功能材料

基于天然指状蔷薇珊瑚礁结构的仿生珊瑚修复材料

潘 浪¹, 鞠光旭¹, 张馨月^{1*}, 吴川良², 柯韶文², 刘亚星², 尹学琼^{1*}

(1. 海南大学 海南省精细化工工程技术研究中心,海南 海口 570228; 2. 三亚珊瑚礁生态研究所,海南 三亚 572000)

摘要:在对天然指状蔷薇珊瑚礁(MdCR)进行了全面化学成分、物理形貌及力学性能分析的基础上,以白水泥 (WCE)为基底,通过添加发泡剂(LG-2258)和壳聚糖(CS),模拟 MdCR 的化学组成及物理结构,制备了 3 种 MdCR 仿生材料。通过 SEM、FTIR、EDS、ICP-OES 和微机控制电子万能试验机对 MdCR 及 MdCR 仿生材 料进行了结构表征、化学成分测定和性能测试,并将 MdCR 移植到仿生材料上,放置于模拟海水中进行了为期 6 个月人工培育。结果表明, MdCR 仿生材料具有与 MdCR 相似的孔隙结构、力学性能及化学组成;珊瑚虫可 附着在仿生材料表面生长出新的珊瑚组织, MdCR 在仿生材料表面培育平均增长 10.36 mm。 关键词:天然珊瑚礁;珊瑚修复;仿生材料;指状蔷薇珊瑚礁;功能材料 中图分类号: TQ630; TB391 文献标识码: A 文章编号: 1003-5214 (2024) 07-1511-08

Bioinspired coral restoration materials based on natural Montipora digitara coral reef structure

PAN Lang¹, JU Guangxu¹, ZHANG Xinyue^{1*}, WU Chuanliang², KE Shaowen², LIU Yaxing², YIN Xueqiong^{1*}

(1. Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, Hainan, China;
2. Sanya Institute of Coral Reef Ecology, Sanya 572000, Hainan, China)

Abstract: Inspired from the comprehensive analysis of chemical composition, physical morphology and mechanical properties of natural *Montipora digitara* coral reefs (*Md*CR), three kinds of *Md*CR bioinspired materials were synthesized with white cement (WCE) as substrate to simulate the chemical composition and physical structure of *Md*CR through addition of foaming agent (LG-2258) and chitosan (CS). The structure, chemical composition and performance of *Md*CR and *Md*CR bioinmetic materials were analyzed through SEM, FTIR, EDS, ICP-OES and microcomputer control electron universal testing machine. *Md*CR was then transplanted onto the bioinspired materials and placed in simulated seawater for 6 months. The results showed that *Md*CR bioinspired materials had similar pore structure, mechanical properties and chemical composition as *Md*CR. *Montipora digitara* coral polyps attached to the surface of bioinspired materials with growth of new coral tissue. *Md*CR on the surface of bioinspired material got a 10.36 mm growth height on average.

Key words: natural coral reefs; coral restoration; bioinspired materials; *Montipora digitata* coral reefs; functional materials

珊瑚礁是由造礁珊瑚的石灰质遗骸和石灰质藻 类堆积而成的一种天然礁石。珊瑚礁面积虽然占世 界海洋面积不到 0.1%,却是超过 1/4 的海洋物种的 栖息地,是海洋生态系统的重要组成部分,因此被称为海洋中的"热带雨林"。但是,自工业革命以来,随着人类活动大幅增加和环境问题的日益突出,造

<sup>收稿日期: 2023-08-20; 定用日期: 2023-09-08; DOI: 10.13550/j.jxhg.20230694
基金项目:海口市重点科技计划项目(2021-024);海南省大学生创新创业项目(S202210589012)
作者简介:潘 浪(2000一),男,硕士生, E-mail: 1240203505@qq.com。联系人:张馨月(1992—),女,博士, E-mail: xinyuezhang@hainanu.edu.cn; 尹学琼(1975—),女,教授, E-mail: yxq@hainanu.edu.cn。</sup>

