Page 30 - 《精细化工》2021年第9期
P. 30
·1744· 精细化工 FINE CHEMICALS 第 38 卷
成导电 MOFs,弥补了其在电催化领域导电性不足 prospects, progress, policies, and environmental impact of solar
photovoltaic power generation[J]. Renewable and Sustainable Energy
的缺陷。新型材料虽然具备优异的性能,但其在制
Reviews, 2015, 41: 284-297.
备过程中产生的有毒有害物质以及高昂的成本使其 [2] SHAO Z P, ZHOU W, ZHU Z H. Advanced synthesis of materials for
目前只能停留在实验阶段。基于目前电极材料改性 intermediate-temperature solid oxide fuel cells[J]. Progress in
Materials Science, 2012, 57(4): 804-874.
的研究,在提高 MFC 整体性能的基础上改进工艺制 [3] SUN Y (孙怡), YU L L (于利亮), HUANG H B (黄浩斌), et al.
备技术及降低成本有望尽早实现 MFC 在实际工程中 Research trend and practical development of advanced oxidation
的应用。 process on degradation of recalcitrant organic wastewater[J]. CIESC
Journal (化工学报), 2017, 68(5): 1743-1756.
[4] WEN Y R, SCHOUPS G, NICK V. Organic pollution of rivers:
5 结语与展望 Combined threats of urbanization, livestock farming and global
climatechange[J]. Scientific Reports, 2017, 7(1): 43289-43298.
MFC 作为一种能将废水中剩余生物质能转化 [5] YE S S, CHEN Y X, YAO X L, et al. Simultaneous removal of
organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A
为电能的新型污水处理系统,在无需外加能源的条
review[J]. Chemosphere, 2021, 273: 128503.
件下就能实现污水的高效处理,在能源可持续利用 [6] GRANDCLEMENT C, SEYSSIECQ I, PIRAM A, et al. From the
以及废水回收及回用方面有着巨大的应用潜力。然 conventional biological wastewater treatment to hybrid processes, the
evaluation of organic micropollutant removal: A review[J]. Water
而,传统的电极材料面临着电子传递效能低下,催 Research, 2017, 111(15): 297-317.
化能力不足等问题,极大地降低了 MFC 产电及污染 [7] ZANGO Z U, SAMBUDI N S, JUMBRI K, et al. An overview and
evaluation of highly porous adsorbent materials for polycyclic
物去除性能。MFC 整体效能受到阴极和阳极电极材
aromatic hydrocarbons and phenols removal from wastewater[J].
料的共同影响,因此,通过对阴/阳极电极材料进行 Water, 2020, 12(10): 1-40.
改性,有望提高产电量及污染物降解能力。对于可 [8] OLLER I, MIRALLES S, AGURA A, et al. Monitoring and removal
of organic micro-contaminants by combining membrane technologies
规模化应用的空气阴极型 MFC 体系,提高阳极兼容 with advanced oxidation processes[J]. Current Organic Chemistry,
性、电化学活性以及电子传递效能,提高阴极氧催 2018, 22(11): 1103-1119.
化还原活性及催化剂的耐久性对于强化整体 MFC [9] LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical
systems[J]. Applied Microbiology & Biotechnology, 2010, 85(6):
产电及污染物降解性能至关重要。目前,已有利用 1665-1671.
碳基、导电聚合物、金属/金属氧化以及其他功能性 [10] ZHOU M H, CHI M L, LUO J M, et al. An overview of electrode
materials in microbial fuel cells[J]. Journal of Power Sources, 2011,
修饰材料改性电极,全面提高 MFC 电极的导电性、
196(10): 4427-4435.
生物相容性以及氧还原催化活性,强化 MFC 同步产 [11] LIU H, RAMNARAYANAN R, LOGAN B E. Production of
电及污染物降解。但就发展及工业化角度而言还存 electricity during wastewater treatment using a single chamber
microbial fuel cell[J]. Environmental Science & Technology, 2004,
在很多挑战: 38(7): 2281-2285.
(1)优化制备工艺:表面处理、涂覆、不同材 [12] HE Z, MINTEER S D, ANGENENT L T. Electricity generation from
artificial wastewater using an upflow microbial fuel cell[J]. Environmental
料复合的电极改性方法存在修饰电极稳定性较差、
Science & Technology, 2005, 39(14): 5262-5267.
操作步骤繁琐,不适合大规模应用等问题; [13] PASTERNAK G, GREENMAN J, IEROPOULOS I. Comprehensive
(2)开发新型材料:合成高效、环保、廉价的 study on ceramic membranes for low-cost microbial fuel cells[J].
ChemSusChem, 2016, 9(1): 88-96.
新材料是研究人员的努力方向之一,此外,利用天 [14] ZHENG L S (郑琳姗), ZHANG X L (张秀玲), LI C J (李从举),
然资源或废料制造高性能和低成本的改性电极可作 et al. Research progress on microbial fuel cell technology and its
influencing factors[J]. Fine Chemicals (精细化工), 2021, 38(1): 1-8.
为一种可行的办法;
[15] GAJDA I, GREENMAN J, IEROPOULOS I A. Recent advancements
(3)与其他工艺相结合:目前 MFC 耦合其他 in real-world microbial fuel cell applications[J]. Current Opinion in
水处理工艺可以有效改善膜污染,功率密度输出不 Electrochemistry, 2018, 11: 78-83.
[16] ARDAKANI M N, GHOLIKANDI G B. Microbial fuel cells in
足等问题,不同系统之间的协同作用为 MFC 的工程 integration with anaerobic treatment processes and membranebioreactors
化应用提供了新机遇,但在系统集成、过程控制及 for simultaneous efficient wastewater/sludge treatment and energy
recovery[J]. Biomass and Bioenergy, 2020, 141: 105726-105755.
后期维护等方面的问题还有待研究人员解决。
[17] KUMAR S S, KUMAR V, MALYAN S K, et al. Microbial fuel cells
总而言之,未来还需进一步优化工艺,开发经 for bioelectrochemical treatment of different wastewater streams[J].
济可行的新型电极材料,使其适应含各种复杂污染 Fuel, 2019, 254: 115526-115543.
[18] HE H Q, ZHOU Z. Electro-Fenton process for water and wastewater
物的废水。此外,接下来的研究还应考虑在实际工 treatment[J]. Taylor & Francis, 2017, 47(21): 2100-2131.
程中的应用,如电极材料的放大、耐冲击负荷性、耐 [19] JIMENEZ B P, CRESPIERA M S, AMANTIA D, et al. Non-precious
腐蚀性、电极表面耐结垢性以及材料的长期稳定性。 metal doped carbon nanofiber air-cathode for microbial fuel cells
application: Oxygen reduction reaction characterization and long-term
validation[J]. Electrochimica Acta, 2017, 228: 380-388.
参考文献: [20] SRAVAN S, RAUNIJA T, VERMA A, et al. Impregnated thermoset
[1] HOSENUZZAMAN M, RAHIM N A, SELVARAJ J, et al. Global pre-pressurized carbon composite electrodes in microbial fuel cell: