功能材料

Ag₃PO₄ 修饰 AgBr 纳米线/**Ti₃C₂** 双异质 结光催化剂降解罗丹明 **B**

曾武军1,曾 斌1*,彭 巧2,宁旭涛2,张 明3*

(1. 湖南文理学院 机械工程学院,湖南 常德 415000;2. 湖南人文科技学院 材料与环境工程学院,湖 南 娄底 417000;3. 湖南大学重庆研究院,重庆 401120)

摘要:以十六烷基三甲基溴化铵(CTAB)为模板和溴源,通过添加Ti₃C₂MXene,使用共沉淀法制备了Ag₃PO₄ 修饰 AgBr 纳米线/Ti₃C₂双异质结光催化剂(Ag₃PO₄-AgBr NW/Ti₃C₂),采用 SEM、TEM、XRD、XPS、紫外-可见漫反射光谱、荧光光谱对 Ag₃PO₄-AgBr NW/Ti₃C₂进行了表征。以罗明丹 B(RhB)为目标降解物,考察了 质量分数 1%的 Ti₃C₂水分散液添加量对 Ag₃PO₄-AgBr NW/Ti₃C₂光催化降解 RhB 的影响。结果表明,层状 Ti₃C₂ 分布在 AgBr 纳米线周围,Ag₃PO₄纳米粒子修饰在两者之上,3种化合物之间形成 Z型和肖特基双异质结;质 量分数 1%的 Ti₃C₂分散液添加量为 0.5 g 制备的 Ag₃PO₄-AgBr NW/Ti₃C₂-5 具有最佳的光催化降解 RhB 性能,30 mg 该光催化剂对 30 mL 质量浓度为 10 mg/L RhB 溶液的降解率为 94.4%;超氧自由基和羟基自由基是 Ag₃PO₄-AgBr NW/Ti₃C₂光催化降解 RhB 过程中起主要作用的活性物种;AgBr、Ag₃PO₄、Ti₃C₂ 三者之间形成的 Z型和肖特基双异质结增强了光生电子-空穴对(e⁻-h⁺)的分离效率,提升了Ag₃PO₄-AgBr NW/Ti₃C₂光催化性能。 关键词:双异质结;光催化剂;Ti₃C₂;纳米线;罗丹明 B;功能材料 **中图分类号**:X703;O643.36;O644.1 文献标识码;A 文章编号:1003-5214(2024)11-2397-08

Ag₃PO₄-decorated AgBr nanowires/Ti₃C₂ double heterostructure photocatalyst for degradation of Rhodamine B

ZENG Wujun¹, ZENG Bin^{1*}, PENG Qiao², NING Xutao², ZHANG Ming^{3*}

(1. College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, China; 2. School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; 3. Research Institute of Hunan University in Chongqing, Chongqing 401120, China)

Abstract: Ag₃PO₄-decorated AgBr nanowires/Ti₃C₂ double heterostructure photocatalyst (Ag₃PO₄-AgBr NW/Ti₃C₂) were synthesized from co-precipitation of cetyltrimethylammonium bromide (CTAB) and Ti₃C₂ MXene, and characterized by SEM, TEM, XRD, XPS, UV-Vis diffuse reflectance and fluorescence spectra. The effect of addition amount of Ti₃C₂ aqueous dispersion with 1% mass fraction on the Ag₃PO₄-AgBr NW/Ti₃C₂ photocatalytic performance for Rhodamine B (RhB) degradation was investigated. The results showed that layered Ti₃C₂ was dispersed around AgBr nanowires and Ag₃PO₄-AgBr NW/Ti₃C₂-5 prepared by adding 0.5 g Ti₃C₂ dispersion with 1% mass fraction exhibited the best photocatalytic performance for RhB degradation. The RhB (30 mL, mass concentration of 10 mg/L) degradation rate reached 94.4% when photocatalyzed by 30 mg Ag₃PO₄-AgBr NW/Ti₃C₂-5. Superoxide free radicals and hydroxyl free radicals were the main active species in the photocatalytic degradation of RhB by Ag₃PO₄-AgBr NW/Ti₃C₂. The *Z*-type and Schottky double heterojunction formed among AgBr, Ag₃PO₄ and Ti₃C₂ improved the separation efficiency of photogenerated electron-hole pairs (e⁻-h⁺) and enhanced the photocatalytic performance of Ag₃PO₄-AgBr NW/Ti₃C₂.

收稿日期: 2023-10-09; 定用日期: 2023-12-05; DOI: 10.13550/j.jxhg.20230847

基金项目:重庆市自然科学基金项目(cstc2021jcyj-msxmX0459)

作者简介: 曾武军 (1985—), 男, 讲师, E-mail: 282985408@qq.com。联系人: 曾 斌 (1978—), 男, 教授, E-mail: 21467855@qq.com; 张 明 (1985—), 男, 教授, E-mail: zhangming@hnu.edu.cn。

Key words: double heterostructure; photocatalysts; Ti₃C₂ MXene; nanowires; Rhodamine B; functional materials