礁珊瑚等生物受到严重影响,导致珊瑚礁白化现象 日益严重。目前,已有 20%的造礁珊瑚灭绝,50% 的珊瑚礁面临着不同程度的威胁,预计到 2030年, 全球 70%的珊瑚礁将白化。为了实现对珊瑚礁的保 护和修复,人们采取了各种措施应对珊瑚礁白化问 题^[1-3]。对受损珊瑚礁区域采用珊瑚移植进行修复是 目前最有效的一种方法,其中负载珊瑚株的修复材 料对珊瑚移植存活率及生长效果至关重要。李元超 等^[4]将低碱水泥材料人工礁基投放在赵述岛海域, 但投放礁体后再进行移植的方法效果并不理想,他 们两年后又在三亚的蜈支洲岛北侧进行了相似的研 究实验,最开始投放不锈钢材质礁基,随后移植了 2000 多株珊瑚礁植株,珊瑚的成活率大幅提高。这 一结果证实了可以在人造礁体上移植珊瑚株。 ANDERSON 等^[5]发现, 混凝土类型礁基材料的生物 附着效果更好。文献[6]中利用光学层析成像技术扫 描活珊瑚礁植株得到 3D 打印模型,结合聚合物凝 胶和掺有纤维素纳米材料的水凝胶,开发了一种人 造珊瑚礁植株和骨骼,打印出来的材料复制了天然 珊瑚的结构和捕光特性,模拟活珊瑚的光学特性有

利于光合藻类及珊瑚的生长^[7]。研究表明,通过模 拟珊瑚礁结构,可以得到具有类似珊瑚及珊瑚礁性 能的仿生材料,以此类仿生材料进行珊瑚移植及珊 瑚礁修复,能提高移植珊瑚存活率,吸引珊瑚虫附 着生长,促进珊瑚礁修复。

本文拟选取海南岛三亚西岛海域的鹿角科珊 瑚——指状蔷薇珊瑚(Montipora digitara, Md)礁 作为研究对象,通过 SEM、XRD、FTIR、ICP-OES 等手段表征其形貌、孔径等结构和化学元素组成, 以所得珊瑚礁数据为基础,依据材料仿生学原理, 以白水泥作为主要基质,添加含钙化学物质及多糖 等物质,制备具有类似珊瑚礁结构及成分的仿生材 料,仿生材料采用富镁方解石型碳酸钙白水泥为基 材,因此,在仿生材料中 Mg 元素含量要高于珊瑚 礁,Mg²⁺可以促进珊瑚骨骼的成岩过程,利于珊瑚 礁的生长。对所得材料进行结构表征和性能测试, 以此为基底进行珊瑚移植实验,探究珊瑚礁植株的 生长高度和新生组织的生长状况。

1 实验部分

1.1 试剂与仪器

指状蔷薇珊瑚礁(*Md*CR)取自海南岛三亚西 岛海域;溴化钾(AR)、壳聚糖(CS,脱乙酰度≥ 95%,黏度100~200 mPa·s)、发泡剂(LG-2258), 上海麦克林生化科技股份有限公司;白水泥(WCE, 型号 P.O 32.5),上海宜蒙实业有限公司;灰水泥 (CE, 型号 P.O 42.5), 潍坊硕顺建材有限公司;水 性脱模剂,郑州市新科特建筑材料有限公司。

Pulverisette 6 型单罐行星式球磨机,北京飞驰 科技有限公司; Verios G4UC 型场发射扫描电子显 微镜(SEM),美国 Thermo Fisher Scientific 公司; D8 Advance 型X射线粉末衍射仪(XRD)、TENSOR 27 型傅里叶变换红外光谱仪(FTIR),德国 Bruker 公司; 730 型电感耦合等离子体原子发射光谱仪 (ICP-OES),美国 Agilent Technologies 有限公司; 844 型 CS 分析仪、863 型 ONH 分析仪,美国 LECO 公司; WDW-100T 型微机控制电子万能试验机,济 南恒旭实验机技术有限公司。

1.2 实验方法

1.2.1 MdCR 的预处理

将白化的 MdCR 植株用清水冲洗,放入沸水中 煮沸 10 min,再进行超声 30 min,功率为 240 W, 去除珊瑚枝的杂物,最后放入 40 ℃烘箱干燥 24 h, 备用。取细小干净的 MdCR 植株进行球磨,设置球 磨时间 10 h,球磨后过 200 目筛,放置在真空干燥 箱中 40 ℃干燥,备用。

1.2.2 珊瑚礁仿生材料的制备

先配制 100 mL 质量分数为 4%的 CS 水溶液, 称取 5 g CS 水溶液与 25 g 水搅拌均匀,加入 0.1 g 发泡剂 LG-2258,在 1000 r/min 的转速下搅拌 3 min 后与 50 g WCE 混合均匀。模具表面涂抹一层脱模 剂,将混合物料倒入模具中,放入烘箱中于 40 ℃ 下培养 24 h,制备的仿生材料命名为 CSW。将质量 分数为 4%的 CS 水溶液质量更换为 10 g,其余步骤 同上,制备的仿生材料命名为 CS2W。将 50 g WCE 更换为 25 g WCE 和 25 g CE 的混合物,其余步骤同 上,制备的仿生材料命名为 CSWC。

将所制备的 3 种仿生材料置于真空干燥箱中 40 ℃干燥,备用,其物料配比(固定 LG-2558 质量) 如表1 所示。

表1 制备仿生材料所用原料的用量

Table 1	Dosages (of raw n	laterials I	or bioinspire	d materials		
估开材料	ſ	原料质量/g					
历王初将	WCE	CE	$\mathrm{H}_{2}\mathrm{O}$	CS 水溶液	LG-2558		
CSW	50	0	25	5	0.1		
CS2W	50	0	25	10	0.1		
CSWC	25	25	25	5	0.1		

1.3 表征与测试

TT 1 1 1

SEM 测试: 取放置在真空干燥箱中的待测样品 (珊瑚枝和仿生材料), 切成约5 mm×5 mm×2 mm 大小的正方体薄片, 喷金后从表面、横切面及纵切 面观察,在5kV的电压下,每个切片样品随机选取3个部位进行观察拍照。

孔径和孔隙率计算: 在 SEM 图中, 从表面、纵 切面及横切面中各随机选取 10 个孔道, 利用 Image J 软件进行孔径测量, 计算最大孔径与平均孔径; 采 用质量体积法^[8], 通过直接测量试样的质量和体积 计算孔隙率。试样粉碎除杂, 于 40 ℃下烘干至恒 重。称取少量试样于比重瓶中,将蒸馏水装至比重 瓶的 1/2, 煮沸 3 min 后冷却至室温称重。再取同样的 蒸馏水装至比重瓶刻度线附近进行水浴(恒温 20 ℃) 30 min 以上,恒温结束后保持瓶内液体刚好达 到刻度线,擦干称重。根据公式(1)和(2)计算 试样的真密度($ρ_s$)和孔隙率(φ)。

$$\rho_{\rm s} = \frac{m_{\rm s}\rho}{m_{\rm s} + m_{\rm l} - m_2} \tag{1}$$

$$\varphi / \% = \left(1 - \frac{m_{\rm s}}{V\rho_{\rm s}}\right) \times 100 \tag{2}$$

式中: ρ_s 为试样的真密度,g/cm³;m_s为试样的质量, g;m₁为装有蒸馏水的比重瓶的质量,g;m₂为装有 试样和蒸馏水的比重瓶质量,g; ρ 为蒸馏水的密度, g/cm³;V为试样体积,cm³。

XRD 测试: Cu 靶, 电压 40 kV, 电流 40 mA, 扫描速度为 0.04 (°)/min, 扫描范围 25°~60°。

FTIR 测试:采用溴化钾压片法对样品粉末进行 测试,波数范围 4000~400 cm⁻¹。

EDS 测试:在 SEM 拍照结束后,将电压由 5 kV 调至 15 kV,采用 EDS 分析表面各元素的表面质量 分数。

ICP-OES 测试: Ar 作为载气,辅助气流量为 1.5 L/min,等离子气流量为 15 L/min,发射功率为 1.0 kW,雾化器流量为 0.75 L/min,运用轴向观测 检测模式,最后进行线性校准。

有机元素测试:将试样在 CS 分析仪高温炉中 通氧燃烧得出 C 和 S 的元素质量分数;在惰性气体 高纯 He 的保护下,使用 ONH 分析仪,对脉冲电极 炉加热得出 O、N 和 H 的元素质量分数。

抗折强度测试:采用中心加荷法测定抗折强 度^[9]。将材料放在万能试验机支撑圆柱上,长轴 垂直于支撑圆柱,通过加荷圆柱以 1.5 mm/min 的 速率均匀地将荷载垂直地加在棱柱体相对侧面 上,直至折断。保持两个半截棱柱体处于潮湿状 态直至抗压实验结束。抗折强度(*R*_f)按公式(3) 计算。

$$R_{\rm f} = \frac{1.5F_{\rm f}L}{\mu b^2} \tag{3}$$

式中: R_f 为抗折强度,MPa; F_f 为折断时施加于棱

柱体中部的最大作用力(载荷), N; L 为两支撑支 点之间的距离, mm; h 为材料截面宽度, mm; b为材料截面高度, mm。

珊瑚生长环境(模拟海水): 光源为 LED, 每 天光照 12 h, 水温保持 20~26 ℃, pH=7.8~8.4, 硬 度(KH)为 9~12, Ca²⁺质量浓度为 400~500 mg/L, Mg²⁺质量浓度为 1200~1400 mg/L, K⁺质量浓度为 320~380 mg/L, NO₃质量浓度<5 mg/L, PO₃质量浓 度<0.02 mg/L, 水体盐度(质量分数)为 31%~33%。

