综论

卟啉基金属有机框架在光疗领域的应用

徐赟浩1,邓文博1,冯亚青1,2,3,张 宝1,2,3*

(1. 天津大学 化工学院,天津 300350; 2. 天津化学化工协同创新中心,天津 300072; 3. 物质绿色创造与制造海河实验室,天津 300192)

摘要: 卟啉基金属有机框架是金属或金属团簇与卟啉配体或其家族化合物配位自组装形成的晶体结构,结合了 卟啉类分子良好的光物理特性和生物相容性,具有周期性和可调控的结构,在光化学领域和生物医药领域具有 应用潜力;尤其是能够充分发挥卟啉类分子的优越性能,可通过光动、光热等光辅助治疗方法实现杀伤有害细 胞的效果。该文介绍了卟啉基金属有机框架的结构,综述了卟啉基金属有机框架在光辅助治疗领域的最新研究 进展,主要包括其在光疗抗肿瘤及抗菌领域的应用研究现状,重点介绍了近几年卟啉基金属有机框架在光敏剂 基础上的改进以及衍生出的多样化的功能;最后,对其未来发展前景进行了展望。 关键词: 卟啉;金属有机框架;光辅助治疗;抗肿瘤;抗菌性能

中图分类号: R318; O641.4 文献标识码: A 文章编号: 1003-5214 (2024) 06-1221-09

Porphyrinoid-based metal-organic framework for phototherapy application

XU Yunhao¹, DENG Wenbo¹, FENG Yaqing^{1,2,3}, ZHANG Bao^{1,2,3*}

(1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; 2. Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, China; 3. Material Green Creation and Manufacturing Haihe Laboratory, Tianjin 300192, China)

Abstract: Porphyrinoid-based metal organic framework, featured with a crystal structure formed by the coordinating self-assembly between metal clusters and porphyrin ligand or porphyrinoid family compounds, has shown promising application potential in the field of photochemistry and biological medicine due to its combination of good photophysical properties and biocompatibility of porphyrinoid molecules as well as its periodic and controllable structure. In particular, with the excellent performance of porphyrinoid molecules fully utilized, the porphyrinoid metal organic framework plays an important role in killing harmful cells in human bodies with adjunctive photo-assisted therapy including photokinetic and photothermal treatments. Herein, the structure of porphyrinoid-based metal organic framework was introduced, followed by summarization on the recent development of porphyrinoid-based metal organic framework in the biomedical field including anti-tumor and anti-bacterial treatments. The performance improvement of porphyrinoid-based metal organic framework type photosensitizers in comparison to porphyrinoid molecules, and the diverse functions derived from the different type of porphyrinoid metal organic framework were emphatically discussed. Finally, the future development potentials of porphyrinoid metal organic framework were also proposed.

Key words: porphyrinoid; metal organic frameworks; photo-assisted therapy; anti-tumor; anti-bacterial properties

金属有机框架(MOF)是金属离子与有机配体 有规律结合形成的晶体结构,迄今发展已有 30 多 年,其具有配位聚合物的化学性质,在微观上也具 有独特的空间结构。通过对配体分子、金属节点和

收稿日期: 2023-06-19; 定用日期: 2023-08-28; DOI: 10.13550/j.jxhg.20230496

基金项目:国家自然科学基金项目(22078241);中央高校基本科研业务费专项资金;物质绿色创造与制作海河实验室项目 作者简介:徐赟浩(1999—),男,硕士生,E-mail:xyh_@tju.edu.cn。联系人:张 宝(1976—),男,教授,E-mail:baozhang@tju.edu.cn。

反应条件等的选择,可设计合成具有特定功能的 MOF。目前,已经合成的 MOF 有几万种,其在物 质的选择性吸附与分离^[1-2]、反应催化^[3]、能量储存 和转化^[4-5]等领域展现出良好的应用前景。特别是 MOF 可作为优异的纳米材料应用在生物医学领域, 大比表面积、可修饰、可降解的 MOF 是前景广阔的 抗癌和抗菌药物材料,既可充当药物的超大容量载 体,用其巨大的比表面积、多孔且有序的结构来装 载和释放药物,如 PCN-222 (Fe)^[6]、MIL-53 (Fe)、 UiO-66^[7]等;也可在光动力学治疗、光热治疗等疗 法中充当光敏剂等角色,作为药物的一部分参与治 疗。在 MOF 靶向进入肿瘤细胞后,通过外源性或内 源性的刺激,激发 MOF 释放能损伤肿瘤细胞的物 质,从而达到治疗效果。结构适宜的 MOF 甚至可以 实现 2 种方法协同治疗。 光动疗法 (PDT)^[8]与光热疗法 (PTT) 是近年 兴起的由光激发光敏剂产生可控光毒性的治疗方 法。如图 1a 所示^[9], 2 种疗法各有优劣,因此常与 其他方法协同治疗。PDT 作用机理如图 1b 所示^[10], 光敏剂 (PS)通过传输到达肿瘤细胞处,在被光激 发后,可产生活性氧 (ROS)来诱导靶向细胞氧 化损伤; PTT 作用机理如图 1c 所示^[11],在光激发 后,光敏剂由基态 (S₀)快速内部转换到最低激 发单重态 (S₁)。S₁可通过荧光或非辐射弛豫途径 衰减回 S₀,也可能通过系统间交叉转换为三重态, 如 T₁。光热效应通常是通过非辐射振动驰豫来释 放热量,高温杀伤特定细胞。作为毒性小、无耐 药性的治疗方法,光响应疗法最早用于癌症治疗, 后也在抗菌领域进行了深入研究,具有广阔的应用 前景。

图 1 光疗诊优缺点示意图 (a)^[9];在 PDT 中单线态氧破坏肿瘤的路线 (b)^[10];PTT 工作原理示意图 (c)^[11] Fig. 1 Advantages and disadvantages of phototherapy (a)^[9]; Route of singlet oxygen disrupting the tumor in PDT (b)^[10]; Schematic diagram of working principle of PTT (c)^[11]

卟啉由于其四吡咯大环 π 共轭体系的结构特点 而具有独特的光物理性质。在自然界和生物体中都 具有卟啉单元,这也表明卟啉结构具有良好的生物 相容性,适合作为低毒性材料用药物^[12]。然而,卟 啉类化合物在生理条件下容易自聚集,并导致荧光 猝灭,这严重制约了其在生物医学领域的应用。通 过构建基于卟啉配体的 MOF,可使卟啉单元有规律 的分散,分子性质得到很大程度的保留^[13],也能有 效避免分子聚集荧光猝灭^[6],不仅能充分发挥卟啉 分子的优势,还可借助大比表面积、多孔结构实现 药物载体联合,以及通过后修饰来附加靶向性等有 益的功能。

咔咯、酞菁等是人工合成的化合物,它们是由 4 个吡咯或异吲哚单元通过亚甲基或偶氮桥偶联而 成,具有与卟啉相似的大环结构和性质,因此可作 为同类化合物进行讨论。相对于卟啉,酞菁更利于 改性及纯化^[14];咔咯^[15-16]比卟啉对红光的吸收更强、 荧光量子产率更高,但自然界中并不存在,合成也 很困难。"一锅法"促进了合成咔咯的应用研究^[16]。 目前,咔咯及其配合物^[17-18]在抗肿瘤领域的应用已 有报道^[19-23],但关于其 MOF 的研究和应用较少。

近年来,基于卟啉配体合成的 MOF 成为人们 关注的热点^[24],其具有非常广阔的应用前景。本文 主要对基于卟啉、咔咯、酞菁及其他类似大环结构 配体的 MOF(同属于卟啉类化合物,统称为卟啉基 MOF)材料的结构进行介绍,着重讨论其在肿瘤及 杀菌光疗领域的研究成果和应用前景。

1 卟啉基 MOF 的结构

卟啉基 MOF 的结构对光疗性能具有重要的影响,这种影响可分为3个方面:有机配体、配位金属及拓扑结构。目前的研究是将3个方面的影响分开探讨,如卟啉配体作为光敏剂起作用、金属节点与后修饰官能团起附加作用等,各方面起到的作用组合起来,得到了功能多样化的 MOF。

1.1 卟啉基 MOF 拓扑结构

拓扑结构受许多因素的影响,相同的分子及金属可以构建出不同的拓扑结构^[25]。如图 2 所示,四 羧基苯基卟啉(TCPP)与不同结构的 Zr₆ 团簇(简

写为 M1、M2 以及 M3)依次组合出 PCN 系列的 PCN-223、PCN-222、PCN-224 的 MOF, 拓扑结构分别 为 *shp-a、csq* 和 *she*, TCPP 还与 M1 团簇组合出拓 扑结构为 *ftw* 的 MOF-525, 说明通过一定的方法可 调控 MOF 的拓扑结构, 如在合成 MOF 时通过微量 水的加入来调节晶体的成核速度和生长过程, 或通 过调节剂竞争配位来影响配体的连接, 实现对 MOF 拓扑的控制^[26-27]。

拓扑结构与材料性能具有不可忽视的联系^[25]。 拓扑结构为 *ftw、csq、shp-a* 和 *she* 的卟啉基 MOF (图 2)是 4 种常见的稳定 Zr 基 MOF,研究四者 的光动性能发现,不同结构的 MOF 因其孔径和卟 啉配体活性位点的不同,对单线态氧(¹O₂)产生的量和光动力抑菌能力也不同^[28]。MOF 拓扑结构对光疗效果的影响体现在反应位点与反应底物的接触程度上,适宜的空间结构会使其接触便利、产物扩散快,最明显的是二维结构在光疗性能上优于三维结构。众多研究者致力于合成二维卟啉基MOF 结构,如 QIN 等^[29]利用离子液体辅助方法合成出二维层状卟啉基 MOF,通过液体超声使其分层后,得到的二维纳米片保留了其晶体结构,且具有出色的PDT 功效。LUO 等^[30]也发现,二维 MOF 纳米片比三维 MOF 在 PDT 方面更具优势,降维提高了光敏剂和氧相遇的频率,并促进了¹O₂的扩散。

图 2 由 TCPP 连接体和 Zr₆簇组成的 MOF 具有不同晶体结构^[25]

Fig. 2 MOF composed of TCPP connectors and Zr₆ clusters have different crystal structures^[25]

目前,虽然已有方法来改变 MOF 的结构,但 要生成特定结构或达到特定性质仍很困难,可通过 选择有机配体以及金属种类来改善 MOF 的性质。

1.2 卟啉基 MOF 配体

卟啉类化合物包括卟啉、酞菁、咔咯、细菌叶 绿素等,由于其独特的结构及性质,已用于构建具 有特定功能的卟啉基 MOF,如表1所示。不同化合 物的吸光度、吸收波长等参数不同,如二氢卟吩、 咔咯比卟啉分子具有更好的光物理性质,发展潜力 很大;配体优越的性能会使 MOF 的性能变好,但其 不稳定的结构成为最大的限制,合成 MOF 的难度较 大,卟啰啉^[41]等分子的对称性和稳定性更差,目前 尚未成功构建 MOF。卟啉类配体对构建 MOF 的拓 扑结构、比表面以及孔径等影响较大。

表1 卟啉类化合物配体以及构成的 MOFs

Table 1	Porphyrin	ligands	and	corresponding	MOFs
---------	-----------	---------	-----	---------------	------

		•	0
配体种类	MOF 名称	金属节点离子	参考文献
	MOF-1992	Fe ²⁺	[31]
	CoPc-Cu MOF	Cu^{2+}	[32]
酞菁	NiPc-Cu MOF	Cu^{2+}	[33]
	NiPc-NiO ₄	Ni ²⁺	[34]
	FePc MOF	Fe ³⁺	[35]
南绿麦	DBCC-UiO	Hf^{4+}	[36]
困坏杀	Zr-TBB	Zr^{4+}	[37]
咔咯	corrole-MOF-1/2	Zr^{4+}	[38]
苯并卟啉	TBP-MOF	Zr^{4+}	[39]
二氢卟吩	DBC-UiO	Hf^{4+}	[40]

注: Pc 为酞菁配体; DBCC、TBB 为菌绿素配体; corrole 为咔咯配体; TBP 为苯并卟啉配体; DBC 为二氢卟吩配体; UiO 为 MOF 的系列之一。

目前, 咔咯 MOF 的合成研究很少, 其原因可能 是接近于 T 形的咔咯单体分子对称性较差, 结构调控 和结晶都比较困难。2019 年, ZHAO 等^[38]用三羧基苯 基咔咯配体 (H₃TCPC) 与具有 9 个连接点的 Zr₆团簇 成功制备了拓扑结构为 gfy 的咔咯基金属有机框架 corrole-MOF-1 和 corrole-MOF-2 (图 3), 在此方向 上取得了进展。2022 年, 成功合成出咔咯多孔有机 聚合物 (POPs)^[42], 为咔咯多孔材料在催化领域的应 用作出探索和突破。

图 3 去无序后的 corrole-MOF-1 晶体结构、结构组分和 底层网络拓扑结构^[38]

Fig. 3 Crystal structure, structural components and underlying network topology of corrole-MOF-1 after removal of disorder^[38]

此外,XIE 等^[43]报道了一系列 π 扩展卟啉衍生物的 MOF,其 π 扩展连接配体有利于 ¹O₂ 的生成, 增强了 O₂ 依赖的光动力治疗,并实现了近红外 O₂ 浓度成像。

1.3 卟啉基 MOF 金属/金属团簇节点

金属团簇节点作为次级结构单元(SBU),对 MOF 材料的结构和性能有重要的影响^[44]。同一金属 作为节点与不同配体构建 MOF 时可形成不同连通 性的金属簇^[45]。如图 4 所示,稀土元素 Eu 与 3 种 相似的配体形成了 BUT 系列的4种不同结构的 MOF: 拓扑结构为 *shp* 的 BUT-223、拓扑结构为 *ybx* 的 BUT-224 和 BUT-225 及拓扑结构为 *jrl* 的 BUT-226。

图 4 BUT-223、BUT-224、BUT-225、BUT-226 的晶体结构^[45] Fig. 4 Crystal structures of BUT-223, BUT-224, BUT-225 and BUT-226^[45]

对于光疗而言,更值得关注的是金属节点为 MOF 附加的性能。目前普遍认为, MOF 应用在光 疗抗癌上时,是在被吞入癌细胞内再发挥作用。若 MOF 结构本身不稳定,其在细胞环境下会分解为有 机单体和金属离子, 二者分别发挥作用。如卟啉基 MOF 分解得到的卟啉分子可作为光敏剂, 而脱离了 框架的金属离子则可发挥其附加作用,如铁离子、 锰离子催化过氧化氢产生氧,有助于¹O₂的生成, 改善光动力治疗效果。这种作用形式的 MOF 使几种 功能性物质作为一个整体传递到肿瘤处,起到了类 似于药物传递的作用。结构较为稳定的 MOF 则是以 整体的方式发挥治疗性能,如以 Cu 为节点的卟啉 基 MOF 纳米片, Cu 的存在使 MOF 具有优异的光 热性能与磁共振成像能力^[46]。MOF 合成后可对节点 进行后修饰,为 MOF 附加靶向性等功能。后修饰对 MOF 的稳定性要求较高。在光疗中, 第IVB 族的金 属 M (M=Zr、Hf等,一般形成 M₆团簇)并不会起 到附加作用,但其作为较硬的"酸",能与多种羧酸 连接体形成稳定性高的 MOF^[44,47], 同时生物相容性 好,因此是研究后修饰时构筑 MOF 的选择。另外, 也可以通过选择不同金属原子掺杂作为金属节点, 以实现特定功能,如LI等^[48]以钽(Ta)-Zr共掺杂 作为节点构筑的卟啉基 MOF, 缩小了最高占据分子 轨道(HOMO)和最低未占分子轨道(LUMO)的 能级差,促进能量传递,在放射动力治疗方面表现 出良好的性能; MA 等^[49]将镝 (Dy) 掺杂 Fe-MOF 中,在三维泡沫镍(NF)上合成出 n(Dy): n(Fe)=0.05:1的 Dy0.05Fe-MOF/NF, 降低了中间体 和产物的能垒,在催化方面具有较好效果。

1.4 卟啉基 MOF 复合材料

卟啉基 MOF 可作为纳米级的平台,通过后修 饰等处理,将具有特定功能的组分引入到 MOF 中, 以设计合成理想的 MOF 复合材料^[50],组分与 MOF 通过化学键或氢键的方式连接。如 ZHENG 等^[51]使 用混合组分,将具有光活性的氯元素纳入 Hf-UiO-66 原型结构中,合成了 TCPC-UiO,改善了材料的光 动、光热性能;ZHU 等^[52]通过后修饰,将牛血清白 蛋白(BSA)、磺胺类化合物(SAs)引入到以 Fe 为节点的卟啉基 MOF 中,合成出 BSA/SAs-NMOF, 为药物附加了良好的靶向性;ZHANG 等^[53]将亚硝 基硫醇(SNO)修饰到以 Zr 为节点的锰卟啉基 MOF 表面上,合成出双功能抗肿瘤材料 NMOF-SNO,增 强了 PTT 功能,且附加了 NO 抗肿瘤的效果。

卟啉类配体与金属/金属团簇节点构成了卟啉 基 MOF,反应条件影响其成核,导致合成的产物 具有不同的拓扑结构,因此相同的原料却可以合 成不同的卟啉基 MOF。对 MOF 进行后修饰,引入 功能基团,合成的 MOF 复合材料其拓扑结构通常 不会发生改变,而且功能更多元化,性能更值得期 待,但复杂的结构会减弱其稳定性,需要更深入的 研究。

2 卟啉基 MOF 在光辅助治疗领域的应用

2.1 光疗抗肿瘤应用

PDT^[54]、PTT^[55]是近年来兴起的对免疫系统伤害小,毒性容易控制的肿瘤治疗手段。

首批临床 PDT 药物 Photofrin[®]和 Foscan[®]均为卟 啉衍生物。基于此,大量的光敏剂开发集中在卟啉、 卟啉衍生物及其相应 MOF 的构筑上。

MOF的光吸收能力、传输靶向性以及肿瘤微环 境等因素限制了 MOF 的光疗效果。常用的策略是将 MOF 作为治疗平台,向其引入可改善性能的金属离 子、官能团甚至负载药物。为了清晰地说明组分是 如何改善性能的,可针对形成 MOF 材料的各组分分 别进行分析,讨论其在 MOF 中起到的作用。

2.1.1 不同配位金属或金属节点的卟啉基 MOF 在 肿瘤光疗方面的应用

金属能将自身的功能提供给 MOF,不同金属节 点能实现 MOF 功能的多样化,进一步通过各功能的 协同来提高治疗效率。2018年,ZHAO等^[56]制备了 基于钆(Gd)金属节点的卟啉基 MOF 纳米片 (Gd-TCPP),整合了用于 PDT 的卟啉和用于磁共 振成像(MRI)的 Gd,从而产生肿瘤细胞的 MRI 成像和 PDT 治疗的双重效果,为双功能 MOF 纳米 材料的开发提供了新思路。NI等^[57]报道了 Cu 节点 卟啉基金属有机框架 Cu-TBP,其降解产生的铜离子 通过催化可实现对肿瘤的化学动力疗法(CDT)和 PDT 协同治疗。WAN等^[58]用正三价锰盐与卟啉合 成了反应性纳米 MOF,MOF 在细胞外呈惰性,被 吸收入细胞后可反应分解,Mn³⁺通过消耗肿瘤细胞 的抗氧化剂谷胱甘肽,调控 PDT 中活性氧(ROS) 的生成,还原后的 Mn²⁺可发挥 MRI 效果。

另一方面, 卟啉中心配位金属也会起到重要作 用, 如 Mn 和 Fe 作为产氧材料, 不仅可提高肿瘤细 胞中的氧和活性氧含量, 增强 PDT 的治疗效果, 同 时也有 MRI 效果。2019 年, HE 等^[59]通过锰卟啉配 体和 Zr⁴⁺制备了纳米材料 PCN-222 (Mn)。采用 Mn 代替了会危害人体的 Gd 来产生成像效果, 同时也 改善了肿瘤中不利于光动治疗的缺氧环境。WANG 等^[60]报道了一种 Zr 为节点的铁卟啉基金属有机骨 架 P-MOF, 配位在卟啉环中心的 Fe(III)均匀分散在 体系中, 以单原子催化剂的形式在调节肿瘤低氧微 环境方面表现出优异的性能, 其 HOMO-LUMO 间 隙狭窄,经 Gaussian 软件计算,带隙能为 1.31 eV。 而近红外光如 808 nm 波长光的光子能量为 1.515 eV,可激发 MOF 诱导非辐射跃迁释放热能, 有利于光热治疗,而 Fe_2O_3 带隙能高达 2.26 eV,在 近红外波长段难以被激发;同时, $Fe(\Pi)$ 中心的存 在使其能催化氧气的生成,有利于光动治疗。该 MOF 同时也可进行光声成像 (PAI)。

此类 MOF 选用的多数金属都有催化活性氧生成以改善光动治疗效果的作用,部分金属具有 MRI 的附加效果。还可通过设计,充分发挥金属离子的氧化能力,消耗掉肿瘤细胞所需的物质,使抗肿瘤效果更好。研究中常用的金属有 Cu、Fe、Mn、镓(Ga)等^[46,59]。

2.1.2 卟啉基 MOF 复合材料的肿瘤光疗应用

MOF 复合材料能改善 MOF 原有的性能或附加 新的功能,其对性能的改善与易实现性使其近年广 泛应用在光疗领域中。

光疗肿瘤时,激发光需要穿透人体到达肿瘤处, 才可使 MOF 获得能量产生光动、光热效果,因此 MOF 对光的吸收是制约其治疗效果的一大因素。在 所有光波中,近红外光是最易穿透人体的,人体组 织对其吸收弱,适合应用到光响应疗法中去激发光 敏剂和光热剂。近期研究发现,稀土纳米粒子 NaLnF₄与卟啉基 MOF 形成的异质结构纳米颗粒二 聚体(NaLnF₄@MOF)在近红外驱动光动力治疗上 具有良好的效果^[61]。如图 5a 所示,对 NaLnF₄纳米 颗粒进行处理,去除表面配体油酸(OA),并用配 体 3.4-二羟基苯基丙酸修饰, 之后与卟啉基 MOF 的 前体——ZrCl₄和四羧基苯基卟啉(H₂TCPP)混合, 使 MOF 在 NaLnF₄表面生长、成核,形成二聚体。 NaLnF₄将穿透力强的近红外光转化为波长较小、能 够激发 MOF 的光,实现能量的良好传递,是增强 MOF 光动效率的1种途径。多巴胺(DA)聚合而 成的聚多巴胺(PDA)是改善光吸收和光热的常用 配体,本身具有吸光能力的 PDA 修饰到 MOF 上后 还可与卟啉产生 π - π 跃迁, 加速光生电子的转移, 且增加光吸收,如 2021 年, HAN 等^[62]用 PDA 修饰 了以Zr为节点的卟啉基MOF,如图 5b 所示。H₂TCPP 与金属 Zr 组合为 MOF, PDA 通过氢键与 MOF 连 接,使其具有良好的光动、光热性能; CHEN 等^[63] 在以 Fe 为节点的卟啉基 MOF 上装载了抗肿瘤药物 和 PDA,实现了光动、光热、化疗协同治疗。也有 报道利用物质的化学发光代替激光,避免激光穿透 力不足的问题。如 HU 等^[64]利用鲁米诺反应,将化 学发光物质鲁米诺负载在 MOF 上作为发光供体, 光敏剂卟啉作为受体,实现了自发光,显示出治疗 深层肿瘤的巨大潜力。

- 图 5 NaLnF₄@MOF 异质结构合成示意图^[61](a); MOF、 MOF-PDA 的合成示意图和结构^[62](b)
- Fig. 5 Schematic diagram of heterostructure synthesis of NaLnF₄@MOF^[61] (a); Schematic diagram of the synthesis process of MOF and MOF-PDA and their structures^[62] (b)

肿瘤的缺氧微环境[65]阻碍了活性氧的产生,大 大影响了卟啉基 MOF 的光动效果。LI 等[66]将 MnO2 吸附在 PCN-224 表面,催化 H₂O₂分解为 O₂,有效 缓解了肿瘤缺氧;再通过与壳聚糖交联提高其稳定 性,生成能有效抑制肿瘤的纳米粒子。除了通过金 属及其氧化物催化 H₂O₂产生 O₂改善缺氧环境外, 还可利用该条件,在 MOF 上负载可利用缺氧条件激 发的药物来实现化疗协同^[67],如LIU等^[68]设计并制 备了以 Hf 为节点的纳米卟啉基 MOF, 以此为平台 负载了缺氧环境激发化疗的替拉帕嗪,并在 Hf 金属 节点上通过化学修饰引入 DA 衍生聚乙二醇, 改善 体内循环;实现了光疗化疗协同抗癌。JIA 等^[69]报 道的复杂纳米药物采用了相同的思路,用金纳米颗 粒(AuNPs)以及硫代聚乙二醇(PEG-SH)修饰 MOF, 通过肿瘤微环境低氧诱导化疗来杀死癌细 胞,显示出在未来的发展潜力。2021年,SUI等^[70] 对 ZIF-8 进行热解,得到 Fe-N 共掺杂碳 (FeNC) 纳米材料,用聚丙烯酸钠(PAA)进行修饰等处理 后得到 FeNC@PAA,可实现对肿瘤 3 种方式(PDT、 PTT 和 CDT)的协同治疗, CDT 中产生的 O₂有望 促进 PDT。HU 等^[64]在纳米级卟啉基 MOF 上负载了 含氧的血红蛋白,以更直接的方式去解决微环境缺 氧问题,实现了自供氧。

靶向性对于药物的传输意义重大,实现这一目的需要在 MOF 表面进行修饰来加强对靶向细胞的 识别;通常可引入叶酸、透明质酸等具有靶向能力 的配体,甚至直接通过细胞膜包覆来实现。最近, CHEN 等^[71]以叶酸(FA)为偶联骨架,合成了一种 叶酸-纳米级钆-卟啉基 MOF(FA-NPMOF),其具有 双模成像和光动治疗的性质。FA 作为常用的靶向配

体,与癌细胞表面的糖蛋白特异性结合,可实现药 物靶向运输。BAI等^[72]用透明质酸(HA)包覆负载 了药物的 PCN-224, 用药物提高细胞 H₂O₂ 含量, 改 善光动效果,实现靶向运输、PDT 与 CDT 协同治疗。 另一方面,在药物外包裹相应的细胞膜,可大大增 强靶向性。ZHANG 等^[73]开发了一种复合纳米结构, 以 Zr 为节点的卟啉基 MOF 与 MnO₂纳米片组成纳 米颗粒,再以癌细胞膜为外壳进行包覆。该杂化纳 米结构提高了 O_2 介导的 PDT 效率,同时表现出较 好的 MRI 能力。 癌细胞膜用于对肿瘤的靶向, 由膜 包覆的纳米颗粒(CM-MMNPs)不仅胶体稳定性和 生物相容性良好,还借助癌细胞膜上的识别机制对 肿瘤具有特殊的靶向性。2020年, ZHAO 等^[74]也采 用这一思路,通过如图 6 所示的路线设计合成出氧化 铁负载金属有机框架(FeTCPP/Fe2O3 MOF)纳米材料, TCPP 与金属节点 Fe 组合成 MOF, 经处理使其呈现 二维纳米片结构,后负载 Fe₂O₃,外面由红细胞膜 进行封装,增加纳米药物在体内的稳定性和存在时 间,最后用目标分子 AS1411 修饰增强靶向性,实 现 MOF 光敏剂在肿瘤区域的高度富集。

图 6 FeTCPP 和 FeTCPP/Fe₂O₃ MOF 纳米材料的形成 机理示意图^[74]

Fig. 6 Schematic diagram of formation mechanism of FeTCPP and FeTCPP/Fe₂O₃ MOF nanomaterials^[74]

2023年, CHEN 等^[75]将具有靶向功能的 HA 和 一种谷胱甘肽过氧化物酶抑制剂 RSL3 修饰在 Fe 节 点卟啉基 MOF上,开发了名为 HAFeR 的纳米载体, 其可实现载药、靶向和光动治疗多种作用。JI 等^[76] 合成出以 Zr 为节点的 Fe 卟啉基金属有机框架 PCN-223,其既可承载药物,也负载了有助于 NO 生成的精氨酸,催化生成 NO,从而增强抗肿瘤效 果。YAO 等^[77]报道了以 Pd 基卟啉为外壳、Pd 纳 米 片 为 内 核 的 复 合 金 属 有 机 多 孔 材 料 Pd@Pd-MOF。其负载了对肿瘤有杀伤力的 CO,通 过第二类近红外光激活,实现其精确释放,与光热 协同治疗起到了良好的效果,为癌症治疗提供一种 新的策略。

2.2 光疗抗菌领域的应用

抗菌在治疗创伤、疾病或进行手术的过程中是 不可缺少的1个环节。目前,主要的抗菌方法为使 用抗生素,其在医疗领域的临床应用中做出了极大 的贡献,但也带来了抗生素滥用以及耐药性等问题。 因此,绿色、有效的新型抗菌药物是人们十分需要 的,卟啉基 MOF 在此方面表现出应用潜力^[78]。

贵金属如金、银、铂等纳米粒子本身就具有杀菌、光热效果,常负载在 MOF上以增强抗菌效果,既可发挥 MOF 多功能纳米平台的优势,又可限制粒子毒性。GUO 等^[79]以卟啉基 MOF 为载体,装载抑菌能力强的 Ag 纳米粒子,合成出 Ag-Cu-TCPP 复合材料,其不仅表现出优异的抗菌效果和极低的细胞毒性,还能有效促进创面愈合。最近,LI 等^[80]制备了纳米银修饰的二维钴节点卟啉基 MOF 纳米片(Ag/Co-TCPP NSs),其实现光动与银离子协同杀菌的高效联合抗菌治疗。

当然, 卟啉基 MOF 除了可作为载体, 其自身 借助光动光热效应也表现出抗菌效果。MOF 复合材 料仍是研究的重心。2019年, DENG 等^[81]合成了以 卟啉基 MOF 为核心、外层包覆 MnO₂纳米团簇和人 血清白蛋白(HAS)的多组分纳米平台(MMNPs), 改善了光敏剂在生物膜的穿透扩散以及不利的缺氧条 件, 增强了对细菌生物膜的破坏性。QIU 等^[82]选择用 CeO2对卟啉基MOF进行修饰,合成出PCN-224@CeO2, CeO2减弱了细菌黏附性,同时 MOF 通过光动产生 活性氧杀伤病菌。2020年, HAN 等^[83]在以 Zr 为节 点的 PCN-224 配体卟啉环心配位 Cu2+,提高了 MOF 的 ROS 产率和光热效应,同时研究了 Cu 加入量对 性能的影响,发现 Cu 加入量为 Zr 物质的量的 10% 时,得到的Cu10MOF最高效,通过活性氧和热的协 同效应,有效杀灭了细菌,加速了伤口愈合。该课 题组在 2021 年用 PDA 修饰卟啉基 MOF,设计合成 出 MOF-PDA 杂化材料^[62], 增强了卟啉基 MOF 的 光疗抗菌性能。MAO 等^[84]用金属节点 Zr 与 TCPP 合成出 MOF (ZPM), 后负载 Ag, 构成 Zr 为节点 的 Ag 掺杂橄榄球形卟啉基金属有机框架 ZPM@Ag (图7),当Ag添加量为20mg时,得到的ZPM@Ag (20)催化剂对大肠杆菌和金黄色葡萄球菌具有良 好的光疗消毒效果。

CHEN 等^[85]合成了卟啉基 MOF 与水凝胶的复合材料 UCNPs@ZrMOF-Pt,可外敷伤口实现抗菌,促进伤口愈合。其中,水凝胶可隔绝外界细菌侵入;上述转换纳米颗粒(UCNPs)将接收的近红外光能量传递给 MOF,产生活性氧,而负载的 Pt 纳米粒子可催化创口的 H₂O₂产生充足的 O₂,改善光动效

果,这为提高光动力抗菌效果和促进伤口愈合提供 了有效的策略。

图 7 ZPM 和 ZPM@Ag 制备示意图^[84]

Fig. 7 Schematic diagram of preparation of ZPM and ZPM@Ag $^{\left[84\right] }$

3 结束语及展望

本文综述了近年来卟啉基 MOF 在材料结构方 面的研究及其在抗肿瘤、抗菌方面的应用探索。卟 啉基 MOF 光吸收能力强、性能优越,在光的照射下 可以被激发产生光毒性,杀灭目标细胞,定向照射 可以限制光毒性范围,实现毒性可控,使卟啉基 MOF 的光响应治疗在抗肿瘤和抗菌上表现出显著 优势。

卟啉基 MOF 的结构与光疗效果有密不可分的 关系。卟啉作为光敏剂是光动、光热效应的产生者, 在体系中呈周期性排列, 卟啉类化合物不同的性质 使其在构筑卟啉基 MOF 的配体上有更多的选择。选 择的金属节点以及卟啉环中心的配位金属能在卟啉 光动、光热的基础上作出改善或增加附加作用,常 用的 Fe、Mn 等金属可催化细胞内 H₂O₂产生 O₂, 改善光动效果, 而选用 Ag 等金属则能够附加光热 和抗菌效果。除了构筑卟啉基 MOF 这 2 种组分外, 修饰或负载在 MOF 上的一些组分也会对光疗起到 重大作用,如FA、HA 甚至红细胞膜等为 MOF 附 加了靶向性能; PDA 的引入增大了 MOF 的吸光度, 也加强了光热性能; 抗肿瘤药物的负载实现了光疗 与化疗的协同治疗。这些修饰手段发挥了 MOF 作为 纳米平台的优势,可进一步实现 MOF 功能的可设计 性, 使卟啉基 MOF 的治疗效果显著增强。

要特别关注卟啉基 MOF 发展的多功能协同治 疗,如 PDT、PTT 和 CDT 等治疗方法互补,可大大 提高治疗效果,许多新型卟啉基 MOF 还同时具有配 位金属带来的 MRI 功能。卟啉基 MOF 在光疗领域 仍有很大的发展空间,未来可以重点开展以下的研 究工作:

(1) 卟啉基 MOF 功能多样化对治疗效果会有 明显的改善,未来可以在 MOF 上引入适当的组分以

第 41 卷

实现更多的功能,充分发挥其作为纳米平台的作用;

(2) 卟啉家族的咔咯化合物对抗癌也具有杰出的效果。咔咯相对于卟啉分子,对有效波长的吸收能力更强,且更容易代谢,是光敏剂的更优选择,以咔咯作为配体,有望合成出光疗效果更好的MOF;

(3)不同金属掺杂会对 MOF 性能造成不同影响,未来可以探索更多种类以及不同比例的金属在 MOF 中起到的作用,使掺杂达到更好的效果。

卟啉基 MOF 在光疗领域的发展也面临着一些挑战。首先,无论是后修饰还是成分负载,都很难确定卟啉基 MOF上组分引入的数量与结合率,MOF 结构的不稳定性与性能的不确定性让产品标准化的 实现变得困难;其次,目前虽然有研究报道 MOF 短期内的毒性,但在长期使用下一些组分的影响还 有待研究,因此需要对引入的组分进行合理的选择,在保证治疗效果的情况下,不引入过多的组分,以此保证其稳定性;可选用性能更好的卟啉类配体构 筑 MOF 来改善性能。目前,MOF 光疗方法还停留 在实验室的基础研究阶段,临床应用还需要更多的研究结果支撑,而更高效、更安全的卟啉基 MOF 也有待进一步开发。

上述的阐述和分析为进一步挖掘卟啉基 MOF 的潜力提供一些有益的思路,将光辅助治疗应用提升到一个新的阶段。

参考文献:

- FENG M G, CHENG M, JI X, et al. Finding the optimal CO₂ adsorption material: Prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM[J]. Separation and Purification Technology, 2022, 302: 122111-122123.
- [2] STERGIANNAKOS T, TYLIANAKIS E, KLONTZAS E, et al. Hydrogen storage in novel Li-doped corrole metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8359-8363.
- [3] LIU Z Z, WU Y, WAN S W, et al. Preparation of Co/Cu-based Bi-MOFs and the degradation of sulfamethoxazole by activated peracetic acid[J]. Water Science Technology, 2023, 87(5): 1202-1213.
- [4] YANG Y, LIU J J, LIANG C, et al. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy[J]. ACS Nano, 2016, 10(2): 2774-2781.
- [5] ALEMAYEHU A, CONRADIE M M, GHOSH A. Electronic absorption spectra of copper corroles: Unexpected substituent effects in *trans*-meso-A₂B-triarylcorrole complexes[J]. Journal of Porphyrins and Phthalocyanines, 2012, 16(5/6): 695-704.
- [6] WANG Z, SUN Q Q, LIU B, et al. Recent advances in porphyrinbased MOFs for cancer therapy and diagnosis therapy[J]. Coordination Chemistry Reviews, 2021, 439: 213945-213980.
- [7] WU M X, YANG Y W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy[J]. Adv Mater, 2017, 29(23): 1606134-1606154.
- [8] SINGH S, AGGARWAL A, BHUPATHIRAJU N V, et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics[J]. Chem Rev, 2015, 115(18): 10261-10306.
- [9] DENG X Y, SHAO Z W, ZHAO Y L. Solutions to the drawbacks of

photothermal and photodynamic cancer therapy[J]. Adv Sci, 2021, 8(3): 2002504.

- [10] ETHIRAJAN M, CHEN Y, JOSHI P, et al. The role of porphyrin chemistry in tumor imaging and photodynamic therapy[J]. Chem Soc Rev, 2011, 40(1): 340-362.
- [11] JUNG H S, VERWILST P, SHARMA A, et al. Organic moleculebased photothermal agents: An expanding photothermal therapy universe[J]. Chem Soc Rev, 2018, 47(7): 2280-2297.
- [12] HORCAJADA P, GREF R, BAATI T, et al. Metal-organic frameworks in biomedicine[J]. Chem Rev, 2012, 112(2): 1232-1268.
- [13] PARK J, JIANG Q, FENG D, et al. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy[J]. J Am Chem Soc, 2016, 138(10): 3518-3525.
- [14] LI M Y, PENG X J. Research progress on the phthalocyanine based targeting photosensitizers in photodynamic therapy[J]. Acta Chimica Sinica, 2016, 74(12): 959-968.
- [15] PAOLESSE R. Corrole: The little big porphyrinoid[J]. Synlett, 2008, 2008(15): 2215-2230.
- [16] AVIV I, GROSS Z. Corrole-based applications[J]. Chem Commun, 2007, 20: 1987-1999.
- [17] GROSS Z, AVIV-HAREL I. Coordination chemistry of corroles with focus on main group elements[J]. Coordination Chemistry Reviews, 2011, 255(7/8): 717-736.
- [18] YANG W, YANG G, LI M Y, *et al.* Photodynamic antitumor activity of gallium(III) and phosphorus(V) complexes of trimethoxyl A₂B triaryl corrole[J]. Bioorg Chem, 2022, 129: 106177.
- [19] JIANG X, LIU R X, LIU H Y, et al. Corrole-based photodynamic antitumor therapy[J]. Journal of the Chinese Chemical Society, 2019, 66(9): 1090-1099.
- [20] LIU H Y, MAHMOOD M H R, QIU S X, et al. Recent developments in manganese corrole chemistry[J]. Coordination Chemistry Reviews, 2013, 257(7/8): 1306-1333.
- [21] ORLOWSKI R, GRYKO D, GRYKO D T. Synthesis of corroles and their heteroanalogs[J]. Chem Rev, 2017, 117(4): 3102-3137.
- [22] TEO R D, HWANG J Y, TERMINI J, et al. Fighting cancer with corroles[J]. Chem Rev, 2017, 117(4): 2711-2729.
- [23] GHOSH A. Corrole and squeezed coordination[J]. Nat Chem, 2022, 14(12): 1474.
- [24] KUBOVICS M, CARETA O, VALLCORBA O, et al. Supercritical CO₂ synthesis of porous metalloporphyrin frameworks: Application in photodynamic therapy[J]. Chem Mater, 2023, 35(3): 1080-1093.
- [25] ZHOU J L, LI Y T, WANG L, *et al.* Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances[J]. J Mater Chem B, 2021, 9(37): 7760-7770.
- [26] WANG J H, HU Y Q, WANG X, *et al.* Trace water induced competitive coordination synthesis and functionalization of porphyrinic metal-organic framework nanoparticles for treatment of hypoxic tumors[J]. ACS Appl Bio Mater, 2021, 4(9): 7322-7331.
- [27] WANG X, WANG J F, WANG J H, et al. Noncovalent selfassembled smart gold(III) porphyrin nanodrug for synergistic chemo-photothermal therapy[J]. Nano Lett, 2021, 21(8): 3418-3425.
- [28] LIU Y Y, CHEN L J, ZHAN X, *et al.* Effect of topology on photodynamic sterilization of porphyrinic metal-organic frameworks[J]. Chemistry, 2021, 27(39): 10151-10159.
- [29] QIN J H, ZHANG H, SUN P, et al. Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy[J]. Dalton Trans, 2020, 49(48): 17772-17778.
- [30] LUO T K, FAN Y J, MAO J M, et al. Dimensional reduction enhances photodynamic therapy of metal-organic nanophotosensitizers[J]. J Am Chem Soc, 2022, 144(12): 5241-5246.
- [31] MATHEU R, GUTIERREZ-PUEBLA E, MONGE M A, et al. Threedimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction[J]. J Am Chem Soc, 2019, 141(43): 17081-17085.
- [32] LIU Y X, PENG J Y, ZHUGE W F, et al. Phthalocyanine-based twodimensional conductive metal-organic framework as electrochemical sensor for highly sensitive detection of nifedipine[J]. Journal of the Electrochemical Society, 2022, 169(4): 046502-046508.
- [33] ZHUGE W F, LIU Y X, HUANG W, et al. Conductive 2D

phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for *N*-acetyl-L-cysteine detection[J]. Sensors and Actuators B: Chemical, 2022, 367: 132028-132036.

- [34] YI J D, SI D H, XIE R, et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO₂[J]. Angew Chem Int Ed Engl, 2021, 60(31): 17108-17114.
- [35] PENG J Y, WEI L Y, LIU Y X, *et al.* Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection[J]. RSC Adv, 2020, 10(60): 36828-36835.
- [36] ZHANG K, YU Z F, MENG X D, *et al.* A bacteriochlorin-based metal-organic framework nanosheet superoxide radical generator for photoacoustic imaging-guided highly efficient photodynamic therapy[J]. Adv Sci, 2019, 6(14): 1900530.
- [37] LUO T, NI K, CULBERT A, et al. Nanoscale metal-organic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy[J]. J Am Chem Soc, 2020, 142(16): 7334-7339.
- [38] ZHAO Y M, QI S B, NIU Z, et al. Robust corrole-based metalorganic frameworks with rare 9-connected Zr/Hf-oxo clusters[J]. J Am Chem Soc, 2019, 141(36): 14443-14450.
- [39] ZENG J Y, ZOU M Z, ZHANG M, et al. Pi-extended benzoporphyrinbased metal-organic framework for inhibition of tumor metastasis[J]. ACS Nano, 2018, 12(5): 4630-4640.
- [40] LU K D, HE C B, LIN W B. A chlorin-based nanoscale metalorganic framework for photodynamic therapy of colon cancers[J]. J Am Chem Soc, 2015, 137(24): 7600-7603.
- [41] LI C J, LI Q Z, SHAO J W, et al. Expanded N-confused phlorin: A platform for a multiply fused polycyclic ring system via oxidation within the macrocycle[J]. J Am Chem Soc, 2020, 142(40): 17195-17205.
- [42] LEI H T, ZHANG Q X, LIANG Z Z, et al. Metal-corrole-based porous organic polymers for electrocatalytic oxygen reduction and evolution reactions[J]. Angew Chem Int Ed Engl, 2022, 61(24): e202201104.
- [43] XIE B R, YU Y, LIU X H, *et al.* A near infrared ratiometric platform based pi-extended porphyrin metal-organic framework for O₂ imaging and cancer therapy[J]. Biomaterials, 2021, 272: 120782.
- [44] YANG C Y, ZHANG Z Z, ZHAO W S, et al. Modulating the node topology of metal-organic frameworks for boosting catalytic aniline oxidation[J]. Scientia Sinica Chimica, 2022, 52(9): 1712-1721.
- [45] WU W, XIE Y, LV X L, et al. Expanding the structural topologies of rare-earth porphyrinic metal-organic frameworks through ligand modulation[J]. ACS Appl Mater Interfaces, 2023, 15(4): 5357-5364.
- [46] LI B, WANG X Y, CHEN L, et al. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers[J]. Theranostics, 2018, 8(15): 4086-4096.
- [47] LIU T F, VERMEULEN N A, HOWARTH A J, et al. Adding to the arsenal of zirconium-based metal-organic frameworks: The topology as a platform for solvent-assisted metal incorporation[J]. European Journal of Inorganic Chemistry, 2016, 2016(27): 4349-4352.
- [48] LI T, GAO M Q, WU Z F, et al. Tantalum-zirconium Co-doped metal-organic frameworks sequentially sensitize radio-radiodynamicimmunotherapy for metastatic osteosarcoma[J]. Adv Sci, 2023, 10(10): e2206779.
- [49] MA Y, MU G M, MIAO Y J, et al. Hydrangea flower-like nanostructure of dysprosium-doped Fe-MOF for highly efficient oxygen evolution reaction[J]. Rare Metals, 2021, 41(3): 844-850.
- [50] ZHANG H, YIN X B. Mixed-ligand metal-organic frameworks for all-in-one theranostics with controlled drug delivery and enhanced photodynamic therapy[J]. ACS Appl Mater Interfaces, 2022, 14: 26528-26535.
- [51] ZHENG X H, WANG L, LIU M, *et al.* Nanoscale mixed component metal organic frameworks with photosensitizer spatial-arrangementdependent photochemistry for multimodal-imaging-guided photothermal therapy[J]. Chemistry of Materials, 2018, 30(19): 6867-6876.
- [52] ZHU W, LIU Y, YANG Z, et al. Albumin/sulfonamide stabilized iron porphyrin metal organic framework nanocomposites: Targeting tumor hypoxia by carbonic anhydrase IX inhibition and T₁-T₂ dual

mode MRI guided photodynamic/photothermal therapy[J]. J Mater Chem B, 2018, 6(2): 265-276.

- [53] ZHANG H, TIAN X T, SHANG Y, et al. Theranostic Mn-porphyrin metal organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy[J]. ACS Appl Mater Interfaces, 2018, 10(34): 28390-28398.
- [54] YIN X Z, AI F J, HAN L B. Recent development of MOF based photothermal agent for tumor ablation[J]. Front Chem, 2022, 10: 841316.
- [55] SONG X J, CHEN Q, LIU Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research, 2014, 8(2): 340-354.
- [56] ZHAO Y W, KUANG Y, LIU M, et al. Synthesis of metal organic framework nanosheets with high relaxation rate and singlet oxygen yield[J]. Chemistry of Materials, 2018, 30(21): 7511-7520.
- [57] NI K Y, AUNG T, LI S Y, *et al.* Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy[J]. Chem, 2019, 5(7): 1892-1913.
- [58] WAN S S, CHENG Q, ZENG X, et al. A Mn(III)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics[J]. ACS Nano, 2019, 13(6): 6561-6571.
- [59] HE M E, CHEN Y N, TAO C, *et al.* Mn-porphyrin-based metalorganic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy[J]. ACS Appl Mater Interfaces, 2019, 11(45): 41946-41956.
- [60] WANG L, QU X Z, ZHAO Y X, et al. Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy[J]. ACS Appl Mater Interfaces, 2019, 11(38): 35228-35237.
- [61] WANG Q X, YANG Y F, YANG X F, et al. Upconverted/downshifted NaLnF₄ and metal-organic framework heterostructures boosting NIR- II imaging-guided photodynamic immunotherapy toward tumors[J]. Nano Today, 2022, 43: 101439-101449.
- [62] HAN D L, LI Y, LIU X M, et al. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds[J]. Journal of Materials Science & Technology, 2021, 62: 83-95.
- [63] CHEN Z, SUN Y, WANG J, et al. Dual-responsive triple-synergistic Fe-MOF for tumor theranostics[J]. ACS Nano, 2023, 17(10): 9003-9013.
- [64] HU L, XIONG C, ZOU J J, et al. Engineered MOF-enzyme nanocomposites for tumor microenvironment-activated photodynamic therapy with self-luminescence and oxygen self-supply[J]. ACS Appl Mater Interfaces, 2023, 15(21): 25369-25381.
- [65] QIN C D, REN Z G, TANG Z Y. The role of hypoxic microenvironment in the progress of tumor[J]. Tumor, 2016, 36(1): 96-102.
- [66] LI Y F, WANG J, LI H R, *et al.* MnO₂ decorated metal-organic framework-based hydrogel relieving tumor hypoxia for enhanced photodynamic therapy[J]. Macromol Rapid Commun, 2023, 44(19): e2300268.
- [67] LI T S, CHEN L, FU X, *et al.* Iron single-atom nanocatalysts in response to tumor microenvironment for highly efficient chemochemodynamic therapy[J]. Journal of Industrial and Engineering Chemistry, 2022, 112: 210-217.
- [68] LIU M, WANG L, ZHENG X H, et al. Hypoxia-triggered nanoscale metal-organic frameworks for enhanced anticancer activity[J]. ACS Appl Mater Interfaces, 2018, 10(29): 24638-24647.
- [69] JIA Z, GAO Y, NI J L, et al. A hybrid metal-organic framework nanomedicine-mediated photodynamic therapy and hypoxia- activated cancer chemotherapy[J]. J Colloid Interface Sci, 2022, 629: 379-390.
- [70] SUI C X, TAN R, CHEN Y W, *et al.* MOFs-derived Fe-N codoped carbon nanoparticles as O₂ evolving reactor and ROS generator for CDT/PDT/PTT synergistic treatment of tumors[J]. Bioconjug Chem, 2021, 32(2): 318-327.
- [71] CHEN Y, LIU W, SHANG Y, et al. Folic acid-nanoscale gadoliniumporphyrin metal-organic frameworks: Fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma[J]. Int J Nanomedicine, 2019, 14: 57-74.