随着现代工业的高速发展,环境污染,尤其是 水污染已成为很严峻的问题^[1],半导体光催化技术 是利用可再生能源治理水污染的有效方法^[2-3]。AgBr 能带间隙窄、太阳光利用率高,是一种很有前途的 可见光催化剂^[4]。近年来,不同形貌的 AgBr,包括 纳米花^[5]、纳米片^[6]和纳米棒^[7]AgBr 受到了广泛的 关注。纳米线 (NWs)结构具有独特的光敏、电学 和电子传输特性,非常适合于光催化领域的应用^[8]。 然而,单一的 AgBr 纳米线 (AgBr NW)形成的光 致载流子容易发生快速复合,导致 AgBr 的量子效 率低和光腐蚀严重^[9]等系列问题。

YANG 等^[10]认为,构建异质结是克服上述问题 的有效方法。Z 型异质结具有光谱响应宽、氧化还 原能力强、电荷分离效率和稳定性高等特性,已引 起人们的广泛关注。在该体系中,半导体 I 的导带 (CB)中的电子(e^-)可以与半导体 II 的价带(VB) 中的空穴(h^+)结合,从而实现光生载流子的高效 分离^[11]。Ag₃PO₄作为一种光敏材料,与 AgBr 之间 合适的能带位置易于形成 Z 型异质结^[12]。

Ti₃C₂ MXene 作为一种新型的二维材料,具有大 比表面积、高导电性等优点,常与其他半导体结合 用以提高其光催化性能,这主要是因为黑色 Ti₃C₂ MXene 在 400~700 nm 范围内表现出强烈的可见光 吸收能力,而且 Ti₃C₂ MXene 与半导体易形成肖特 基势垒(Schottky Barrier),阻止电荷从 Ti₃C₂ MXene 回流到半导体^[13-14]。WANG 等^[15]通过离子交换法制 备了 Ag₃PO₄/AgBr/Ti₃C₂T_x 三元复合物,其显示出优 异的光催化性能,但对 Ag₃PO₄与 AgBr 的形貌并未 进行有效控制。

基于以上分析,本文拟以十六烷基三甲基溴化 铵(CTAB)为模板和溴源,通过添加Ti₃C₂MXene, 采用共沉淀法来制备 Ag₃PO₄修饰 AgBr 纳米线 /Ti₃C₂双异质结光催化剂(Ag₃PO₄-AgBr NW/Ti₃C₂)。 其中,CTAB 以棒状胶束形式结合 Ag⁺形成 AgBr NW,并在表面生长 Ag₃PO₄。通过模拟太阳光降解 罗明丹 B(RhB),考察其光催化活性,并探讨其光 催化机理,以期为设计具有优异光催化性能的 AgBr 类光催化剂结构提供一种新的技术路径。

1 实验部分

1.1 试剂与仪器

CTAB、AgNO₃、Na₂HPO₄•2H₂O,AR,国药集团化学试剂有限公司;异丙醇(IPA)、乙二胺四乙

酸二钠(EDTA-2Na)、对苯醌(p-BQ), AR, 上海 阿拉丁生化科技股份有限公司; Ti₃C₂ MXene, 新烯 科技有限公司。

S-4800 型扫描电子显微镜(SEM)、F-7000 型 荧光分光光度计,日本 Hitachi 公司;FEI Tecnai F20 型高分辨场发射透射电子显微镜(TEM),美国 FEI 公司;SmartLab SE 型 X 射线衍射仪(XRD),日本 Rigaku 公司;SK-Alpha 型 X 射线光电子能谱仪 (XPS),美国 Thermo Fisher Scientific 公司;UV-2550 型紫外-可见分光光度计,日本 Shimadzu 公司。

1.2 制备方法

磁力搅拌下,将 0.9 g CTAB 溶解于 70 mL 去离 子水中,再依次加入一定质量的质量分数为 1%的 Ti₃C₂水分散液、10.0 g 质量分数 12.2% AgNO₃水溶 液;随后,将 18 mL Na₂HPO₄水溶液(0.2 mol/L) 缓慢滴入上述溶液,搅拌 2 h,过滤得到的沉淀,用 蒸馏水洗涤 5 次,75 ℃下干燥 12 h,得到 Ag₃PO₄-AgBr NW/Ti₃C₂。将添加 0、0.3、0.5、0.8 g 质量分数为 1%的 Ti₃C₂ 水分散液制备的样品分别记 为 Ag₃PO₄-AgBr NW/Ti₃C₂-0 、 Ag₃PO₄-AgBr NW/Ti₃C₂-3、Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-8。

按照 Ag₃PO₄-AgBr NW/Ti₃C₂ 的制备条件,在不添加 CTAB 和 Ti₃C₂条件下制得的样品记为 Ag₃PO₄; 在不添加 Na₂HPO₄•2H₂O 和 Ti₃C₂条件下制得的样品 记为 AgBr NW。

1.3 结构表征

SEM 测试:电压 15 kV,喷金后测试。TEM 测试:工作电压 200 kV。XRD 测试:Cu K_α射线,管电压 30 kV,扫描速率 5 (°)/min,扫描范围为 2θ=5°~85°。紫外-可见漫反射光谱(UV-Vis DRS)测试: 波长范围 200~800 nm。荧光光谱(PL)测试:以氙 灯为激发光源,激发波长为 370 nm,扫描范围为 400~700 nm。XPS 测试:Al K_αX 射线源(1486.6 eV), 样品在真空下进行测试。

1.4 光催化性能测试

将 30 mg 光催化剂分散到 30 mL 质量浓度为 10 mg/L 的 RhB 溶液中,在黑暗中搅拌 30 min,用 300 W 氙灯照射 60 min。每隔 15 min 抽取 4 mL 液体,用 0.22 μ m 针式过滤器过滤,再用紫外-可见分 光光度计在 554 nm 处测定 RhB 溶液的吸光度。然后,根据测定的 RhB 质量浓度(x)-吸光度(y)标准曲线拟合方程 y=0.1720x+0.0924(R^2 =0.9914),计算测定溶液吸光度对应的 RhB 的质量浓度,然后

)

采用式(1)计算 RhB 降解率:

$$\eta / = (1 - \rho_t / \rho_0) \times 100$$
 (1)

式中: η 为 RhB 的降解率,%; ρ_0 和 ρ_t 分别为 RhB 溶液的初始和取样 t 时刻的质量浓度,mg/L。

1.5 自由基及 e⁻、h⁺捕获实验

选取最佳光催化降解 RhB 性能的 Ag₃PO₄-AgBr NW/Ti₃C₂,在上述光催化体系中,加入 AgNO₃、 EDTA-2Na、p-BQ、IPA(均为 0.1 mmol/L),分别 对 e⁻、h⁺、超氧自由基(•O₂)、羟基自由基(•OH) 进行捕获,考察 Ag₃PO₄-AgBr NW/Ti₃C₂对 RhB 产 生降解作用的主要活性物种。

2 结果与讨论

2.1 形貌与结构表征

图 1 为 Ag₃PO₄-AgBr NW/Ti₃C₂-5 的 SEM 图、 TEM 图、HRTEM 图和 EDS Mapping 图。

从图 1a 可以看出,大量的 Ag_3PO_4 和 AgBr NW密集地分布在 Ti_3C_2 表面;从图 1b、c 可以看出,复 合物中分布大量的 AgBr NW,直径约 20 nm (如图 中箭头所示),并有少量球形 Ag_3PO_4 纳米颗粒的存 在(图 1b),层状的 Ti_3C_2 分布在 AgBr NW周围, Ag_3PO_4 纳米颗粒铆接在 AgBr NW上和层状 Ti_3C_2 表面(图 1c),因此 Ag_3PO_4 、AgBr NW、 Ti_3C_2 之间 形成了紧密接触。由图 1d 可知, 0.263、0.209 nm 的面间距分别对应于 Ag_3PO_4 的(210)晶面、AgBr的 (220)晶面。图 1e 证实了 Ag、P、O、Br、Ti 和 C 元素的存在,表明成功制备了 Ag_3PO_4 -AgBr NW/Ti_3C₂ 三元复合材料。

图 2 为 Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-0、AgBr NW 和 Ag₃PO₄ 的 XRD 谱图。

从图 2 可以看出, AgBr NW 的 XRD 谱图中存 在 2*θ*=26.7°、30.9°、44.3°、55.0°、64.5°、73.2° 6 个衍射峰,分別对应 AgBr 的(111)、(200)、(220)、 (222)、(400)、(420)晶面(JCPDS No. 79-0149)^[16]; Ag₃PO₄ 的 XRD 谱图中存在 2*θ*=20.9°、29.7°、33.3°、 36.6°、47.8°、52.7°、55.0°、57.3°、61.6°、71.9° 10 个衍射峰,分別对应 Ag₃PO₄ 的(110)、(200)、(210)、 (220)、(310)、(222)、(320)、(321)、(400)、(421)晶 面(JCPDS No. 84-0510)^[17]; Ag₃PO₄-AgBr NW/Ti₃C₂-0 的 XRD 谱图中同时存在 Ag₃PO₄和 AgBr 的特征衍射峰,表明为 Ag₃PO₄ 和 AgBr 的复合材料; Ag₃PO₄-AgBr NW/Ti₃C₂-5 的衍射峰与 Ag₃PO₄/AgBr NW-0 的衍射峰相似,但是并没有看到 Ti₃C₂ 衍射峰, 这主要是因为 Ti₃C₂ 在三元复合材料中的含量较低^[18]。

图 3 为 Ag₃PO₄-AgBr NW/Ti₃C₂/Ti₃C₂-5 的 XPS 谱图。

从图 3 可以看出, Ag₃PO₄-AgBr NW/Ti₃C₂-5 中 存在 Ag、Br、P、O、Ti 和 C 元素(图 3a), 经计 算, Ag、Br、P、O、Ti 和 C 的物质的量比为 26.07: 13.86:8.30:36.08:1.04:14.65。Ag 3d 的高分辨 XPS 谱图(图 3b)中, 373.8、367.8 eV 处的两个峰 分别来自于 Ag 3d_{5/2}、Ag 3d_{3/2}的电子结合能,表明 Ag 以+1 价的形式稳定地存在于三元复合物 Ag₃PO₄-AgBr NW/Ti₃C₂-5 中^[19];Br 3d 的高分辨 XPS 谱图(图 3c)中,在 68.4、69.4 eV 两个峰分别来自 于 Br 3d_{5/2}、Br 3d_{3/2}的电子结合能^[20]; P 2p 的高分 辨率 XPS 谱图(图 3d)中, 133.2 eV 处的峰来自于 PO₄³⁻中 P 2p 的电子结合能^[20]; O 1s 的高分辨 XPS 谱图(图 3e)中,532.4和530.5 eV的峰来自于Ti—C—OH和Ti—O键的出现表明Ti₃C₂与Ag₃PO₄形成了紧密的连接^[21]; Ti 2p的高分辨XPS谱图(图 3f)出现两组峰,分别位于458.8和465.0 eV处,对应于Ti—O键,表明Ti₃C₂已经部分氧化^[22]; C 1s的高分辨XPS谱图(图 3g)出现两组峰,284.8 eV处峰来自于C—C键,288.3 eV处的峰来自于C—O键,C—O键的出现表明MXene与Ag₃PO₄形成了紧密的连接^[23-24]。XPS结果表明,Ag₃PO₄-AgBr NW/Ti₃C₂/Ti₃C₂-5中存在Ag₃PO₄、AgBr、Ti₃C₂,进一步证实了XRD谱的表征结果。