珊瑚生长测量:在仿生材料上钉一根钉子,取 合适大小的珊瑚枝进行移植,用尼龙绳将珊瑚断枝 固定在钢钉上面,放置在模拟海水中培养6个月。 每个月测量珊瑚的生长高度,并记录存活及掉落的 珊瑚断枝数量,珊瑚掉落和白化记作珊瑚的死亡数 量,计算其存活率。

新生珊瑚礁测试:在培育过程中如发现有新生物组织生长在仿生材料表面,采用 SEM 观察形貌和 FTIR 测试结构,鉴定其是否是 *Md*CR。

2 结果与讨论

2.1 表征分析

2.1.1 XRD 分析

图 1 是 MdCR 的 XRD 与文石型 CaCO₃ 晶体标 准卡片(JCPDS No. 05-0453)。

图 1 MdCR 的 XRD 谱图(a) 及文石 CaCO₃ 晶体(b) Fig. 1 XRD pattern of MdCR (a) and standard card of aragonite CaCO₃ crystal (b)

从图 1 中可以看出, *Md*CR 的衍射峰与文石型 CaCO₃ 晶体的衍射峰一致。细胞晶格常数为 *a*=0.4960 nm、*b*=0.7965 nm 和 *c*=0.5746 nm^[10], 没有 其他矿物相, 最强衍射峰为 Ca (111)晶面。*Md*CR 中的文石晶体存在 Ca (002)和 Ca (012)两种晶 面的择优取向,表明 *Md*CR 中主要含有文石型 CaCO₃^[11]。

2.1.2 SEM 分析

图 2 中 a1 和 a2 分别是 *Md*CR 的实物图和 SEM 图。通过计算,选取的 *Md*CR 最大孔径为 636 μm, 平均孔径为 474.9 μm。经公式(1)和(2)计算珊 瑚礁的孔隙率为 28.48%。

图 2b1~d1 分别是 3 种仿生材料的实物图,各自 对应的 SEM 图如图 2b2~d2 所示。CSWC 相比 CSW 和 CS2W 呈现出灰色,这是因为原料中含有 50%的 灰水泥。从 SEM 中可以观测到仿生材料的孔径与 *Md*CR 相似,选取 10 个孔道利用 Image J 软件进行 测量,计算得出 CSW、CS2W、CSWC 的平均孔径分 别为 479.9、501.7 和 467.4 μm。CSW 仿生材料的平均 孔径 (479.9 μm)与 *Md*CR 的平均孔径 (474.9 μm) 最为接近,且孔隙率(27.90%)相差不大,结果证 明,仿生材料和 *Md*CR 具有很高的相似度。

a1、a2—MdCR; b1、b2—CSW; c1、c2—CS2W; d1、d2—CSWC
 图 2 MdCR 和 3 种仿生材料的实物图(a1、b1、c1、d1)
 和 SEM 图(a2、b2、c2、d2)

Fig. 2 Photos (a1, b1, c1, d1) and SEM images (a2, b2, c2, d2) of *Md*CR and three bioinspired materials

2.1.3 FTIR 分析

图 3 是 MdCR 和 3 种仿生材料的 FTIR 谱图。

图 3 MdCR 和 3 种仿生材料的 FTIR 谱图 Fig. 3 FTIR spectra of MdCR and three bioinspired materials

从*Md*CR的谱图可以看到,1082、858和1482 cm⁻¹ 分别属于CO₃²⁻的对称伸缩振动峰、面外弯曲振动峰和 反对称伸缩振动峰^[12],712和700 cm⁻¹处是CO₃²⁻的 面内弯曲振动峰^[13]。1632和1787 cm⁻¹处分别为N —H键的面内弯曲振动峰和C—N键的伸缩振动峰, 分别属于酰胺 I 带和酰胺 II 带的振动范围,表明 *Md*CR 含有少量蛋白质成分^[14]。低频端的杂峰可能 是碳酸盐矿物晶格的内部振动,因此,文石型 CaCO₃ 会在700 cm⁻¹处有吸收峰。由此可以确定 *Md*CR 中 的 CaCO₃是文石型的^[15],这与 XRD 表征分析结果 —致。

