水处理技术与环境保护

Ti-Al 水滑石的制备及吸附水中低质量浓度 F⁻性能

陈彩虹¹, 唐玉朝^{1*}, 伍昌年¹, 黄显怀¹, 朱静坤², 张良霄²

(1. 安徽建筑大学 环境污染控制与废弃物资源化利用安徽省重点实验室,安徽 合肥 230601; 2. 合肥 供水集团有限公司,安徽 合肥 230011)

摘要: 以 AICl₃•6H₂O 和 TiCl₃ 为原料、NaOH 为沉淀剂,采用共沉淀法制备了不同 *n*(Ti): *n*(Al)的双金属氢氧化物(Ti-Al LDHs),考察了其对模拟废水中低质量浓度 F⁻的吸附性能。采用 SEM、BET 和 XRD 对 Ti-Al LDHs 吸附 F⁻前后的样品进行了表征,探究了 Ti-Al LDHs 的投加量、初始溶液 pH 对 Ti-Al LDHs 除氟容量的影响,测试了其循环再生能力。对 Ti-Al LDHs 吸附 F⁻的机理进行了推测。结果表明,Ti-Al LDHs 稳定性较好,呈现层状结构且均匀堆积,主要以分散的无定形态存在,具有较宽的孔径分布和较大的比表面积(108.34 m²/g);当 *n*(Ti): *n*(Al)=2:8、介质 pH = 6 时制备的 Ti-Al LDHs-1 对 F⁻具有最佳的吸附性能,在 Ti-Al LDHs-1 投加量为 0.1 g/L、25 ℃、200 r/min、水浴恒温振荡 12 h 的条件下,Ti-Al LDHs-1 的除氟容量最高,为 63.08 mg/g;常温下,初始溶液 pH=4 时,投加量 0.2 g/L 的 Ti-Al LDHs-1 平衡除氟容量为 47.59 mg/g,F⁻去除率为 86.53%;共存阴离子(0~10 mmol/L) 对 F⁻吸附的影响高低排序为 HCO₃⁻>CO₃²⁻>SO₄²→H₂PO₄>Cl⁻>NO₃⁻。Ti-Al LDHs-1 对 F⁻的吸附更符合拟 二级动力学模型(*R*²>0.99),吸附等温线更符合 Langmuir 模型。经过 4 次吸附-解吸循环后,Ti-Al LDHs-1 除氟 容量仍可达初始的 73%。吸附过程为离子交换、静电吸引和表面络合 3 种类型共同作用。 关键词: 双金属氢氧化物;共沉淀法;吸附;除氟;水滑石;水处理技术 **中图分类号:**X703 **文**载标识码:A

Preparation of Ti-Al hydrotalcite and its adsorption performance for F⁻ with low mass concentration in water

CHEN Caihong¹, TANG Yuchao^{1*}, WU Changnian¹, HUANG Xianhuai¹, ZHU Jingkun², ZHANG Liangxiao²

(1. Anhui Key Laboratory of Water Pollution Control and Wastewater Recycling, Anhui Jianzhu University, Hefei 230601, Anhui, China; 2. Hefei Water Supply Group Co., Ltd., Hefei 230011, Anhui, China)

Abstract: Bimetallic hydroxides (Ti-Al LDHs) with different n(Ti) : n(Al) were prepared by co-precipitation method using AlCl₃•6H₂O and TiCl₃ as raw materials and NaOH as precipitant. The adsorption performance of Ti-Al LDHS for F⁻ with low mass concentration in simulated wastewater were analyzed, and the Ti-Al LDHs samples before and after F⁻ adsorption were characterized by SEM, BET and XRD. The effects of Ti-Al LDHs dosage and initial solution pH on the fluorine removal capacity of Ti-Al LDHs were investigated, while the recycling capacity of Ti-Al LDHS was analyzed. The F⁻ adsorption mechanism by Ti-Al LDHs was further speculated. The results showed that Ti-Al LDHs displayed good stability, having a uniform stacking of laminar structure, and mainly existing in dispersed amorphous form with a wide pore size distribution and a large specific surface area (108.34 m²/g). Ti-Al LDHs-1 prepared from n(Ti) : n(Al)=2 : 8 and medium pH=6 exhibited the best F⁻ adsorption performance, and the highest fluorine removal capacity reached 63.08 mg/g with the Ti-Al LDHs-1 dosage of 0.1 g/L, water-bath constant-temperature at 25 °C at a shaking speed of 200 r/min for 12 h. At room temperature and the initial

基金项目:国家自然科学基金项目(52370001);安徽省自然科学基金项目(2208085US20);安徽省教育厅创新团队项目(2022AH010019); 安徽省高校协同创新项目(GXXT-2023-046)

收稿日期: 2024-05-22; 定用日期: 2024-07-03; DOI: 10.13550/j.jxhg.20240415

作者简介:陈彩虹(1999—),女,硕士生,E-mail: chencaihong0706@163.com。联系人: 唐玉朝(1975—),男,教授,硕士生导师, E-mail: tangyc@ahjzu.edu.cn。

solution pH=4, the equilibrium fluorine removal capacity was 47.59 mg/g, while F⁻ removal rate reached 86.53% with Ti-Al LDHs-1 dosage of 0.2 g/L. The influence of coexisting anions (0~10 mmol/L) on the adsorption of F⁻ were as follows: $HCO_3^->CO_3^->SO_4^->H_2PO_4^->CI^->NO_3^-$. The adsorption of F⁻ by Ti-Al LDHs-1 was more consistent with the pseudo-second-order model ($R^2>0.99$), and the adsorption isotherm was more consistent with the Langmuir model. After four adsorption-desorption cycles, the fluorine removal capacity of Ti-Al LDHs-1 could still reach 73% of the initial capacity. The adsorption process was controlled mainly by ion exchange, electrostatic attraction and surface complexation.

Key words: layered double hydroxides; co-precipitation; adsorption; fluoride removal; hydrotalcites; water treatment technology

氟(F)是一种高氧化性的卤族元素,在自然界 中广泛存在,也分布在人体各组织器官中,尤其是 在头发、骨骼和牙齿中含量较高^[1]。人体摄入的氟 主要来源于饮用水。世界卫生组织规定,饮用水中 氟化物的质量浓度不应超过 1.5 mg/L,而适宜人体 的氟质量浓度应在 0.5~1.0 mg/L^[2-3]。氟在人体内呈 现双阈值效应:适量摄入有益健康,摄入过量会导 致氟斑牙和氟骨病,摄入不足则会影响骨骼和机体 发育,损害牙齿健康,引发龋齿和骨质疏松症等问 题^[4-6]。中国许多地区,如东北、西北的一些经济欠发 达地区,存在高氟水平问题。因此,如何解决水体中 氟含量超标问题成为近年来水处理的研究焦点^[7-8]。

水处理领域除氟方法主要有吸附法^[9]、混凝沉 淀法^[10]、电化学法^[11]、膜分离法^[12]等。其中,吸附 法具有吸附材料获取方便、重复利用率高、除氟性 能较好等优点,在地下水除氟方面具有很强的竞争 力[13-14]。吸附法常用的吸附剂有活性氧化铝、沸石、 活性炭、羟基磷灰石和壳聚糖等[15-19]。金属氧化物 或氢氧化物材料层叠板带正电荷,通过表面羟基的 配体交换作用可以与氟离子(F)形成稳定的 M-F 内核配位结构,实现废水中F⁻的选择性吸附^[20-22]。 铝基吸附剂表面通常带正电荷,且比表面积大、孔 径结构丰富、具有良好的回收性能,对FJ具有较高 的亲和力,是一种理想的除氟吸附剂^[23-24]。YANG 等^[25]利用控制变量法制备了一系列氧化铝材料,发 现在 600 ℃煅烧温度下,以异丙醇铝为前驱体的介 孔氧化铝改性材料具有较大比表面积和更多表面羟 基,对F-吸附性能最佳。然而,单金属铝基吸附材 料存在吸附速率较低、吸附容量有限、适应的 pH 范围较窄等缺点。为了解决上述难题,研究人员通 过掺杂或负载其他金属元素制成层状双氢氧化物 (LDHs)作为吸附材料,如Ni-AlLDHs^[26-27]、Fe-Al LDHs^[28]、Zn-Al LDHs^[29-30]、Li-Al LDHs^[31]、Ca-Al LDHs^[32]等,大量研究证明,这种基于铝基改性的水 滑石材料表面活性位点更加丰富,具有较好的除氟 效果。

本文拟采用共沉淀法制备 Ti-Al 水滑石材料

(Ti-Al LDHs),通过吸附动力学、吸附等温线、初始 pH 和竞争阴离子的影响等批量实验,研究 Ti-Al LDHs 的除氟性能和再生能力,并阐明其吸附机理。以期为废水中低含量氟的去除提供参考。

1 实验部分

1.1 试剂与仪器

六水合氯化铝(AlCl₃•6H₂O)、三氯化钛水溶液 (TiCl₃,质量分数 15%~20%)、氯化钠(NaCl)、乙 酸、二水合柠檬酸三钠、氢氧化钠(NaOH)、氟化钠, AR,上海麦克林生化科技股份有限公司;盐酸(质量 分数 36.6%)、硫酸钠(Na₂SO₄)、碳酸氢钠(NaHCO₃)、 碳酸钠(Na₂CO₃)、磷酸二氢钠(NaH₂PO₄)、硝酸 钠(NaNO₃), AR,国药集团化学试剂有限公司; 超纯水(电阻率 18.25 MΩ·cm),自制。

DHG-9101-3 型真空干燥箱,上海三发科学仪器 有限公司;LG16-B型台式高速离心机,上海安亭科 学仪器厂; 雷磁 PHS-25 型精密 pH 计、雷磁 PXSJ-216F 型离子浓度计,上海仪电科学仪器有限公司; MYP11-2 型磁力搅拌器,上海梅颖浦仪器仪表制造 有限公司; SHA-B 型水浴恒温振荡器,常州峥嵘仪 器有限公司; UPT-I-20T 型超纯水器,成都超纯科 技有限公司; Sigma 300 型场发射扫描电子显微镜 (SEM),德国 Carl Zeiss公司;ASAP 2460 型全自 动比表面及孔隙度分析仪(BET),美国 Micromeritics 仪器公司; MiniFlex600 型 X 射线衍射仪(XRD), 日本 Rigaku公司; EscaLab Xi+型 X 射线光电子能 谱仪(XPS)、Nicolet Avatar 330 型傅里叶红外光谱 仪(FTIR),美国 Thermo Fisher Scientific 公司;Nano-ZS90 型 Zeta 电位分析仪(DLS),英国 Malvern 公司。

除氟容量和去除率(η,%)的计算公式如式 (1)和(2)所示。

$$q_t = \frac{(\rho_0 - \rho_t)V}{m} \tag{1}$$

$$\eta / \% = \frac{\rho_0 - \rho_e}{\rho_0} \times 100$$
 (2)

式中: m 为 Ti-Al LDHs 的质量, g; ρ_0 、 ρ_t 和 ρ_e 分

别为初始、吸附 t 时刻和吸附平衡时溶液中 F的质量浓度, mg/L; V为溶液体积, L。

所有实验均进行3次,取其平均值。

1.2 方法

1.2.1 Ti-Al LDHs 制备

称取 24.89 g 的 AlCl₃•6H₂O (0.1 mol)用超纯 水溶解并定容至1L容量瓶配制成浓度为0.1 mol/L 的 三氯化铝水溶液;移取 36.968 mL 的三氯化钛溶液 (0.05 mol)用超纯水定容至 500 mL 容量瓶配制成 浓度为 0.1 mol/L 的三氯化钛溶液。按照 *n*(Ti): *n*(Al)=2:8,分别移取上述两种溶液置于烧杯中, 混合均匀后,于 25 ℃磁力搅拌下逐滴加入浓度为 0.5 mol/L 的 NaOH 水溶液,调至混合溶液 pH=6。 然后连续搅拌至混合溶液变为白色,静置分层后得 到沉淀物,过滤,用超纯水将沉淀物洗涤数次至 pH=7,将沉淀物在 80 ℃的烘箱中干燥 24 h。最后 将干燥后的沉淀物研磨成粉末,用 200 目筛网过筛 后得到 Ti-Al LDHs,记为 Ti-Al LDHs-1。

采用 Ti-Al LDHs-1 的制备方法, 调整 *n*(Ti): *n*(Al)分别为 10:0、9:1、5:5、3:7、1:9、0:10, 制备 Ti-Al LDHs。

采用 Ti-Al LDHs-1 的制备方法, 调整 pH (5、7、8、9), 分别制备 Ti-Al LDHs。

1.2.2 F 去除实验

首先,用 NaF 和水配制 F⁻质量浓度为 10 mg/L 的模拟废水 100 mL,再加入 Ti-Al LDHs(前期在筛 选 Ti-Al LDHs 制备条件时其投加量为 0.1 g/L;探究 最佳投加量时其投加量为 0.1~0.8 g/L;确定最佳投 加量为 0.2 g/L 后,后续实验投加量都为 0.2 g/L), 用浓度 0.5 mol/L 的 NaOH 溶液调整 pH(2~12),在 25 ℃、200 r/min 条件下水浴恒温振荡 12 h,然后经 0.45 µm 滤膜过滤后,用离子浓度计对混合液进行水 质检测。

1.3 表征与测试

SEM 和 EDS 测试:加速电压 10~20 kV,观察 和分析 Ti-Al LDHs 表面微观形貌和元素分布。BET 测试:测试前将样品于 105 ℃下干燥 2 h,测试时 将样品在 77 K 下进行氮气吸附-脱附测试。XRD 测 试:Cu K_a辐射源,管电流 40 mA,管电压 40 kV, 扫描范围 2 θ =5°~80°,扫描速率 2 (°)/min。Zeta 电位 测试:将样品粉末放入 100 mL 蒸馏水中超声分散均 匀,利用电泳光散射法进行测试。FTIR 测试:采用 溴化钾压片法,波数范围 4000~400 cm⁻¹,分辨率 4 cm⁻¹,扫描次数 32 次。XPS 测试:Al K_a为 X 射 线源,以结合能 284.8 eV 处校准的 C 1*s* 峰为参考峰。