a—XPS 全谱; b—Ag 3*d* 高分辨 XPS 谱图; c—Br 3*d* 高分辨 XPS 谱图; d—P 2*p* 高分辨 XPS 谱图; e—O 1*s* 高分辨 XPS 谱图; f—Ti 2*p* 高分辨 XPS 谱图; g—C 1*s* 高分辨 XPS 谱图

图 3 Ag₃PO₄-AgBr NW/Ti₃C₂-5 的 XPS 谱图 Fig. 3 XPS spectra of Ag₃PO₄-AgBr NW/Ti₃C₂-5

图 4 为 Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-0、AgBr NW 和 Ag₃PO₄ 的 UV-Vis DRS 吸收谱图和能量带隙谱图;图 5 为它们的荧光发射光谱。

- 图 4 Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-0、 AgBr NW 和 Ag₃PO₄ 的 UV-Vis DRS 吸收谱图(a) 及其能量带隙谱图(b)
- Fig. 4 UV-Vis spectra (a) and band gap energy diagrams (b) of Ag_3PO_4 -AgBr NW/Ti_3C_2-5, Ag_3PO_4 -AgBr NW/Ti_3C_2-0, AgBr NW and Ag_3PO_4

从图 4a 可以看出,相对于其他样品,Ag₃PO₄-AgBr NW/Ti₃C₂-5 在 400~800 nm 之间具有更高的可见光吸收。由图 4b 可知,Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄/AgBr NW/Ti₃C₂-0、AgBr NW、Ag₃PO₄ 的能量带隙(E_g)分别为 1.96、2.00、2.24、2.12 eV,Ag₃PO₄-AgBr NW/Ti₃C₂-5 能量带隙最窄。上述结果表明,Ti₃C₂的加入提高了材料对光能量的吸收,这将有助于光催化反应进程^[25]。

从图 5 可以看出, Ag_3PO_4 和 AgBr NW 表现出 明显的发射峰, 表明 e⁻-h⁺复合现象明显; Ag_3PO_4 / AgBr NW/Ti₃C₂-0 的发射峰强度弱于 Ag_3PO_4 和 AgBr NW, 说明 $Ag_3PO_4/AgBr$ NW/Ti₃C₂-0 中 $Ag_3PO_4/AgBr$ NW 形成的 Z 型异质结促进了表面 e⁻-h⁺的分离^[26]; Ag_3PO_4 -AgBr NW/Ti₃C₂-5 的发射峰 强度是所有样品中最低的,证明 Ag_3PO_4 -AgBr NW/ Ti₃C₂/Ti₃C₂-5 中 Z 型和肖特基双异质结能有效抑制 e⁻-h⁺对的复合,加速光致电荷的迁移^[27]。

- 图 5 Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-0、 AgBr NW 和 Ag₃PO₄的荧光发射光谱
- Fig. 5 Photoluminescence (PL) spectra of Ag₃PO₄-AgBr NW/Ti₃C₂-5, Ag₃PO₄-AgBr NW/Ti₃C₂-0, AgBr NW and Ag₃PO₄

2.2 光催化性能分析

图 6a 为 Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-0、AgBr NW、Ag₃PO₄和 Ti₃C₂的光 催化降解 RhB 的曲线。

图 6 不同光催化剂对 RhB 的降解率(a) 和准一级动力 学拟合曲线(b); 不同 Ti₃C₂ 添加量的 Ag₃PO₄-AgBr NW/Ti₃C₂ 光催化剂对 RhB 的降解率(c); Ag₃PO₄-AgBr NW/Ti₃C₂-5 循环使用性能(d)

Fig. 6 Degradation rate of RhB by different photocatalysts
(a) and pseudo-first-order kinetic fitting curves (b);
Degradation rate of RhB by Ag₃PO₄-AgBr NW/Ti₃C₂
with different addition amount (c); Cycle performance of Ag₃PO₄-AgBr NW/Ti₃C₂-5 (d)

从图 6a 可以看出, Ti₃C₂、AgBr NW、Ag₃PO₄ 在 60 min 内光催化降解 RhB 的降解率分别为 14.4%、 45.0%、55.2%, 表明 Ti₃C₂ 的光催化降解 RhB 能力 最弱, Ag₃PO₄和 AgBr NW 具有一定的光催化活性; Ag₃PO₄/AgBr NW/Ti₃C₂-0 光催化降解 RhB 的降解率 达到 79.4%, Ag₃PO₄-AgBr NW/Ti₃C₂/Ti₃C₂-5 为 94.4%, 表明 Ag₃PO₄-AgBr NW/Ti₃C₂/Ti₃C₂-5 为 94.4%, 表明 Ag₃PO₄-AgBr NW/Ti₃C₂/Ti₃C₂-5 在测试的材料 中光催化降解 RhB 的能力最强。通过与已发表文献 中 AgBr 类光催化剂对比(表 1),本文制备的 Ag₃PO₄-AgBr NW/Ti₃C₂/Ti₃C₂-5 的光催化性能明显 较高,并且相对于同为 Ag₃PO₄AgBr/Ti₃C₂/Ti₃C₂ 的三 元光催化剂降解 80%的 RhB 仅需仅 15 min。

图 6b 为 Ag₃PO₄-AgBr NW/Ti₃C₂-5、Ag₃PO₄-AgBr NW/Ti₃C₂-0、AgBr NW、Ag₃PO₄和 Ti₃C₂光催 化降解 RhB 的准一级动力学模型拟合曲线。

从图 6b 可以看出,根据速率常数大小各催化剂的 排序为: Ag_3PO_4 - $AgBr NW/Ti_3C_2$ -5 (0.0280 min⁻¹) > Ag_3PO_4 - $AgBr NW/Ti_3C_2$ -0 (0.0086 min⁻¹) > Ag_3PO_4 (0.0047 min⁻¹) > AgBr NW (0.0029 min⁻¹) > Ti_3C_2 (0.0023 min⁻¹)。

图 6c 为 4 种不同 Ti₃C₂添加量的光催化剂降解

RhB 的曲线。

从图 6c 可以看出,根据 60 min 时,RhB 的降 解率大小 4 种光催化剂的排序为:Ag₃PO₄-AgBr NW/Ti₃C₂-5 (94.4%) >Ag₃PO₄-AgBr NW/Ti₃C₂-3 (89.7%) >Ag₃PO₄-AgBr NW/Ti₃C₂-0 (79.4%) >Ag₃PO₄-AgBr NW/Ti₃C₂-8 (67.7%)。结果表明,适 量 Ti₃C₂的添加(0.3、0.5g),可以提升 Ag₃PO₄-AgBr NW/Ti₃C₂ 光催化降解 RhB 的效率,这是因为, Ag₃PO₄-AgBr NW/Ti₃C₂内部形成了 Z型和肖特基双 异质;而随着 Ti₃C₂ 添加量的进一步增加 (0.8g), Ag₃PO₄-AgBr NW/Ti₃C₂ 光催化降解 RhB 的效率开 始降低,这可能因为,过多的 Ti₃C₂影响了 Ag₃PO₄/AgBr NW 对光的吸收,进而导致光催化活 性的降低。

图 6d 为 Ag₃PO₄-AgBr NW/Ti₃C₂-5 光催化降解 RhB 循环使用效果。

从图 6d 可以看出, Ag₃PO₄-AgBr NW/Ti₃C₂-5 循环使用 5 次后, 60 min 光催化降解 RhB 的降解率 有一定的降低, 但仍然保持在 84.8%以上, 相比首 次 RhB 的降解率(94.4%)下降 9.6%, 表明 Ag₃PO₄-AgBr NW/Ti₃C₂-5 光催化剂稳定性较好。

图 7 为自由基以及 e⁻、h⁺捕灭剂捕获实验结果。

	Table 1	e 1 Photocatalytic performances of different AgBr photocatalysts						
光催化剂		业湄	污染物			降解结果		参考
名称	加入量/mg	- 7日7年	名称	体积/mL	质量浓度/(mg/L)	降解率/%	降解时间/min	文献
AgBr	1.5	可见光	甲基橙(MO)	1.5	10	70.3	60	[28]
$Ag_3PO_4/AgBr/Ti_3C_2$	100	可见光	RhB	100	10	94.72	60	[15]
DyVO ₄ /AgBr	30	钨灯	亚甲基蓝	30	10	79.8	90	[29]
AgBr-聚氨酯/负离子粉体	50	可见光	MO	50	10	60.11	75	[30]
Ag ₃ PO ₄ -AgBr NW/Ti ₃ C ₂ -5	30	模拟太阳光	RhB	30	10	94.4	60	本文

表1 不同 AgBr 催化剂的光催化性能

图 7 活性物种捕获剂对 RhB 降解率的影响

Fig. 7 Effect of active capture agents on degradation rate of RhB

从图 7 可以看出,随着 e⁻捕获剂 AgNO₃ 的加入, Ag₃PO₄-AgBr NW/Ti₃C₂-5 光降解 RhB 的效率明显降 低,表明 AgNO₃ 有效地捕捉到了光生电子,证明了 由于 Z 型和肖特基双异质结的形成,催化剂表面发 生了有效的光生 e⁻-h⁺对分离; •O₂捕获剂 *p*-BQ 的加 入严重抑制了 Ag₃PO₄-AgBr NW/Ti₃C₂-5 光降解 RhB 的降解效率; •OH 捕获剂 IPA 也能在一定程度上降 低了 RhB 的降解率;而 h⁺捕获剂 EDTA-2Na 对 RhB 降 解 率 的 影 响 可 以 忽 略 。结果 说 明,•O₂ 是 Ag₃PO₄-AgBr NW/Ti₃C₂-5 光降解 RhB 反应的主要活 性物种,•OH 也在很大程度上参与了此光催化反应, 而 h⁺在光催化反应过程中作用不明显^[31]。