3种仿生材料的 FTIR 谱图中特征峰位置一致。 877和1445 cm⁻¹处分别对应 CO₃²⁻的面外弯曲振动峰 和反对称伸缩振动峰,728 cm⁻¹处对应 CO₃²⁻的面内 弯曲振动峰,与 *Md*CR 的吸收峰位置相比发生了偏 移。1632 cm⁻¹处的弱吸收带与 CaCO₃无关,可能是 由水泥中少量的有机质引起的^[13]。选择富镁方解石 型碳酸钙白水泥作为材料基底,拥有与白水泥同样 的特征峰,既可以保留白水泥含镁量较高、硬度高、 在海洋酸化影响下不易溶解的优点,也为珊瑚礁的 生长提供了大量游离的 Ca²⁺和丰富的 CaCO₃物质。 2.1.4 EDS 和元素分析

*Md*CR 和 3 种仿生材料的 EDS 测试结果如图 4 和表 2 所示。

由图 4 和表 2 可见, *Md*CR 中 Ca 元素质量分数 最大,为 35.65%,3 种仿生材料 CSW、CS2W、CSWC 的 Ca 元素质量分数分别为 36.06%、31.52%、 33.61%。仿生材料中都含有少量的 Mg 和 Na 元素, 这是因为,仿生材料是采用富镁方解石型碳酸钙水 泥为基材,因此,在仿生材料中 Mg 元素质量分数 要高于 *Md*CR, Mg²⁺可以促进珊瑚骨骼的成岩过程, 利于珊瑚礁的生长^[16]。虽然仿生材料中 Na 元素的 质量分数要低于 *Md*CR, 但是仿生材料具有多孔结 构,长期浸在海水中会吸收一部分海水,从而增加 仿生材料的 Na⁺质量分数。检测结果证明,在各材 料中 Ca 元素最多。除此之外,在仿生材料中还检测 出了 Al 元素和 Fe 元素,极少量的 Al 元素和 Fe 元 素不会影响对珊瑚礁的修复效果^[17]。

*Md*CR和仿生材料的有机元素(C、S、O、N、H)质量分数较为接近,O最高,其次是C。其中,

O 的质量分数为 43.27%~45.23%; C 的质量分数为 9.98%~11.64%。这是因为,4 种材料的成分主要为 CaCO₃,还含有极少量的有机物质。N 和 S 的质量 分数都较低,这与 XRD、FTIR 和 EDS 测试的分析 结果较为一致。

表 2 MdCR、CSW、CS2W 和 CSWC 的元素质量分数 Table 2 Mass fraction of element of MdCR, CSW, CS2W and CSWC

元妻	各元素在 MdCR 和仿生材料中的质量分数/%					
儿永	<i>Md</i> CR	CSW	CS2W	CSWC		
Ca	35.65	36.06	31.52	33.61		
Mg	0.09	3.09	2.27	3.11		
Na	0.40	0.19	0.26	0.23		
Al	0	0.74	1.51	0.72		
Fe	0	0.09	0.09	0.09		
С	11.64	10.83	11.23	9.98		
Н	0.75	1.33	1.38	1.27		
0	43.27	44.85	44.26	45.23		
Ν	0.02	0.05	0.06	0.06		
S	0.31	0.56	0.46	0.49		

注:金属元素(Ca、Mg、Na、Al、Fe)经ICP-OES测定; 其他元素经CS分析仪和ONH分析仪测定。

2.1.5 性能分析

添加剂会影响仿生材料的抗折强度,甚至可能 会出现材料不成型的情况。由于珊瑚是多孔结构, 要添加发泡剂模拟珊瑚的孔道结构。若发泡剂添加 量过少,则孔径达不到珊瑚孔道的大小;若添加量 过多则会降低材料的抗折强度。选择 CSWC 体系(仅 改变发泡剂用量)进行研究,采用占白水泥质量 0.7%~1.2%的发泡剂探讨发泡剂用量的影响,并结 合孔径、孔隙率及抗折强度来确定发泡剂的添加量。 图 5 是不同用量发泡剂(以白水泥质量为基准,下 同)制备的 CSWC 的 SEM 图,其各项性能数据见 表 3。

由图 5 和表 3 可见,当发泡剂添加量为 0.7%和 0.8%时,平均孔径较小。当发泡剂添加量增至 1.1% 和 1.2%时,平均孔径增加,抗折强度变小。当发泡剂添加量为 0.9%时,平均孔径为 438.9 μm,孔隙率 为 22.30%;当发泡剂添加量为 1.0%时,平均孔径 为 465.4 μm,孔隙率为 24.38%。与 *MdCR* 的孔径 (474.9 μm)和孔隙率(28.48%)相比,发泡剂添 加量 1.0%的仿生材料的孔道结构更接近 *MdCR*,其抗折强度为 5.86 MPa,能够满足珊瑚生长需要。

图 6 是 CSW 材料在成型 3、7、28 d 和 6 个月 后的抗折强度变化曲线。可以看出,成型 3、7、28 d 后,可承受最大作用力分别为 221、302、592 N, 根据公式(3)可得 CSW(28 d)的抗折强度为 3.72 MPa。与之形成对比的是, CS2W 抗折强度仅 有 3.07 MPa, 说明 CS2W 材料内部的孔道结构更加 丰富。CSW 在模拟海水中培养 6 个月后, 可承受最 大作用力变为 568 N, 抗折强度无明显变化, 表明 仿生材料在海水中的防腐蚀能力强, 适合用于海洋 环境进行珊瑚移植和珊瑚礁修复^[18]。

- a-0.7%; b-0.8%; c-0.9%; d-1.0%; e-1.1%; f-1.2% 图 5 不同用量发泡剂制备的 CSWC 的 SEM 图
- Fig. 5 SEM images of CSWC prepared with different foaming agent dosages

表 3 不同用量发泡剂制备的 CSWC 的性能

 Table 3
 Properties of CSWC prepared with different foaming agent dosages

发泡剂 用量/%	材料 厚度/mm	最大 孔径/µm	平均 孔径/μm	孔隙 率/%	抗折 强度/MPa
0.7	18.83	486	338.5	17.92	9.85
0.8	20.25	565	377.4	19.17	8.30
0.9	20.96	604	438.9	22.30	6.61
1.0	21.41	625	465.4	24.38	5.86
1.1	21.75	664	495.8	26.66	5.17
1.2	22.16	699	534.1	29.57	4.42

从表 4 可以看出, CS 用量最多的仿生材料 CS2W, 较其他两种材料(CSW 和 CSWC), 其最大 孔径、平均孔径和孔隙率较大, 抗折强度较低, 因 此, 制备的材料比普通水泥的抗折强度低, 但作为修 复材料可以满足材料在海洋中承受海浪的冲击力^[18]。 CSWC 展现出最高的抗折强度(4.49 MPa), 这是因 为, CSWC 是 WCE 与 CE 混合制备而成, 而 CSW 和 CS2W 仅由 WCE 制备, CE 的硬度(425 型)要 比 WCE(325型)高。结果证明,两种水泥的混合 不仅能保留富镁方解石型碳酸钙白水泥的高硬度、 在海洋酸化影响下不易溶解和含 Mg²⁺量较高的优 点,而且能够增加材料的抗折强度。

- 图 6 CSW 成型 3、7、28 d 与 6 个月后的抗折强度变化 曲线
- Fig. 6 Bending strength curves of CSW at 3, 7, 28 d and 6 months after forming

表 4	MdCR CSW	CS2W和	CSWC 的约		性能
Table 4	Structure and	properties	of MdCR,	CSW,	CS2W
	and CSWC				

	参数						
材料	最大	平均	孔隙	材料	最大作	抗折强	
	孔径/μm	孔径/μm	率/%	厚度/nm	用力/N	度/MPa	
<i>Md</i> CR	636	474.9	28.48	_	—	_	
CSW	597	479.9	27.90	21.86	592	3.72	
CS2W	698	501.7	29.31	22.58	521	3.07	
CSWC	613	467.4	26.45	21.23	675	4.49	

注:按表1配方制备;"一"表示未测定数据。

2.2 珊瑚生长实验

2.2.1 珊瑚生长高度测量

图 7 为 3 种仿生材料上的 Md 生长实物图。可 以观察到,培养 6 个月后珊瑚礁植株均有生长(生 长处已在图中用红色圆圈圈出),经测量,珊瑚平均 增长了 10.36 mm。结合珊瑚生长的状态以及增长的 变化可知,在珊瑚断枝处可以继续生长成新的触角, 制备的仿 MdCR 孔道结构和化学组成的仿生材料有 利于移植珊瑚的生长,可以促进珊瑚礁修复。 2.2.2 新生珊瑚礁的形貌和结构表征

培养 6 个月后, CSWC 表面和侧面出现新生组 织位点 1 和 2, 如图 8a 中标注所示。对 Md 和新生 组织(NMd)位点进行 SEM 测试,结果如图 8b~e 所示。对比原始珊瑚与新生珊瑚的 SEM 图,观察到 孔道及表面形貌都极为相似,因此,可以初步判断 新生组织为 Md。 Md 与 NMd 的 FTIR 对比图如图 9 所示。

a1, a2-CSW; b1, b2-CS2W; c1, c2-CSWC

- 图 7 3 种仿生材料上 *Md* 生长初始(a1、b1、c1)和 6 个月后(a2、b2、c2)实物照片
- Fig. 7 Photos of finger-like *Montipora digitara* growing on three biomimetic materials at the beginning of growth (a1, b1, c1) and 6 months later (a2, b2, c2)