水质检测:水样经 0.45 μm 滤膜过滤后,参照 GB/T 7484—1987《水质 氟化物的测定 离子选择电 极法》测定滤液中的 F⁻质量浓度。

1.4 Ti-Al LDHs 制备条件优化

1.4.1 金属元素配比

Ti-Al LDHs 投加量(单位体积的模拟废水中加入的 Ti-Al LDHs 质量,下同)0.1 g/L,调整介质 pH=6(即用氢氧化钠水溶液调节沉淀过程的 pH,下同),进行 F⁻的去除实验,考察 n(Ti):n(Al)分别为10:0、9:1、5:5、3:7、2:8、1:9、0:10 对制备的Ti-Al LDHs 去除 F⁻的影响。

1.4.2 介质 pH

Ti-Al LDHs 投加量 0.1 g/L,进行 F⁻的去除实验, 考察不同吸附实验中 pH(5、6、7、8、9)对制备 的 Ti-Al LDHs 去除 F⁻的影响。

1.5 F⁻去除实验条件优化

1.5.1 Ti-Al LDHs-1 投加量

考察 Ti-Al LDHs-1 投加量(0.1、0.2、0.3、0.4、 0.5、0.6、0.7、0.8 g/L)对去除 F⁻的影响。

1.5.2 溶液初始 pH

Ti-Al LDHs-1 投加量 0.2 g/L 进行 F⁻的去除实 验,用 0.1 mol/L 的 HCl 和 NaOH 溶液调节溶液初 始 pH,考察不同 pH (2、3、4、5、6、7、8、9、 10、11、12)对去除 F⁻的影响。

1.6 共存离子的影响实验

Ti-Al LDHs-1 投加量 0.2 g/L 进行 F⁻的去除实 验。分别称取不同质量的 NaCl、Na₂SO₄、NaHCO₃、 Na₂CO₃、NaH₂PO₄、NaNO₃溶解于模拟废水中,配制 成浓度分别为 1、5 和 10 mmol/L 的共存阴离子(Cl⁻、 SO₄²⁻、HCO₃⁻、CO₃²⁻、H₂PO₄⁻、NO₃⁻)溶液,考察共 存阴离子对去除 F⁻的影响。

1.7 动力学实验

分别配制 F⁻质量浓度 10、20、30 mg/L 的模拟 废水, Ti-Al LDHs-1 投加量为 0.2 g/L, 在 25 ℃、 200 r/min 条件下水浴恒温振荡 12 h, 在不同取样时 间(10、20、30、60、120、180、240、360、540、 720 min)进行水质检测。对各时间段的除氟数据进 行拟一级动力学、拟二级动力学和扩散动力学^[14]分 析。

1.8 热力学实验

分别配制 F⁻质量浓度 5、8、10、20、40、60、 100、150、200 mg/L 的模拟废水,在 Ti-Al LDHs-1 投加量为 0.2 g/L 条件下,考察溶液 pH 约为 4.0、7.0、 8.5 3 种条件下 Ti-Al LDHs-1 对 F⁻吸附性能的影响; 在 15、25 和 35 ℃下,以 200 r/min 水浴恒温振荡 12 h 取水样进行水质分析。采用 Langmuir 等温模型 和 Freundlich 等温模型^[19]进行数据分析。

1.9 再生能力测试

吸附实验后,以浓度为 0.5 mol/L 的 NaOH 水溶

液为解吸剂,对吸附 F⁻的吸附剂 Ti-Al LDHs-1 在 25 ℃水浴恒温振荡器洗脱 12 h,经水洗至 pH=7 并 干燥、研磨后,再次进行 F⁻去除实验,重复 4 次, 探究 Ti-Al LDHs-1 的再生能力。

2 结果与讨论

2.1 Ti-Al LDHs 的筛选

图 1a 为不同 *n*(Ti) : *n*(Al)对制备的 Ti-Al LDHs 的 F⁻吸附性能的影响。

- 图 1 *n*(Ti): *n*(Al)(a)和介质 pH(b)对 Ti-Al LDHs 除 氟容量的影响
- Fig. 1 Effects of n(Ti) : n(Al) (a) and medium pH (b) on fluoride removal capacity of Ti-Al LDHs

从图 1a 可以看出,当n(Ti):n(AI)=10:0时, 制备的 Ti(OH)₃除氟容量为 5.45 mg/g,相比而言, 当n(Ti):n(AI)=0:10时,制备的 Al(OH)₃的除氟容 量为 44.06 mg/g,明显高于 Ti(OH)₃除氟容量。这是 因为,Al(OH)₃表面的活性位点更加丰富,对 F⁻具 有更强的亲和力^[33]。随着n(Ti):n(AI)的降低,吸附 剂对 F⁻的吸附效果先提高后降低,当n(Ti): n(AI)=2:8时,Ti-Al LDHs-1的除氟容量达到最大 值,为 62.79 mg/g,说明 Ti-Al 双金属氢氧化物的 F⁻吸附性能显著高于单金属材料,这归因于两种离 子协同作用引起双金属氢氧化物层间结构发生变 化,层间距可能会调整到更适合 F⁻进入和吸附的大 小,增加了吸附位点的可及性,从而提高了 F⁻吸附 性能。但当n(Ti):n(AI)=1:9时,除氟容量反而下 降至 37.18 mg/g, 这可能是因为, 过量的 Ti³⁺破坏了 Ti-Al LDHs 的最佳复合结构,导致 F⁻吸附性能降低。

图 1b 为不同介质 pH 对制备的 Ti-Al LDHs 的 F⁻吸附性能的影响。

从图 1b 可以看出,弱酸性条件(pH=5、6)下, Ti-Al LDHs 表现出更优越的 F⁻吸附性能,随着 pH 的升高,Ti-Al LDHs 的除氟容量逐渐增大,在 pH=6 时达到最佳值,为 63.08 mg/g。这是因为,当n(Ti): n(Al) = 2:8时,混合溶液中含 Al³⁺较多,此时主要 形成无定形相的 Al(OH)₃^[34],其具有较高的表面能 和较多的孔隙结构,增强了对 F⁻的吸附性能。随着 pH 继续增高,体系中含有越来越多的 OH⁻, Al³⁺则 以负电荷[Al(OH)₄]⁻的形式存在,制备的 Ti-Al LDHs 中 Al³⁺含量减少,所以 F⁻吸附性能会逐渐降低^[35]。 综上所述,Ti-Al LDHs 的最佳制备条件为:n(Ti): n(Al)=2:8,介质 pH=6,制备的 Ti-Al LDHs-1 具有最高的除氟容量 63.08 mg/g。后续的表征和测试以Ti-Al LDHs-1 为吸附剂。

2.2 表征结果分析

2.2.1 SEM 分析

图 2 为 Ti-Al LDHs-1 吸附 F⁻前后的 SEM 图和 元素分布图。

- 图 2 Ti-Al LDHs-1 吸附 F⁻前(a、b)、后(c、d)的 SEM 图和元素分布图(e)
- Fig. 2 SEM images of Ti-Al LDHs before (a, b) and after (c, d) adsorption, as well as elemental distribution mapping (e)