2.3 光催化机理推测

通过以上分析, 推测 Ag₃PO₄-AgBr NW/Ti₃C₂ 光催化机理如图 8 所示。

模拟太阳光照激发 Ag₃PO₄ 和 AgBr NW 生成

e⁻-h⁺对。由于 AgBr NW 与 Ag₃PO₄之间形成 Z 型异 质结, Ag₃PO₄的导带(CB)中的光电子立即转移到 AgBr 的价带(VB),加速了 e⁻-h⁺对的分离^[32],而 Ag₃PO₄ 留在 VB 中的 h⁺能与水反应生成•OH,•OH 的强大活性能直接降解水中的 RhB^[33];另外,由于 Ti₃C₂ 具有类似金属的性质,AgBr 中的光致电子可 以很容易地快速迁移到 Ti₃C₂上,同时由于 Ti₃C₂与 AgBr 结合后形成了肖特基异质结,能阻止 e⁻从 Ti₃C₂ 回流到 AgBr^[34]。转移到 Ti₃C₂上的 e⁻与溶解氧结合 产 生•O₂^{-[35]},•O₂ 直接降解 RhB。Ag₃PO₄-AgBr NW/Ti₃C₂光催化降解 RhB 的过程如下^[36]:

 Ag_3PO_4 - $AgBr NW/Ti_3C_2$ + $h\nu \rightarrow Ag_3PO_4$ -AgBr

 $NW/Ti_{3}C_{2} \left[h^{+}(VB) + e^{-}(CB) \right]$ (2)

- $Ag_3PO_4 [e^{-}(CB)] \rightarrow AgBr NW [h^{+}(VB)] (3)$
 - $Ag_{3}PO_{4} [h^{+}(VB)] + H_{2}O \rightarrow H^{+} + OH$ (4)

•OH+RhB \rightarrow H₂O+CO₂ (5)

- AgBr NW $[e^{-}(CB)] \rightarrow Ti_{3}C_{2}(e^{-})$ (6)
- $\operatorname{Ti}_{3}C_{2}(e^{-}) \left[e^{-}(CB) \right] + O_{2} \rightarrow O_{2}^{-}$ (7)
 - $\bullet O_2^- + RhB \rightarrow H_2O + CO_2 \qquad (8)$

图 8 Ag₃PO₄-AgBr NW/Ti₃C₂的光催化机理示意图 Fig. 8 Schematic diagram of photocatalytic reaction mechanism for Ag₃PO₄-AgBr NW/Ti₃C₂

3 结论

(1)以 CTAB 为模板和溴源,通过添加 Ti₃C₂
MXene,采用共沉积法成功制备了双异质结光催化
剂 Ag₃PO₄-AgBr NW/Ti₃C₂。

(2)质量分数 1%的 Ti₃C₂水分散液添加量为 0.5 g 制备的 Ag₃PO₄-AgBr NW/Ti₃C₂-5具有最佳的光催化 降解 RhB 性能,在模拟太阳光照下,其投加量为 30 mg 时,对 30 mL 质量浓度为 10 mg/L 的 RhB 溶 液的降解率为 94.4%。

(3) •O₂和•OH 是 Ag₃PO₄-AgBr NW/Ti₃C₂在光 催化降解 RhB 过程中起主要作用的活性物种。

(4) Ag₃PO₄-AgBr NW/Ti₃C₂的光催化活性主要 源于 AgBr、Ag₃PO₄、Ti₃C₂之间形成的 Z 型和肖特 基双异质结,其在光催化过程中有效促进了光生 e⁻-h⁺的分离。

参考文献:

- HOU J H (侯建华), YANG M Y (杨木易), SUN A (孙昂), et al. Application of MXenes and their composite materials in the field of environment[J]. Fine Chemicals (精细化工), 2021, 38(12): 2422-2431.
- [2] CHENG X M, ZHAO J, SUN W Y. Facet-engineering of materials for photocatalytic application: Status and future prospects[J]. EnergyChem, 2022, 4(5): 100084-100104.
- [3] CHEN F, ZHANG Y H, HUANG H W. Layered photocatalytic nanomaterials for environmental applications[J]. Chinese Chemical Letters, 2023, 34(3): 107523-107538.
- [4] HUANG S H, WANG Y, WAN J Q, et al. Ti₃C₂T_x as electron-hole transfer mediators to enhance AgBr/BiOBr Z heterojunction photocatalytic for the degradation of tetrabromobisphenol A: Mechanism insight[J]. Applied Catalysis B: Environmental, 2022, 319(15): 121913-121928.
- [5] SUN J L, YANG J H, LIANG J X, et al. Construction of microspherical flower-like Zn₃In₂S₆-BGQDs/AgBr S-scheme heterojunction for photocatalytic elimination of nitrofurazone and Cr(VI)[J]. Separation and Purification Technology, 2022, 299(15): 121563-121576.
- [6] XU Y H, LI D Z, ZENG Q, et al. Type-II 2D AgBr/SiH Van Der Waals heterostructures with tunable band edge positions and enhanced optical absorption coefficients for photocatalytic water splitting[J]. RSC Advances, 2023, 13: 27676-27685.
- [7] WANG Y F, YANG H H, YU H, et al. Crystallization time-induced microstructural evolution and photoelectrochemical properties of ternary Ag@AgBr/TiO₂ nanorod arrays[J]. Journal of Alloys and Compounds, 2022, 904(25): 163370-163382.
- [8] HAN Q, HAN Z W, WANG Y M, et al. Enhanced photocatalytic hydrogen evolution by piezoelectric effects based on MoSe₂/Sedecorated CdS nanowire edge-on heterostructure[J]. Journal of Colloid and Interface Science, 2023, 630(15): 460-472.
- [9] WARSHAGHA M Z A, MUNEE M. Direct Z-scheme AgBr/ β-MnO₂ photocatalysts for highly efficient photocatalytic and anticancer activity[J]. ACS Omega, 2022, 7: 30171-30183.
- [10] YANG J H, SUN J L, CHEN S, et al. S-scheme 1T phase MoSe₂/ AgBr heterojunction toward antibiotic degradation: Photocatalytic mechanism, degradation pathways, and intermediates toxicity evaluation[J]. Separation and Purification Technology, 2022, 290(1): 120881-120896.
- [11] ZUO H R, WU C Y, DU H Y, *et al.* Construction of Z-scheme Ag-AgBr/Bi₂O₂CO₃/CNT heterojunctions with remarkable photocatalytic performance using carbon nanotubes as efficient electronic mediators [J]. Chemosphere, 2022, 302: 134927-134941.
- [12] KATSUMATA H, ASHRAFU I M, JAHIDA B I, et al. Dual Z-scheme heterojunction g-C₃N₄/Ag₃PO₄/AgBr photocatalyst with enhanced visible-light photocatalytic activity[J]. Ceramics International, 2022, 48(15): 21898-21905.
- [13] SUKIDPNEEID S, CHAWENGKIJWANICH C, POKHUM C, et al. Multi-function adsorbent-photocatalyst MXene-TiO₂ composites for removal of enrofloxacin antibiotic from water[J]. Journal of Environmental Sciences, 2023, 124: 414-428.
- [14] ZHANG Q (张倩), WANG Y D (王英迪), GAO F (高峰), et al. In-situ synthesis and photocatalytic performance of N-TiO₂/Ti₃C₂ composite[J]. Fine Chemicals (精细化工), 2022, 39(3): 525-532.
- [15] WANG S L, WANG Y, WAN J Q, *et al.* Dual channel carrier transfer based on $Ti_3C_2T_x$ improves carrier utilization of *Z*-scheme Ag₃PO₄/AgBr heterojunction photocatalyst[J]. Separation and Purification Technology, 2020, 253: 117486-117498.
- [16] XIE Y, ZHOU Y P, GAO C M, et al. Construction of AgBr/BiOBr

S-scheme heterojunction using ion exchange strategy for highefficiency reduction of CO_2 to CO under visible light[J]. Separation and Purification Technology, 2022, 303(15): 122288-122298.

- [17] XIAO H J, WANG Y L , LIU C J, et al. Liposome-mediated in situ formation of Ag₃PO₄/AgBr/Br-CN ternary nanostructures on photoanodes for photoelectrochemical immunoassay[J]. ACS Applied Nano Materials, 2023, 6: 6496-6503.
- [18] LIU X, WANG B F, HENG Q Q, et al. Promoted charge separation on 3D interconnected Ti₃C₂/MoS₂/CdS composite for enhanced photocatalytic H₂ production[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8284-8293.
- [19] CUI X, GONG Y H, LIU Y P, et al. Synthesis of a Z-scheme ternary photocatalyst (Ta₃N₅/Ag₃PO₄/AgBr) for the enhanced photocatalytic degradation of tetracycline under visible light[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110962-110973.
- [20] CHEN L W, YANG S J, HUANG Y, et al. Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag₃PO₄@natural hematite heterojunction photocatalyst under simulated solar light[J]. Journal of Hazardous Materials, 2019, 371: 566-575.
- [21] QUYEN V T, HA L T T, THANH D M, et al. Advanced synthesis of MXene-derived nanoflower-shaped TiO₂@Ti₃C₂ heterojunction to enhance photocatalytic degradation of Rhodamine B[J]. Environmental Technology & Innovation, 2021, 21: 101286-101299.
- [22] LIU M T, LI J Y, BIAN R M, et al. ZnO@Ti₃C₂ MXene interfacial Schottky junction for boosting spatial charge separation in photocatalytic degradation[J]. Journal of Alloys and Compounds, 2022, 905: 164025-164034.
- [23] ABBAS K K, AHMED M H A, EMAN H. Synthesis of a novel ZnO/TiO₂-nanorod MXene heterostructured nanophotocatalyst for the removal pharmaceutical ceftriaxone sodium from aqueous solution under simulated sunlight[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108111-108124.
- [24] LIU C, WANG J B, YANG S, et al. Ag₃PO₄ nanocrystals and g-C₃N₄ quantum dots decorated Ag₂WO₄ nanorods: Ternary nanoheterostructures for photocatalytic degradation of organic contaminants in water[J]. RSC Advances, 2019, 9: 8065-8072.
- [25] GOGOI H P, BISOI G, BARMAN P, *et al.* Highly efficient and recyclable quaternary Ag/Ag₃PO₄-BiOBr-C₃N₄ composite fabrication for efficient solar-driven photocatalytic performance for anionic pollutant in an aqueous medium and mechanism insights[J]. Optical Materials, 2023, 138: 113712-113723.
- [26] ZHANG H, TANG G G, WAN X, et al. High-efficiency all-solid-state Z-scheme Ag₃PO₄/g-C₃N₄/MoSe₂ photocatalyst with