- 图 8 CSWC 上新生组织实物图(a)和新生位点 SEM 图 (b,c)及 MdCR 的 SEM 图(d,e)
- Fig. 8 Photo of newborn sites (a) and SEM images (b, c) of newborn tissue on CSWC and SEM image of MdCR (d, e)

由图 9 可以看出, *Md* 和 N*Md* 的峰位基本一致。 N*Md* 在 1082 cm⁻¹ 处出现属于 CO₃⁻的对称伸缩振动 峰, 1480 cm⁻¹ 处出现属于 CO₃⁻的反对称伸缩振动与 *Md* 峰位(1482 cm⁻¹)有较小偏差, 857 cm⁻¹ 为 CO₃⁻⁻ 的面外弯曲振动峰,在 712 和 699 cm⁻¹ 处分别为 CO₃⁻⁻的两个面内弯曲振动峰,在 1632 和 1787 cm⁻¹ 处出现 N—H 键的面内弯曲振动峰和 C—N 键的伸 缩振动峰,分别属于酰胺 I 带和酰胺 II 带的振动范 围,应来源于 *Md* 和 *Md*CR 中含有的少量蛋白质成 分。结合新生珊瑚的形貌表征,可以确认新生组织 为 *Md*。

Fig. 9 FTIR spectra of Md and NMd

3 结论

(1)通过 SEM 测定 *Md*CR 的孔道结构,最大 孔径为 636 μm,平均孔径为 474.9 μm,孔隙率为 28.48%。通过 XRD、EDS、ICP-OES 和有机元素分 析仪分析了 *Md*CR 主要含有 Ca 元素,类型为文石 型 CaCO₃。

(2)利用富镁方解石型碳酸钙白水泥为原料, 筛选出 3 种 MdCR 仿生材料 CSW、CS2W 和 CSWC。 采用多种方法证明仿生材料的结构形貌和化学组成 与 MdCR 相似。培养 28 d 后,抗折强度分别为 3.72、 3.07 和 4.49 MPa,可以承受海洋中海浪的冲击力。

(3)在模拟海水中,移植珊瑚在仿生材料表面 6个月平均生长 10.36 mm,确认为新的珊瑚组织, 通过 FTIR 和 SEM 表征确定新生珊瑚组织为 Md。

(4)移植的珊瑚礁不仅可以在材料表面生长良 好,也可在材料表面吸附珊瑚虫附着生长,逐渐长 出新的珊瑚植株,以此可以实现珊瑚礁的修复。

本文制备的珊瑚礁仿生材料绿色生态、环保安 全,在海洋环境应用不会产生环境危害,利于珊瑚 礁的修复和海洋生态环境的保护。

参考文献:

[1] MOBERG F, FOLKE C. Ecological goods and services of coral reef

ecosystems[J]. Ecological Economics, 1999, 29(2): 215-233.

- [2] FERRARIO F, BECK M W, STORLAZZI C D, et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation[J]. Nature Communications, 2014, 5(1). DOI: 10.1038/ncomms4794.
- [3] BELLWOOD D R, HUGHES T P, FOLKE C, et al. Confronting the coral reef crisis[J]. Nature, 2004, 429(6994): 827-833.
- [4] LIYC (李元超), LANJX (兰建新), ZHENGXQ (郑新庆), et al. Preliminary assessment of the coral reef restoration in areas of Zhaoshu Island, Xiasha Islands[J]. Journal of Applied Oceanography (应用海洋学学报), 2014, 33(3): 348-353.
- [5] ANDERSON M J, UNDERWOOOD A J. Effects of substratum on the recruitment and development of an intertidal estuarine fouling assemblage[J]. Journal of Experimental Marine Biology and Ecology, 1994, 184(2): 217-236.
- [6] University of Cambridge. 3D-printed corals could improve bioenergy and help coral reefs[R]. Science Daily: Science Daily, 2020.
- [7] ORTIZ-PROSPER A L, BOWDEN-KERBY A, RUIZ H, et al. Planting small massive corals on small artificial concrete reefs or dead coral heads[J]. Bulletin of Marine Science, 2001, 69(2): 1047-1051.
- [8] LIUPS (刘培生). Determining methods for porosity of porous materials
 [J]. Titanium Industry Progress (钛工业进展), 2005, 22(6): 34-37.
- [9] GONG M (龚明), CHEN Z C (陈志川), KUANG X C (况学成), et al. Test and discussion for the bending strength of plastic ceramic raw materials[J]. Ceramics (陶瓷), 2017(1): 9-12.
- [10] WANG C Y. Control the polymorphism and morphology of calcium carbonate precipitation from a calcium acetate and urea solution[J]. Materials Letters, 2008, 62(16): 2377-2380.

