6-DCP 降解率(a)及拟一级动力 学拟合(b)的影响

Fig. 3 Effects of CNTs dosage on degradation rate of 2,6-DCP (a) and pseudo first-order kinetic fitting (b)

2.4 NO₂浓度对 2,6-DCP 降解率的影响

按照 1.2 节实验方法,保持其他条件不变,考察了不同 NO₂浓度对 UV/PS/CNTs 体系降解 2,6-DCP 的影响,结果如图 4 所示。由图 4 可知,NO₂ 的存在对 2,6-DCP 的降解有一定抑制作用,随着 NO₂浓度的增大,抑制作用逐渐增强,2,6-DCP 的降 解反应速率显著降低。

图 4 NO₂浓度对 2,6-DCP 降解率(a)及拟一级表观反 应速率常数(b)的影响

Fig. 4 Effects of NO_2^- concentration on degradation rate of 2,6-DCP (a) and pseudo-first-order apparent reaction rate constant (b)

当 NO₂浓度从 0 增大至 0.25 mmol/L 时,反应 15 min 时降解率由 99.8%降至 90.1%,表观反应速 率常数由 0.4143 min⁻¹减小为 0.1468 min⁻¹。这可能 是由于 NO₂可以快速清除 SO₄•并生成二氧化氮自由 基(NO₂•),相关机理如式(3) 所示^[22]:

 $NO_2^- + SO_4^- \bullet \rightarrow NO_2 \bullet + SO_4^{2-} k = 8.8 \times 10^8 / (Ms) \quad (3)$

2.5 pH 对 2,6-DCP 降解率的影响

按照 1.2 节实验方法,保持其他条件不变,考 察了反应溶液不同初始 pH(3~11) 对 UV/PS/CNTs 体系降解 2,6-DCP 的影响,结果如图 5 所示。用 0.1 mol/L 的 HCl 或 NaOH 来调节溶液 pH。由图 5a、b 可以发现,随着反应溶液初始 pH 的升高, 2,6-DCP 降解速率呈先增大后减小趋势,在 pH=9 时体系的 降解效果最好, 2,6-DCP 降解率达 99.8%。这与 LUO 等^[23]研究不同 pH 对 UV/PDS 体系降解 2,4-二溴苯 酚的结论相似。溶液初始 pH 从 3 升高至 9 时, 2,6-DCP 表观反应速率常数由 0.0726 min⁻¹ 增至 0.3483 min⁻¹, 当 pH 继续升高至 11 时, 表观反应速 率常数减小为 0.2878 min-1。这说明 OH-的存在有利 于反应的进行,其在 UV/PS/CNTs 工艺的促进作用 主要是由于 OH⁻能促进单线态氧的生成^[17,24],此外, 还与催化剂的 Zeta 电位变化及污染物的 pKa等因素 有关^[20,25]。强酸性条件限制了 PS 的自分解效率,不 利于 PS 的活化, 使 2,6-DCP 降解率显著减弱; 强碱 性条件, 溶液中的 OH-能使 PS 发生碱活化反应, 加 速 SO₄•转化为非选择性•OH, 一般•OH 的氧化反应 倾向于脱氢及加成反应,反应无选择性。在 SO4-与 •OH 相互转化的过程中,中间产物与 2,6-DCP 竞争 自由基,从而抑制了 2,6-DCP 的降解^[21,26]。结果表 明, UV/PS/CNTs 体系在较宽的 pH 范围内具有良好 的氧化性能,能够适用于中性及弱碱性环境的废水 治理。

图 5 初始 pH 对 2,6-DCP 降解率(a)及拟一级动力学拟 合(b)的影响

Fig. 5 Effects of initial pH on degradation rate of 2,6-DCP (a) and pseudo first-order kinetic fitting (b)

2.6 催化剂重复使用性

在 1.2 节实验方法所述条件下,本研究用回收 后的 CNTs 重复进行 4 次实验以考察催化剂的重复 利用效果,结果如图 6 所示。由图 6 可知,CNTs 多次回用后,其对 2,6-DCP 的降解仍保持较高效率。 经过 5 次使用后,2,6-DCP 降解率由 95.9%降低至 89.0%,仍具有较强的催化效率,表明该体系中的 CNTs 具有良好的循环使用性。这可能是由于 UV 能 破坏碳原子的网状结构,在 CNTs 管壁形成结构缺 陷^[25,27],再生成为活性位点,从而达到 CNTs 的催 化活性再生,使其能持续高效降解目标污染物。

2.7 实际水体的测试

为考察 UV/PS/CNTs 体系降解 2,6-DCP 在实际

水体中的适用性,研究了不同水体对该体系降解 2,6-DCP 效果的影响,结果如图 7 所示。

图 7 实际水体对 2,6-DCP 降解率的影响 Fig. 7 Effect of actual water on degradation rate of 2,6-DCP

由图 7 可知,在 0.05 mmol/L 2,6-DCP、0.5 mmol/L PS、CNTs 投加量为 50 mg/L、反应温度为 25 ℃的 实验条件下反应 30 min,自来水、湖水和二沉池出 水的 2,6-DCP 降解率分别为 94.1%、91.8%和 91.7%,与对照实验(去离子水)98.3%的降解率相比,分别 降低了 4.2%、6.5%和 6.6%。这是因为,实际水体 中复杂的离子条件和有机物组成会与 2,6-DCP 发生 竞争反应,消耗一定的活性物质。但整体仍具有较 高的去除效率,这表明 UV/PS/CNTs 工艺受水质成 分制约较小,对实际水体的处理效果较好,在自 然水环境净化及实际污水处理方面具有广阔的应用 前景。

2.8 自由基鉴定

为了探究 2.6-DCP 在 UV/PS/CNTs 体系下的降 解机理,分别选择甲醇(MA)、乙醇(EtOH)、 叔丁醇(TBA)和糠醇(FFA)作为自由基捕获剂 来鉴定体系中起主要作用的氧化活性物质。单线 态氧 $(^{1}O_{2})$ 是一种选择性氧化剂,仅能氧化分解 富电子物质,如酚类等。选择 MA 和 EtOH 作为 SO₄• 和•OH 的猝灭剂, TBA 作为•OH 的猝灭剂, FFA 作为 ¹O₂ 的抑制剂^[11,15,28]。加入 250 mmol/L 的 MA、EtOH 和 TBA,浓度为 5 mmol/L 的 FFA[n(猝 灭剂): n(PS)=500:1,10:1〕进行猝灭实验,结 果如图 8 所示。由图 8a 可知,体系中加入 MA、 EtOH和TBA时,2,6-DCP的降解率基本不受影响, 仅表现出轻微抑制作用, 30 min 时降解率由空白 对照组的 95.9%减小至 92.2%、87.3%和 90.3%。这 说明该体系中自由基氧化不起主要作用, SO4和 •OH 不是 UV/PS/ CNTs 体系降解 2,6-DCP 的主要活 性物质。结合图 8a、b 可知, 加入低浓度的 FFA 时, 2,6-DCP 降解率及表观反应速率常数均明显降低, 抑制效果明显,降解率由 95.9%下降至 42.3%,表观 反应速率常数由 0.1194 min⁻¹减小为 0.0174 min⁻¹。这 表明反应体系中可能产生了较多的 ¹O₂,非自由基氧 化为该体系的主要降解途径。这一结论与 CHENG 等^[11]采用 PS/CNTs 体系降解 2,4-DCP 时得出的结论 相符合; CHENG 等^[29]研究表明,利用 Fe/S 改性碳 纳米管活化过硫酸盐降解 2,4-DCP 时,反应途径也 为非自由基氧化; ZHOU 等^[30]采用苯醌激活过一硫 酸盐(PMS)降解磺胺甲噁唑时,也得出体系中生 成了 ¹O₂且无 SO₄•和•OH 产生的结果,并提出了非 自由基氧化途径这一结论。因此,UV/PS/CNTs 体 系对 2,6-DCP 的降解过程遵循以 ¹O₂为主导的非自 由基氧化途径。