从图 2 可看出, Ti-Al LDHs-1 是由不同粒径大小 的纳米颗粒构成的层状结构且堆积均匀、表面粗糙 (图 2a、b),这与采用共沉淀法制备材料时的沉淀 状态有关^[36]。当 Ti-Al LDHs-1 吸附 F⁻后,层状结构 的部分区域被 F⁻填充(图 2c、d),整体相对平整。对 比 Ti-Al LDHs-1 吸附 F⁻前后来看,颗粒形貌差别很 小,表明其稳定性较好。如图 2e 所示, Ti-Al LDHs-1 含有 O、Al、Ti 3 种元素,吸附后 F 元素的存在证明 吸附剂对 F⁻具有选择性。元素分布较均匀,表明在制 备材料时,各元素能够在整个样品区域内均匀分散。

图 3 为 Ti-Al LDHs-1 吸附 F⁻前后的 EDS 谱图。 从图 3 可以看出, Ti-Al LDHs-1 主要由 Al、Ti、O 3 种元素组成,*n*(Ti):*n*(Al)≈1:4.2,与理论值*n*(Ti): *n*(Al)=2:8 非常接近(图 3a)。Ti-Al LDHs-1 吸附 F⁻后的 EDS 谱图(图 3b)表明, Ti-Al LDHs-1 成功 吸附了 F⁻。

图 3 Ti-Al LDHs-1 吸附 F⁻前(a)、后(b)的 EDS 谱图 Fig. 3 EDS spectra of Ti-Al LDHs-1 before (a) and after (b) adsorption of F⁻

2.2.2 BET 分析

图 4 为 Ti-Al LDHs-1 的 N₂ 吸附-脱附等温线和 孔径分布图。

从图 4 可以看出, Ti-Al LDHs-1 的 N₂ 吸附-脱 附等温线属于 IV 型等温线,吸附中间段表现出 H₂ 型回滞环,吸附等温线上有饱和吸附平台(图 4a), 表明 Ti-Al LDHs-1 为介孔材料,孔径分布相对较宽 在 2~7 nm 处分布较集中^[37]。在低压阶段,N₂分子 在介孔的内表面以单层到多层吸附,吸附量增加缓 慢。随着相对压力的不断升高,在 *p*/*p*₀>0.43 处, N₂在均匀的介孔孔道内发生毛细凝聚作用,使吸附 量急剧上升^[38]。

Ti-Al LDHs-1 的孔径分布呈单峰型尺寸分布 (图 4b),峰值位于 3.05 nm 处。经计算, Ti-Al LDHs-1 的比表面积为 108.34 m²/g,高于 Ti(OH)₃或 Al(OH)₃。

图 4 Ti-Al LDHs-1 的 N₂吸附-脱附等温线(a)和孔径 分布图(b)

Fig. 4 N₂ adsorption-desorption isotherm (a) and pore size distribution (b) of Ti-Al LDHs-1

2.2.3 XRD 分析

图 5 为 Ti-Al LDHs-1 的 XRD 谱图,插图为小 角 XRD 谱图。从图 5 可以看出,Ti-Al LDHs-1 在 20=28.2°、45.4°和 65.2°处出现对应于 Al(OH)₃的衍 射峰,再无其他明显特征峰,这可能是因为,采用 共沉淀法制备的 Ti-Al LDHs-1 粒径较小且以分散的 无定形态存在,所以难以检测到晶格特征峰。

2.3 F⁻去除实验考察结果

2.3.1 Ti-Al LDHs-1 投加量的影响

图 6 为 Ti-Al LDHs-1 投加量对除氟容量和 F⁻去除 率的影响(这个批次实际 F⁻质量浓度为 11.5 mg/L)。 从图 6 可以看出,随着 Ti-Al LDHs-1 投加量 (0.1~0.8 g/L)的增加,其除氟容量逐渐减小,而 F'去除率先增加后减小。除氟容量和 F'去除率曲线 的交点在 Ti-Al LDHs-1 投加量 0.2 g/L。这是因为, 不断增加投加量至 0.8 g/L,由于吸附剂浓度过高, 表面的吸附位点很快达到饱和状态,导致除氟率逐 渐降低并趋于 85%,即饱和点。为了最大限度地降 低成本,平衡除氟容量和 F⁻去除率,后续实验 Ti-Al LDHs-1 的投加量选择 0.2 g/L。

图 6 Ti-Al LDHs-1 投加量对除氟容量和 F⁻去除率的影响 Fig. 6 Effect of Ti-Al LDHs-1 dosage on fluorine removal capacity and F⁻ removal rate

2.3.2 溶液初始 pH 的影响

溶液的 pH 会直接影响金属氧化物复合材料的 表面电荷和离子形态,吸附剂的表面电荷由其 Zeta 电位决定。图 7 为溶液初始 pH 对除氟容量的影响。

图 7 溶液初始 pH 对除氟容量的影响 Fig. 7 Effect of initial solution pH on fluorine removal capacity

从图 7 可以看出, Ti-Al LDHs-1 在水相中颗粒 分散体系的稳定性整体较好, Zeta 电位随 pH 的升 高呈先升高后降低趋势。当溶液初始 pH=2~4 时, Ti-Al LDHs-1 的除氟容量不断提高。这是因为,当 pH<3.18〔氢氟酸(HF)的 p K_a 为 3.18〕时,溶液 中的氟主要以 HF 存在,此时氟的吸附主要依赖于 吸 附 剂 与 HF 的 内 配 位 络 合 作 用 〔 M — (OH)_{*n-x*}(OH₂⁺····F^{*a*-}H)_{*x*}], Ti-Al LDHs-1 的除氟容量较 低;当 pH=4 时,溶液中的氟以 F⁻存在,酸性环境 会促进 Ti-Al LDHs-1 质子化,使其表面的正电荷密 度增加^[39-40],然后通过离子交换(Cl⁻+F⁻ \Rightarrow F⁺+Cl⁻)、 静电吸引(M⁺+F⁻ \Rightarrow MF)和表面络合(M—OH+F⁻ \Rightarrow M —F+OH⁻)吸附 F⁻,其除氟容量显著提高,达到最 高值(47.59 mg/g);随着 pH 的继续提高,Ti-Al LDHs-1 表面正电荷逐渐减少,因此,其除氟容量逐 渐降低。经测定,Ti-Al LDHs-1 的等电点(pH_{pzc}) 为 11.42。当 pH>11.01 后,溶液中高浓度的 OH⁻与 F⁻产生竞争吸附,Ti-Al LDHs-1 表面逐渐去质子化 呈负电荷,同时与 F⁻之间产生强烈的静电排斥作用, 两者的叠加效应导致其除氟容量显著下降。综上所 述,溶液初始 pH = 4 时,Ti-Al LDHs-1 除氟容量最 高,为 47.59 mg/g,F⁻去除率为 86.53%。