boosted visible-light photocatalytic performance for antibiotic elimination[J]. Applied Surface Science, 2020, 530: 147234-147244.

- [27] REN Y, ZHAN W Q, TANG L L, *et al.* Constructing a ternary H₂SrTa₂O₇/g-C₃N₄/Ag₃PO₄ heterojunction based on cascade electron transfer with enhanced visible light photocatalytic activity[J]. CrystEngComm, 2020, 22: 6485-6495.
- [28] DUAN Y D, ZHU X W, LUO Q Z, et al. Improvement in photocatalytic stability of AgBr under visible light through melt processing[J]. Journal of Catalysis, 2021, 400: 160-165.
- [29] MOHAMMAD H K, ROZITA M, MASOUD S N, et al. Schiff-base ligand assisted synthesis of DyVO₄/AgBr nanocomposites, characterization, and investigation of photocatalytic activity over organic dye contaminants[J]. Arabian Journal of Chemistry, 2023, 16: 105020-105034.
- [30] WANG X H, JIAN J, YUAN Z Q, et al. In situ loading of polyurethane/negative ion powder composite film with visiblelight-responsive Ag₃PO₄@AgBr particles for photocatalytic and antibacterial applications[J]. European Polymer Journal, 2020, 125: 109515-109526.
- [31] ZENG B, NING X T, LI L L. Fabrication and photocatalytic performance of highly active exposed facets ZnO hexagonal cap/Ti₃C₂ MXene composites[J]. Journal of Alloys and Compounds, 2023, 963(10): 171309-171317.
- [32] WANG H R, ZOU L, SHAN Y C, et al. Ternary GO/Ag₃PO₄/AgBr composite as an efficient visible-light-driven photocatalyst[J]. Materials Research Bulletin, 2018, 97: 189-194.
- [33] YU H B, WANG D Y, ZHAO B, *et al.* Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag₃PO₄/AgBr/g-C₃N₄ with dual Z-scheme heterojunction[J]. Separation and Purification Technology, 2020, 237: 116365-116374.
- [34] WANG K, CHENG M, WANG N, et al. Inter-plane 2D/2D ultrathin La₂Ti₂O₇/Ti₃C₂ MXene Schottky heterojunctions toward high-efficiency photocatalytic CO₂ reduction[J]. Chinese Journal of Catalysis, 2023, 44: 146-159.
- [35] LI B (李兵), WU F L (吴福礼), HUANG Y P (黄有鹏), et al. Preparation and photocatalytic properties of flower-like sphere Ti₃C₂/TiO₂ composites[J]. Fine Chemicals (精细化工), 2022, 39(2): 261-268.
- [36] ZHU P F, XU J, DUAN M, et al. Fabrication of a double Z-type g-C₃N₄/AgBr/Ag₃PO₄ composite with enhanced visible-light photocatalytic activity for organic dye elimination[J]. Optical Materials, 2020, 107: 110076-110089.

(上接第2379页)

- [76] SHAO Y W, WANG J Z, SUN K, et al. Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: Understanding the synergy between Ni sites and Ni-Fe alloy[J]. Renewable Energy, 2021, 170: 1114-1128.
- [77] UPARE P P, KIM Y, OH K R, et al. A bimetallic Ru₃Sn₇ nanoalloy on ZnO catalyst for selective conversion of biomass-derived furfural into 1,2-pentanediol[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(51): 17242-17253.
- [78] LI Z Z, LI Q, WANG Y Z, *et al.* Synthesis of high-density aviation biofuels from biomass-derived cyclopentanone[J]. Energy & Fuels, 2021, 35(8): 6691-6699.
- [79] DENG Q, GAO R, LI X, et al. Hydrogenative ring-rearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies[J]. ACS Catalysis,

2020, 10(13): 7355-7366.

- [80] DUAN Y, CHENG Y Y, HU Z, et al. A comprehensive review on metal catalysts for the production of cyclopentanone derivatives from furfural and HMF[J]. Molecules, 2023, 28(14): 5397.
- [81] LIU Y H, CHEN Z H, WANG X F, et al. Highly selective and efficient rearrangement of biomass-derived furfural to cyclopentanone over interface-active Ru/carbon nanotubes catalyst in water[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 744-751.
- [82] JIA P, LAN X C, LI X D, et al. Highly selective hydrogenation of furfural to cyclopentanone over a NiFe bimetallic catalyst in a methanol/water solution with a solvent effect[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15221-15229.
- [83] WANG Y, SANG S Y, ZHU W, et al. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone[J]. Chemical Engineering Journal, 2016, 299: 104-111.