- 图 8 不同猝灭剂对 2,6-DCP 降解率(a)及拟一级表观 反应速率常数(b)的影响
- Fig. 8 Effects of different quenchers on degradation rate of 2,6-DCP (a) and pseudo first-order apparent reaction rate constant (b)

2.9 硝基副产物检测与生成路径

为了确定 NO₂存在时 2,6-DCP 降解过程中硝基 副产物的生成情况,对反应后的溶液进行了质谱分 析,得到质荷比(*m*/*Z*)为 171.9 的主要降解产物。 初步推测该物质为一氯硝基苯酚(邻位与对位),进 一步通过与标准品比对检测,确定该物质为 2-氯-4-硝基苯酚或 2-氯-6-硝基苯酚,这与 ZHAO 等^[3]在 NO₂存在下采用热活化 PS 降解 2-氯酚时形成的硝基 副产物的结果相印证。基于质谱解析与文献研究, 2-氯-4-硝基苯酚和 2-氯-6-硝基苯酚在 UV/PS/CNTs 体系中的生成途径推导如图 9 所示。

图 9 UV/PS/CNTs 体系中一氯硝基苯酚的形成路径 Fig. 9 Formation pathways of chloronitrophenols in UV/ PS/CNTs system

研究表明,在 NO₂共存背景下,体系中氧活性物质主要通过电子转移的方式与 2,6-DCP 和 NO₂反应,产生较稳定的苯氧基自由基和•NO₂。•NO₂ 作为亲电试剂,优先攻击酚类化合物羟基的邻位和对位,与苯氧基反应后生成硝基副产物。

3 结论

UV/PS/CNTs 体系对 2,6-DCP 具有较好的协同 降解潜能,对于 200 mL 0.05 mmol/L 的 2,6-DCP 水 溶液,在 NO₂ 0.2 mmol/L, PS 0.5 mmol/L, CNTs 投加量 50 mg/L,温度 25 ℃,反应时间 30 min 的 条件下, 2,6-DCP 降解率为 95.9%,表观反应速率常 数为 0.1194 min⁻¹。

UV/PS/CNTs 体系对 2,6-DCP 的降解率随 PS 浓度与 CNTs 投加量的增大而增大,当 PS 与 CNTs 投加量增大为 1.0 mmol/L 和 120 mg/L 时, 2,6-DCP 降解率达 98.8%和 99.9%; NO₂会抑制目标物的降解,反应速率常数随 NO₂浓度的增大而减小; pH 为 9 时该体系氧化降解效果最好, 2,6-DCP 降解率达 99.8%,适用于中性及弱碱性环境的废水治理。

CNTs 在 UV/PS/CNTs 体系中具有良好的循环使 用性,使用 5 次后仍具有较好的催化效果, 2,6-DCP 降解率仍达 89.0%,催化性能稳定。该工艺受水质 成分影响较小,对成分复杂的实际水体处理效果较 好, 2,6-DCP 降解率均达 90.0%以上,具有良好的实 际应用潜力。

UV/PS/CNTs体系中 2,6-DCP 的降解遵循以¹O₂ 为主导的非自由基氧化途径,且在反应过程中,生 成了 2-氯-4-硝基苯酚和 2-氯-6-硝基苯酚。

参考文献:

- PAN Y (潘煜), SUN L P (孙力平), ZHANG T T (张婷婷), et al. Study on removal of 2,4-dichlorophenol by CMC modified nanoscale Fe/Cu bimetal[J]. Acta Scientiae Circumstantiae (环境科学学报), 2019, 39(1): 1174-1182.
- [2] LIU Z T (刘总堂), SUN Y F (孙玉凤), FEI Z H (费正皓), et al. Study on thermodynamics and kinetics of 2,6-dichlorophenol by acid functional groups modified adsorption resin[J]. Ion Exchange and Adsorption (离子交换与吸附), 2018, 34(2): 159-167.
- [3] ZHAO X L, ZHANG T, LU J H, et al. Formation of chloronitrophenols upon sulfate radical-based oxidation of 2-chlorophenol in the presence of nitrite[J]. Environmental Pollution, 2020, 261: 114242.