- [11] ZHANG J, YAN J, SHENG J W. Nanoscale structure and formation mechanism of the aragonite fibers in the ligament of *Hyriopsis Cumingii* shell[J]. Journal of Materials Science, 2015, 50: 3383-3390.
- [12] ZHUY(朱莹), LIYZ(黎晏彰), LUAH(鲁安怀), et al. Middle and far infrared spectroscopic of analysis calcite, dolomite and magnesite
 [J]. Earth Science Frontiers (地学前缘), 2022, 29(1): 459-469.
- [13] ZHANG G S (张刚生), LI X H (黎铉海). Characteristics of FTIR spectra of biogenic aragonite in mollusk shells[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2005, 25(10): 1588-1590.
- [14] BAOLF (鲍林飞), GAOP (高鹏), ZHAOLP (赵鲁苹), et al. Microstructural characteristics and FTIR analysis of the shell from green mussel[J]. Journal of Zhejiang Ocean University (Natural Science) (浙江海洋学院学报:自然科学版), 2014, 33(4): 347-353.
- [15] YU D (余丹), LI R (李锐), DENG H Y (邓红英). Gemmological characteristic of blue aragonite[J]. Journal of Gems and Gemmology (宝石和宝石学杂志), 2017, 19(4): 31-35.
- [16] AISSAOUI D M, BUIGUES D, PURSER B H. Model of reef diagenesis: Mururoa atoll, French polynesia[J]. Reef Diagenesis, 1986: 27-52.
- [17] HUANG L J (黄兰钧). Geochemical and environmental implications of uranium series isotopes and trace elements in Kenting coral, southern Taiwan[D]. Tainan: National Cheng Kung University (中国 台湾成功大学), 2014.
- [18] ZAHNG Y (张莹), ZAHNG Y M (张玉敏), LI P (李萍). Study on concrete strength under seawater corrosive action[J]. Journal of Shandong Institute of Arch and Eng (山东建筑工程学院学报), 2002, 17(2): 24-28.

(上接第1493页)

- [111] SUN J S, CHANG X F, LYU K H, et al. Environmentally friendly and salt-responsive polymer brush based on lignin nanoparticle as fluid-loss additive in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126482.
- [112] XUE Y, WANG X Y, ZHANG B, et al. Preparation and evaluation of thermo- and salinity-responsive hydrogel as intelligent plugging agent[C]//SPE International Conference on Oilfield Chemistry, 2017.
- [113] PU J Y, GENG J M, HAN P, et al. Preparation and salt-insensitive behavior study of swellable, Cr³⁺-embedded microgels for water management[J]. Journal of Molecular Liquids, 2019, 273: 551-558.
- [114] ZHAO Y F, ZHANG P B, SUN J, et al. Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfonebased copolymers as additive[J]. Journal of Membrane Science, 2016, 510: 306-313.
- [115] WANG A Q, FANG W X, ZHANG J Y, et al. Zwitterionic nanohydrogels-decorated microporous membrane with ultrasensitive salt responsiveness for controlled water transport[J]. Small, 2020, 16(9): 1903925.
- [116] HE Y B, JIANG G C, DONG T F, et al. Stimulus-responsive mechanism of salt-responsive polymer and its application in saturated saltwater drilling fluid[J]. Petroleum Exploration and Development, 2020, 47(5): 1131-1137.

(上接第1503页)

- [83] WANG L, LONG L L, ZHOU L P, et al. A ratiometric fluorescent probe for highly selective and sensitive detection of hypochlorite based on the oxidation of *N*-alkylpyridinium[J]. RSC Advances, 2014, 4(103): 59535-59540.
- [84] WU Y C, LIU S M, ZHAO J Q. Facile fabrication of a fluorene-containing polyimide film-based fluorescent sensor for rapid and selective detection of fluoride ion[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425: 113728.
- [85] SHANGGUAN M, JIANG X, LU Z, et al. A coumarin-based fluorescent probe for hypochlorite ion detection in environmental water samples and living cells[J]. Talanta, 2019, 202: 303-307.
- [86] TAHERI M, MANSOUR N. Functionalized silicon nanoparticles as fluorescent probe for detection of hypochlorite in water[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382: 111906.
- [87] WU Q, TAO T, ZHAO Y X, *et al.* A flexible chemosensor based on colorimetric and fluorescent dual modes for rapid and sensitive detection of hypochlorite anion[J]. Sensors, 2021, 21(23): 8082.