2.4 共存阴离子的影响

实际水体中通常存在多种阴离子,它们与F⁻产 生竞争吸附,影响吸附剂的除氟性能^[41]。图 8 为共 存阴离子对 Ti-Al LDHs-1 除氟容量的影响。

从图 8 可以看出,离子浓度在 0~10 mmol/L 时, HCO₃和 CO₃²⁻对 F⁻的吸附影响最大,其次是 SO₄²⁻和 H₂PO₄,而 NO₃和 CI⁻的影响最小,其影响高低排序 为:HCO₃>CO₃²⁻>SO₄²⁻>H₂PO₄>CI⁻>NO₃。这主要归 因于,阴离子的电荷与半径比值(Z/R)不同的影响, HCO₃和 CO₃²⁻具有较高的电荷密度和较小的离子半 径,SO₄²⁻和 H₂PO₄次之,而 CI⁻和 NO₃的 Z/R 值较低。 高浓度(10 mmol/L)时,HCO₃抑制 Ti-Al LDHs-1 对 F⁻吸附的程度最高,导致 Ti-Al LDHs-1 除氟容量 从 45.70 mg/g 下降到 9.30 mg/g,这可能与碳酸氢盐 的酸性缓冲能力有关^[42]。

- 图 8 不同浓度共存阴离子对 Ti-Al LDHs-1 除氟容量的 影响
- Fig. 8 Effect of coexisting anions with different concentrations on fluoride removal capacity of Ti-Al LDHs-1

2.5 动力学分析

图 9 为 Ti-Al LDHs-1 对 F⁻吸附的拟一级和拟二 级动力学拟合曲线。表 1 为其拟合数据。表 2 为粒 子扩散模型方程的拟合结果。

图 9 Ti-Al LDHs-1 对 F⁻吸附动力学曲线(a)、拟一级动 力学拟合曲线(b)、拟二级动力学拟合曲线(c) 和内扩散拟合曲线(d)

Fig. 9 Adsorption of F⁻ kinetic curves (a), pseudo-first-order kinetic fitting curves (b), pseudo-second-order kinetic fitting curves (c) and internal diffusion fitting curves (d) of Ti-Al LDHs-1 on F⁻

从图 9a 可以看出,对 F⁻质量浓度 10 mg/L 的模 拟废水,吸附除氟速率较高的阶段是 10~240 min, 随后缓慢吸附并于 540 min 左右达到平衡状态;而 对 F⁻质量浓度 20 和 30 mg/L 的模拟废水,吸附除氟 速率在 10~120 min 急剧上升, 120~360 min 缓慢吸 附,360 min 后逐渐趋于平衡,平衡除氟容量分别为 50.05 和 52.71 mg/g。这是因为,在吸附开始阶段, 吸附剂 Ti-Al LDHs-1 表面存在大量空心吸附位点, 溶液中的 F⁻含量较高,随着吸附反应进行,吸附位 点不断吸附溶液中的 F⁻而导致吸附位点和溶液中的 F⁻含量逐渐减少,进而导致吸附速率不断降低,最 后达到吸附平衡。

表 1 吸附动力学线性拟合结果 Table 1 Adsorption kinetics linear fitting results

F ⁻ 质量 浓度 /(mg/L)	扎	山一级模型	印	拟二级模型			
	$q_{ m e'} \ ({ m mg/g})$	$k_1/$ min ⁻¹	R^2	$q_{ m e}/$ (mg/g)	$k_2/$ [mg/(g·min)]	R^2	
10	21.84	0.0061	0.9554	47.35	0.0008	0.9969	
20	20.36	0.0071	0.9412	51.18	0.0010	0.9993	
30	19.747	0.0097	0.9406	53.82	0.0012	0.9998	

注: k₁、k₂分别为拟一级、拟二级模型中的速率常数; R²为相关系数,下同。

表 2 粒子扩散模型方程的拟合结果 Table 2 Fitting results of diffusion model in particles

F⁻质量	第1阶段		第2阶	段	第3阶段		
浓度/ (mg/L)	$\frac{k_{\rm dl}/[\rm mg/}{(\rm g\cdot min^{1/2})]}$	R_1^2	$\frac{k_{\rm d2}/[{ m mg}/}{({ m g}\cdot{ m min}^{1/2})]}$	R_2^2	$k_{d3}/[mg/(g \cdot min^{1/2})]$	R_3^2	
10	1.6089	0.9401	1.3435	0.9772	0.2182	0.9722	
20	1.9972	0.9597	1.3509	0.9758	0.1284	0.9473	
30	2.4407	0.9682	1.2482	0.8819	0.1272	0.9999	

注: k_d为扩散速率常数。

如图 9b、c 所示, 拟一级动力曲线数据点相对 分散且偏离拟合直线, 而拟二级动力曲线据点紧密 围绕拟合直线分布, 表明拟二级动力学模型能够更 好地描述实验数据所代表的过程。从表 1 可以看出, 拟二级模型的回归系数(R^2 >0.996)均高于拟一级 模型的回归系数(0.940< R^2 <0.956), 表明化学吸附 主导了 Ti-Al LDHs-1 对 F⁻的吸附。拟二级模型的 k_2 反映了吸附速率, k_2 越小, 吸附速率越高, 较低的 k_2 [0.0008~0.0012 mg/(g·min)]表明 Ti-Al LDHs-1 能快速去除水中的 F⁻。

从图 9d 和表 2 可以看出,吸附阶段分为表面扩散、内部扩散和扩散平衡 3 个阶段。3 条内扩散模型拟合直线未穿过原点,表明吸附速率受到 Ti-Al LDHs-1 粒子表面扩散和内扩散共同主导,其中 $k_{d1}>k_{d2}$,说明 F⁻在 Ti-Al LDHs-1 内表面扩散的速率比外表面要快,其首先移动到 Ti-Al LDHs-1 的外部,其次通过内扩散转移到空心吸附位点中,最终达到吸附平衡。

2.6 热力学分析

图 10 为 Ti-Al LDHs-1 对 F⁻的吸附 Langmuir 等

温线模型;表3为Ti-AlLDHs-1在3种不同温度 (288、298和308K)下吸附F⁻质量浓度5和10 mg/L 模拟废水的热力学参数;表4为Ti-AlLDHs-1吸附 F⁻的吸附等温线参数。

表 3 Ti-Al LDHs-1 吸附 F⁻的热力学参数 Table 3 Thermodynamic parameters of F⁻ adsorption by Ti-Al LDHs

F ⁻ 质量浓度/ (mg/L)	pН	T/K	$\Delta H^{\Theta}/$ (kJ/mol)	$\Delta S^{\Theta}/(kJ/mol)$	$\Delta G^{\Theta}/$ (kJ/mol)
5	4.00	288	11.88	0.077	-10.18
	7.00	298	7.22	0.057	-9.73
	8.50	308	27.50	0.114	-7.73
10	4.00	288	18.57	0.086	-6.13
	7.00	298	9.17	0.051	-5.97
	8.50	308	5.25	0.035	-5.66

注: ΔH^θ代表标准摩尔反应焓变; ΔS^θ代表标准摩尔反应熵 变; ΔG^θ代表标准摩尔反应吉布斯自由能变。

从表 3 可以看出, ΔG^{Θ} 在所有温度下均为负值, 表明 Ti-Al LDHs-1 吸附 F⁻的反应过程是自发进行 的,并且温度越高对吸附反应越有利。这可能是因 为,吸附剂 Ti-Al LDHs-1 表面 F⁻的吸附有助于去 除先前与表面结合的水分子,从而增加熵^[43]。 ΔH^{Θ} 均>0,说明吸附剂 Ti-Al LDHs-1 对 F⁻的吸附属于吸 热反应,这是由于 F⁻与结合水的剥离过程所吸收的 热量超过了 F⁻与吸附剂 Ti-Al LDHs-1 结合所释放的 热量。另外, ΔS^{Θ} 为正值也证实,在吸附过程中 Ti-Al LDHs-1 表面的无序和随机性程度增加^[37]