- [4] JI Y F, WANG L, JIANG M D, et al. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by *in-situ* chemical oxidation (ISCO)[J]. Water Research, 2017, 123: 249-257.
- [5] CHEN C Y, WU Z H, ZHENG S S, *et al.* Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite[J]. Environmental Science & Technology, 2020, 54: 8455-8463.
- [6] ZHANG J (张进), LI X P (李小平), WANG C Y (王超英), et al. Preparation of molecularly imprinted microgel and its adsorption properties of 2, 4-dichlorophenol in water samples[J]. Technology of Water Treatment (水处理技术), 2013, 39(10): 35-39.
- [7] REN L, ZHANG J, LI Y, *et al.* Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4, 6-trichlorophenol removal[J]. Chemical Engineering Journal, 2011, 168(2): 553-561.
- [8] MOUSSAVI G, GHODRATI S, MOHSENI-BANDPEI A. The biodegradation and COD removal of 2-chlorophenol in a granular anoxic baffled reactor[J]. Journal of Biotechnology, 2014, 184: 111-117.
- [9] MORALES J, HUTCHESON R, CHENG I F. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles[J]. Journal of Hazardous Materials, 2002, 90(1): 97-108.
- [10] LEE H, LEE H J, JEONG J, et al. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism[J]. Chemical Engineering Journal, 2015, 266: 28-33.
- [11] CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113: 80-88.
- [12] HU P D, SU H R, CHEN Z Y, et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51: 11288-11296.
- [13] WANG Z (王郑), WANG J H (王佳豪), TIAN T (田湉), et al. Research progress on the application and mechanism of modified biochar activated persulfate[J]. Fine Chemicals (精细化工), 2021, 38(7): 1305-1313.
- [14] SUN H Q, LIU S Z, ZHOU G L, *et al*. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5466-5471.
- [15] ZHOU Y (周阳), YING L Y (应路瑶), YU X (于欣), et al. Study on oxidative degradation of 2, 4-dichlorophenol by alkaline and thermal co-activated sodium persulfate[J]. Technology of Water Treatment (水处理技术), 2021, 47(3): 68-72.
- [16] ZHU J (朱杰), LUO Q S (罗启仕), GUO L (郭琳), et al. Remediation of chlorobenzene-contaminated waste water using a combination of thermal- and alkaline-activated persulfate[J]. Environmental Chemistry (环境化学), 2013, 32(12): 2256-2262.
- [17] CHENG X, GUO H G, ZHANG Y L, *et al.* Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship[J]. Water Research, 2019, 157: 406-414.
- [18] JI Y F (季跃飞), ZHAO X L (赵旭蕾), ZHANG T (张藤), et al. Transformation of 4-chlorophenol and formation of chloronitrophenol in a sulfate radical-based advanced oxidation process in the presence of nitrite[J]. Environmental Chemistry (环境化学), 2020, 39(4): 852-858.
- [19] CHEN J X (陈菊香), GAO N Y (高乃云), YANG J (杨静), et al. Study on the characteristics of 2, 4-dichlorophenol in water degraded by UV/PS[J]. China Environmental Science (中国环境科学), 2017, 37(6): 2145-2149.
- [20] YANG C H (杨成海), NING X A (宁寻安), LAI X J (赖晓君), et al. Degradation efficiency and mechanism of 2, 4-dichlorophenol by activation of peroxymonosulfate with sulfur and nitrogen co-doped carbocatalysts[J]. Acta Scientiae Circumstantiae (环境科学学报), 2021, 41(7): 2785-2795.