从图 10 和表 4 可以看出, Langmuir 模型的相 关系数最高 (*R*²>0.99), 说明 Ti-Al LDHs-1 对 F⁻的吸 附过程是单分子层吸附过程^[44]。根据 Langmuir 模型 计算得出,在最佳 pH 条件下, 308 K 时 Ti-Al LDHs-1 吸附 F⁻的理论饱和吸附量为 117.65 mg/g。另外,随着 温度(288、298 和 308 K)的升高,吸附剂 Ti-Al LDHs-1 对 F⁻的吸附能力增强,表明吸附过程具有吸热性质。 不同温度下的吸附强度(*n*)值均>1,说明 Ti-Al LDHs-1 与 F⁻相互作用活跃,有利于 F⁻吸附过程^[45-46]。

图 10 不同 pH下 Ti-Al LDHs-1 对 F⁻的 Langmuir 吸附等 温线模型

Fig. 10 Langmuir adsorption isotherm models of F⁻ by Ti-Al LDHs-1 at different pH

T/K	pH -	Langmuir 模型		Freundlich 模型			Temkin 模型			
		$q_{\rm m}/({\rm mg/g})$	$K_{\rm L}/({\rm L/mg})$	R^2	$K_{\rm F}/[({\rm mg/g})\cdot ({\rm mg/L})^{1/n}]$	1/ <i>n</i>	R^2	$B/(J \cdot g/mg)$	$K_{\rm T}/({\rm L/mg})$	R^2
288	4.00	100.70	0.1111	0.9940	32.445	0.2158	0.9878	195.94	12.29	0.9443
	7.00	86.51	0.0927	0.9919	28.708	0.2038	0.9923	233.38	12.52	0.9479
	8.50	80.32	0.0856	0.9921	24.389	0.2220	0.9836	230.12	6.78	0.9457
298	4.00	108.70	0.1456	0.9954	35.025	0.2220	0.9842	183.87	12.55	0.9484
	7.00	93.28	0.1185	0.9922	30.408	0.2124	0.9867	217.08	11.57	0.9444
	8.50	87.26	1.0014	0.9903	26.717	0.2207	0.9826	223.59	6.88	0.9357
308	4.00	117.65	0.1510	0.9946	37.592	0.2259	0.9948	175.23	12.64	0.9713
	7.00	95.60	0.1185	0.9906	31.815	0.2076	0.9847	224.62	13.59	0.9482
	8.50	88.57	0.1123	0.9913	28.962	0.2102	09876	237.30	11.36	0.9454

表 4 Ti-Al LDHs-1 吸附 F⁻的吸附等温线参数 Table 4 Adsorption isotherm parameters of F⁻ adsorption by Ti-Al LDHs-1

注: K_L 、 K_T 分别代表 Langmuir 和 Temkin 模型的吸附平衡常数; K_F 为 Freundlich 模型的吸附容量常数; B为吸附热相关常数; n为吸附强度。

2.7 吸附再生性能分析

评估吸附剂实际应用前景的重要指标之一是其 可重复利用性。图 11 为 Ti-Al LDHs-1 再生能力测 试结果。可以看出,随着循环使用次数的增加,Ti-Al LDHs-1 的除氟容量逐渐降低。初始除氟容量为 46.21 mg/g,经过第 1 次、第 2 次再生循环后,Ti-Al LDHs-1 的除氟容量分别为 44.18 和 41.23 mg/g,经过 4 次吸附-解吸循环,Ti-Al LDHs-1 的除氟容量仍可达 33.84 mg/g,相当于初始除氟容量(46.21 mg/g)的 73%。表明 Ti-Al LDHs-1 的再生性能良好。

2.8 吸附机理分析

图 12 为 Ti-Al LDHs-1 吸附 F⁻前后的 FTIR 谱 图。可以看出, 3496、3492 cm⁻¹处较宽的吸收峰对 应的是 O—H 伸缩振动,即 Ti-Al LDHs-1 表面的羟 基,表明其具有亲水性; 1686 cm⁻¹处的吸收峰归属 于吸附水的H—O—H弯曲振动^[47-48];1446 和1426 cm⁻¹ 处的吸收峰对应金属氧化物表面羟基(M—OH)的 弯曲振动,吸附后 M—OH 峰强度减弱,可能是由 于表面羟基与氟发生了络合作用^[49]; 606 cm⁻¹处的 吸收峰则代表 M—O、O—M—O 和 M—O—M(M = Al、Ti)的伸缩振动,吸附后该处峰偏移至 623 cm⁻¹ 附近^[39]; 在 3700 cm⁻¹ 处并未出现金属氢氧化物自 由羟基伸缩振动吸收峰,说明 Al³⁺、Ti³⁺没有单独沉 淀形成金属氢氧化物,而是形成更稳定的 Ti-Al 复 合材料。此外,F⁻对金属离子的亲和力强于对—OH 的亲和力,1106 cm⁻¹处的新峰可能对应吸附 F⁻后 M —F 键的弯曲振动^[43,50]。

图 12 Ti-Al LDHs-1 吸附 F⁻前后的 FTIR 谱图

Fig. 12 FTIR spectra of Ti-Al LDHs-1 before and after adsorption of F^-

图 13为 Ti-Al LDHs-1 吸附 F⁻前后的 XPS 谱图。

从图 13 可以看出, Ti-Al LDHs-1 吸附 F⁻前, 主要元素为 O、Ti、C、Al, 而吸附 F⁻后约在 685 eV 处检测到一个新的 F 1s 峰(图 13a), 验证了 Ti-Al LDHs-1 吸附 F⁻的成功。在 O1s 高分辨 XPS 谱图中 (图 13b), 吸附前 O1s 可以分为 3 个峰: 530.08 eV 处 Ti/Al 与氧原子结合(M—O)、531.68 eV 处 Ti/Al 与—OH 结合(M—OH)和 532.36 eV 处的吸附水^[51]; 吸附 F⁻后, 对应 Ti—O 和 Al—O 键的峰分别移动到 结合能 530.23、531.28 eV 处,表明 F⁻与 Ti-Al LDHs 发生了相互作用, 从而影响了键的能量状态^[52]。

在 Al 2p 高分辨 XPS 谱图(图 13c)中,吸附 F⁻后,Al 2p 的峰位稍微向低结合能方向移动了 0.11 eV,这可能与电子密度减少或化学环境变化有关; 在 Ti 2p 高分辨 XPS 谱图(图 13d)中,吸附前 Ti 2p 光谱在结合能 464.41、463.32、458.52 和 457.96 eV 处峰分别对应于 Ti(IV) 2 $p_{1/2}$ 、Ti(III) 2 $p_{1/2}$ 、Ti(IV) 2 $p_{3/2}$ 和 Ti(III) 2 $p_{3/2}$,表明 Ti-Al LDHs-1 中存在两种价态 的 Ti(Ti³⁺和 Ti⁴⁺)^[53]。吸附 F⁻后,Ti 2 $p_{1/2}$ 的两个 峰向高结合能方向移动了 0.07~0.09 eV,而 Ti 2 $p_{3/2}$ 的峰向低结合能方向移动了 0.09~0.19 eV,这可能 是因为,F⁻与 Ti-Al LDHs-1 之间形成配合物,导致 原子的电子密度发生改变^[54]。定量分析进一步表明, Ti—F和 Al—F 键的形成量与 F⁻的吸附量呈正相关。

综上所述,吸附剂表面—OH和F⁻参与了吸附 过程,这与FTIR分析结果一致。

3 结论

以 NaOH 为沉淀剂,采用共沉淀法制备了 Ti-Al LDHs 吸附材料。

(1)当*n*(Ti):*n*(Al)=2:8、介质 pH=6 时制备的 Ti-Al LDHs-1 具有最佳的 F⁻的吸附性能。在 Ti-Al LDHs-1 投加量为 0.1 g/L,在 25 ℃、200 r/min 条件下水浴恒温振荡 12 h, Ti-Al LDHs-1 的除氟容量最高为 63.08 mg/g。

(2) Ti-Al LDHs-1 呈现层状结构且均匀堆积, 属于介孔材料,其比表面积较大(108.34 m²/g),在 初始溶液 pH=4~10 内具有较好的吸附效果。常温下, 初始溶液 pH=4 时, Ti-Al LDHs-1 的投加量 0.2 g/L 时具有平衡除氟容量(47.59 mg/g)和 F⁻去除率 (86.53%)。

(3)离子浓度为 0~10 mmol/L 时,共存阴离子 对 F⁻的吸附影响高低排序为:HCO₃⁻>CO₃⁻>SO₄⁻> H₂PO₄⁻>Cl⁻>NO₃⁻。高浓度 HCO₃⁻(10 mmol/L)抑制 Ti-Al LDHs-1 对 F⁻吸附的程度最高,导致 Ti-Al LDHs-1 除氟容量从 45.70 mg/g 下降到 9.30 mg/g。

(4) Ti-Al LDHs-1 吸附 F⁻的过程受到表面扩散和内扩散共同作用,拟二级动力学模型和 Langmuir

吸附等温线模型更符合吸附过程。经过 4 次吸附-解吸循环, Ti-Al LDHs-1 的除氟容量为 33.84 mg/g, 为初次除氟容量(46.21 mg/g)的 73%,再生性能较 好,具有较好的实际应用潜力。

参考文献:

- CIOSEK Ż, KOT K, KOSIK-BOGACKA D, *et al.* The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue [J]. Biomolecules, 2021, 11(4): 506.
- [2] SU H, KANG W D, LI Y R, et al. Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks[J]. Environmental Pollution, 2021, 286: 117287.
- [3] LINHARES D, CAMARINHO R, GARCIA P V, et al. Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas[J]. Chemosphere, 2018, 205: 540-544.
- [4] ZHOU L F, LIANG W G, MENG Y B, et al. Overlooked fluorine deficiency in children of South and East China may be exacerbated by climate change: Evidence from the national assessment[J]. Journal of Cleaner Production, 2024, 434: 140128.
- [5] LI X Y (李欣阳), ZHU J X (朱家昕), SUN T T (孙婷婷), et al. Preparation and molding of rare earth magnesia composite fluorine adsorbent[J]. Fine Chemicals (精细化工), 2020, 37(1): 147-155.
- [6] SONG J Y (宋江燕), ZHAI T (翟涛), WEN Q (温倩), et al. Defluoridation performance of magnetic Ce-La-MOFs@Fe₃O₄[J]. Materials Reports (材料导报), 2024, 38(4): 42-48.
- [7] LI X Z (李祥志), CAO W G (曹文庚), LI Y (李英), et al. Harmfulness of fluorine-bearing groundwater and its current situation and progress of treatment technology[J]. Geology in China (中国地 质), 2024, 51(2): 457-482.
- [8] FUGE R. Fluorine in the environment: A review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100: 393-406.
- [9] RAKESH K, PRABHAKAR S, YANG W, et al. State-of-the-art of research progress on adsorptive removal of fluoride-contaminated water environments using biochar-based materials: Practical feasibility through reusability and column transport studies[J]. Environmental Research, 2022, 214(Part4): 114043.
- [10] ZHANG N, YANG Y, FAN L J, et al. Coagulation effect of polyaluminum-titanium chloride coagulant and the effect of floc aging in fluoride removal: A mechanism analysis[J]. Separation and Purification Technology, 2023, 325: 124674.
- [11] DUINSLAEGER N, JELENA R. Electrochemical degradation of perand polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes[J]. Water Research, 2022, 213: 118148.
- [12] NUNES-PEREIRA J, LIMAR R, CHOUDHARY G, et al. Highly efficient removal of fluoride from aqueous media through polymer composite membranes[J]. Separation and Purification Technology, 2018, 205: 1-10.
- [13] CHAUDHARY M, RAWAT S, MAITI A. Defluoridation by bare nanoadsorbents, nanocomposites, and nanoadsorbent loaded mixed matrix membranes[J]. Separation & Purification Reviews, 2023, 52(2): 135-153.
- [14] ZHAO W, SU J F, ZHAO T B, et al. Enhanced removal of fluoride from groundwater using biosynthetic hydroxyapatite modified by bimetallic (La-Fe or La-Al) hydroxides[J].Journal of Cleaner Production, 2024, 436: 140649.
- [15] COLLEDGE G T, OUTRAM J G, MILLAR G J. Improved remediation of fluoride contaminated water using titania-alumina sorbents[J]. Journal of Water Process Engineering, 2022, 49: 103091.
- [16] LI L T (李兰廷), WANG Q (王锜), KOU L H (寇丽红), et al. Experimental study on fluoride removal from mine water by hydroxylapatite[J]. Journal of China Coal Society (煤炭学报), 2022, 47(11): 4139-4146.
- [17] GHAREHVERAN M M, ZENOBIO J E, LEE L S. Transformation

and defluorination by nNiFe-activated carbon nanocomposites: PFAS structure and matrix effects[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106901.

- [18] CHEN J B, YANG R J, ZHANG Z Y, et al. Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash[J]. Journal of Hazardous Materials, 2022, 421: 126817.
- [19] MEI L P, WEI J, YANG R R, et al. Zirconium/lanthanum-modified chitosan/polyvinyl alcohol composite adsorbent for rapid removal of fluoride[J]. International Journal of Biological Macromolecules, 2023, 243: 125155.
- [20] YADAV K K, GUPTA N, KUMAR V, et al. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability[J]. Environment International, 2018, 111: 80-108.
- [21] JEYASEELAN A, VISWANATHAN N, KUMAR I A, et al. Design of hydrotalcite and biopolymers entrapped tunable cerium organic cubic hybrid material for superior fluoride adsorption[J]. Colloids and Surfaces B: Biointerfaces, 2023, 224: 113190.
- [22] JIAN S J, CHEN Y H, SHI F S, et al. Template-free synthesis of magnetic La-Mn-Fe tri-metal oxide nanofibers for efficient fluoride remediation: Kinetics, isotherms, thermodynamics and reusability[J]. Polymers, 2022, 14(24): 5417.
- [23] HE Y J, HUANG L, SONG B C, et al. Defluorination by ion exchange of SO₄²⁻ on alumina surface: Adsorption mechanism and kinetics[J]. Chemosphere, 2021, 273: 129678.
- [24] YANG K, LI Y F, TIAN Z L, et al. Removal of fluoride ions from ZnSO₄ electrolyte by amorphous porous Al₂O₃ microfiber clusters: Adsorption performance and mechanism[J]. Hydrometallurgy, 2020, 197: 105455.
- [25] YANG W C, LI C F, TIAN S Q, et al. Influence of synthesis variables of a sol-gel process on the properties of mesoporous alumina and their fluoride adsorption[J]. Materials Chemistry and Physics, 2020, 242: 122499.
- [26] JANA S K, WU P, TATSUMI T. NiAl hydrotalcite as an efficient and environmentally friendly solid catalyst for solvent-free liquid-phase selective oxidation of ethylbenzene to acetophenone with 1 atm of molecular oxygen[J]. Journal of Catalysis, 2006, 240(2): 268-274.
- [27] BELLEZZA F, NOCCHETTI M, POSATI T, et al. Synthesis of colloidal dispersions of NiAl, ZnAl, NiCr, ZnCr, NiFe, and MgFe hydrotalcite-like nanoparticles[J]. Journal of Colloid and Interface Science, 2012, 376(1): 20-27.
- [28] ZHANG Y M, GUAN Z J, LIAO X J, et al. Defluorination of perfluorooctanoic acid and perfluorooctane sulfonic acid by heterogeneous catalytic system of Fe-Al₂O₃/O₃: Synergistic oxidation effects and defluorination mechanism[J]. Science of the Total Environment, 2024, 915: 169675.
- [29] PHAM T T, NGUYEN T D, NGUYEN A S, *et al.* A comparative study of the structure and corrosion resistance of ZnAl hydrotalcite conversion layers at different Al³⁺/Zn²⁺ ratios on electrogalvanized steel[J]. Surface and Coatings Technology, 2022, 429: 127948.
- [30] MANDAL S, MAYADEVI S. Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: Equilibrium and regeneration studies[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 873-878.
- [31] LI K Z, LIU H, LI S M, et al. The determinants of effective defluorination by the LiAl-LDHs[J]. Journal of Environmental Sciences, 2023, 126: 153-162.
- [32] WEI L F, ZIETZSCHMANN F, RIETVELD L C, et al. Fluoride removal by Ca-Al-CO₃ layered double hydroxides at environmentallyrelevant concentrations[J]. Chemosphere, 2020, 243: 125307.
- [33] ZHAO D W, HAN Y Z, LI J H, et al. Water defluorination using granular composite synthesized via hydrothermal treatment of polyaluminum chloride (PAC) sludge[J]. Chemosphere, 2020, 247: 125899.
- [34] MENG X S, ZENG P, LIN S Y, et al. Deep removal of fluoride from tungsten smelting wastewater by combined chemical coagulationelectrocoagulation treatment: From laboratory test to pilot test[J]. Journal of Cleaner Production, 2023, 416: 137914.
- [35] WANG X, XU H, WANG D S. Mechanism of fluoride removal by AlCl₃ and Al₁₃: The role of aluminum speciation[J]. Journal of

Hazardous Materials, 2020, 398: 122987.

- [36] KHALIL A, KHAN A, KAMAL T, et al. Zn/Al layered double hydroxide and carboxymethyl cellulose composite beads as support for the catalytic gold nanoparticles and their applications in the reduction of nitroarenes[J]. International Journal of Biological Macromolecules, 2024, 262(Part2): 129986.
- [37] JIA C M, WANG J B, WANG H J, et al. Performance and mechanism of La-Fe metal-organic framework as a highly efficient adsorbent for fluoride removal from mine water[J]. Journal of Environmental Sciences, 2024, 139: 245-257.
- [38] LIU X J, SHI Y F, KALBASSI M A, et al. Water vapor adsorption isotherm expressions based on capillary condensation[J]. Separation and Purification Technology, 2013, 116: 95-100.
- [39] THATHSARA S, COORAY P, MUDIYANSELAGE T K, et al. A novel Fe-La-Ce tri-metallic composite for the removal of fluoride ions from aqueous media[J]. Journal of Environmental Management, 2018, 207: 387-395.
- [40] PAN B C, XU J S, WU B, et al. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles[J]. Environmental Science & Technology, 2013, 47(16): 9347-9354.
- [41] GHOSH A, MALLOUM A, LGWEGBE C A, et al. New generation adsorbents for the removal of fluoride from water and wastewater: A review[J]. Journal of Molecular Liquids, 2022, 346: 118257.
- [42] CAI J G, ZHANG Y Y, PAN B C, et al. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger[J]. Water Research, 2016,102: 109-116.
- [43] SWAIN S K, DEY R K, ISLAM M, et al. Removal of fluoride from aqueous solution using aluminum-impregnated chitosan biopolymer [J]. Separation Science and Technology, 2009, 44(9): 2096-2116.
- [44] HE Y X, ZHANG L M, XIAO A, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment, 2019, 688: 184-198.
- [45] CHIGONDO M, PAUMO H K, BHAUMIK M, et al. Hydrous CeO₂-Fe₃O₄ decorated polyaniline fibers nanocomposite for effective defluoridation of drinking water[J]. Journal of Colloid and Interface Science, 2018, 532: 500-516.
- [46] GUO Y L, XU X, SHANG Y N, et al. Multiple bimetallic (Al-La or Fe-La) hydroxides embedded in cellulose/graphene hybrids for uptake of fluoride with phosphate surroundings[J]. Journal of Hazardous Materials, 2019, 379: 120634.
- [47] DONG C J, WU A M, GAO Z Y, et al. A novel and efficient metal oxide fluoride absorbent for drinking water safety and sustainable development[J]. Sustainability, 2021, 13(2): 883.
- [48] ZHANG Y, YANG M, DOU X M, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: Role of surface properties[J]. Environmental Science & Technology, 2005, 39(18): 7246-7253.
- [49] DONG H, TANG H, SHI X X, *et al.* Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger[J]. Chemosphere, 2022, 287: 131932.
- [50] ZHANG Y Y, YUE Q, LI W, et al. Fluoride uptake by three lanthanum based nanomaterials: behavior and mechanism dependent upon lanthanum species[J]. Science of the Total Environment, 2019, 683: 609-616.
- [51] SIKHA S, MANDAL B. Ultrasound-assisted facile synthesis of Ce/Fe nanoparticles impregnated activated carbon for fluoride remediation[J]. Separation and Purification Technology, 2022, 289: 120785.
- [52] TANG D D, ZHANG G K. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 2016, 283: 721-729.
- [53] WANG R C, PENG W C, WANG D Q, et al. Three dimensional porous magnesium aluminum hydrotalcite material doped with TiO₂ and Al₂O₃ for fluoride removal[J]. Journal of Physics and Chemistry of Solids, 2024, 190: 111982.
- [54] SANTAMARIA L, KORILI S A, GIL A, et al. Zn-Ti-Al layered double hydroxides synthesized from aluminum saline slag wastes as efficient drug adsorbents[J]. Applied Clay Science, 2020, 187: 105486.