Page 65 - 《精细化工》2022年第8期
P. 65
第 8 期 王瑞瑞: 角蛋白基药物载体材料的发展及应用探讨 ·1565·
of wool-based keratin for tissue engineering[J]. Journal of Science: nanoclusters for enhanced fluorescence emission and multifunctional
Advanced Materials and Devices, 2022, 7: 100398-100410. applications[J]. Acta Biomaterialia, 2020, 101: 436-443.
[5] JIANG Z, YUAN J G, WANG P, et al. Dissolution and regeneration [23] GAIO E, GUERRINI A, BALLESTRI M, et al. Keratin nanoparticles
of wool keratin in the deep eutectic solvent of choline chloride- co-delivering docetaxel and chlorin e6 promote synergic interaction
urea[J]. International Journal of Biological Macromolecules, 2018, between chemo- and photo-dynamic therapies[J]. Journal of
119: 423-430. Photochemistry and Photobiology B: Biology, 2019, 199: 111598-
[6] TAN H B, WANG F Y, DING W, et al. Fabrication and evaluation of 111611.
porous keratin/chitosan (KCS) scaffolds for effectively accelerating [24] MOUSAVI S Z, MANTEGHIAN M, SHOJAOSADATI S A, et al.
wound healing[J]. Biomedical & Environmental Sciences, 2015, Preparation and characterization of magnetic keratin nanocomposite[J].
28(3): 178-189. Materials Chemistry & Physics, 2018, 215: 40-45.
[7] MI X, CHANG Y, XU H L, et al. Valorization of keratin from food [25] LIN G Q, CHEN H Y, ZHOU H J, et al. Avermectin/polyacrylate
wastes via crosslinking using non-toxic oligosaccharide derivatives[J]. nanoparticles: Preparation, characterization, anti-UV and sustained
Food Chemistry, 2019, 300: 125181-125188. release properties[J]. International Journal of Polymeric Materials,
[8] VAKILIAN S, JAMSHIDI A F, AL S S, et al. A keratin-based 2019, 175: 291-299.
biomaterial as a promising dresser for skin wound healing[J]. Wound [26] ALUIGI A, CORBELLINI A, ROMBALDONI F, et al. Morphological
Medicine, 2019, 25(1): 100155-100164. and structural investigation of wool-derived keratin nanofibres
[9] DICKERSON M B, SIERRA A A, BEDFORD N M, et al. Keratin- crosslinked by thermal treatment[J]. International Journal of Biological
based antimicrobial textiles, films, and nanofibers[J]. Journal of Macromolecules, 2013, 57: 30-37.
Materials Chemistry B, 2013, 1: 5505-5514. [27] VARANKO A, SAHA S, CHILKOTI A. Recent trends in protein and
[10] CHEN Y S, LI Y, YANG X X, et al. Glucose-triggered in situ peptide-based biomaterials for advanced drug delivery[J]. Advanced
forming keratin hydrogel for the treatment of diabetic wounds[J]. Drug Delivery Reviews, 2020, 156: 133-187.
Acta Biomaterialia, 2021, 125: 208-218. [28] ROY D C, TOMBLYN S, BURMEISTER D M, et al. Ciprofloxacin-
[11] MARTÍNEZ H A L, SANTIAGO V A L, ALVAREZ P M J. Chemical loaded keratin hydrogels prevent pseudomonas aeruginosa infection
modification of keratin biofibres by graft polymerisation of methyl and support healing in a porcine full thickness excisional wound[J].
methacrylate using redox initiation[J]. Materials Research Innovations, Advances in Wound Care, 2015, 4: 457-468.
2013, 12(4): 184-191. [29] TACHIBANA A, FURUTA Y, TAKESHIMA H, et al. Fabrication of
[12] CHEN S K, HORI N, KAJIYAMA M, et al. Thermal responsive wool keratin sponge scaffolds for long-term cell cultivation[J].
poly(N-isopropylacrylamide) grafted chicken feather keratin prepared Journal of Biotechnology, 2002, 93: 165-170.
via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and [30] SINGARAVELU S, RAMANATHAN G, RAJA M D, et al.
properties[J]. International Journal of Biological Macromolecules, Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge
2020, 153: 364-372. for tissue engineering application[J]. International Journal of Biological
[13] DOU J, WANG Y F, JIN X X, et al. PCL/sulfonated keratin mats for Macromolecules Structure Function & Interactions, 2016, 86:
vascular tissue engineering scaffold with potential of catalytic nitric 810-819.
oxide generation[J]. Materials Science and Engineering C, 2020, 107: [31] GONG X Y, DANG G Y, GUO J, et al. A sodium alginate/feather
110246-110254. keratin composite fiber with skin-core structure as the carrier for
[14] MUKHERJEE A, KABUTARE Y H, GHOSH P. Dual crosslinked sustained drug release[J]. International Journal of Biological
keratin-alginate fibers formed via ionic complexation of amide Macromolecules, 2020, 155: 386-392.
networks with improved toughness for assembling into braids[J]. [32] YE J P, GONG J S, SU C, et al. Fabrication and characterization of
Polymer Testing, 2019, 81: 106286-106295. high molecular keratin based nanofibrous membranes for wound
[15] DAS A, DAS A, BASU A, et al. Newer guar gum ester/chicken healing[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194:
feather keratin interact films for tissue engineering[J]. International 111158-111197.
Journal of Biological Macromolecules, 2021, 180: 339-354. [33] YAO C H, LEE C Y, HUANG C H, et al. Novel bilayer wound
[16] VEERASUBRAMANIAN P K, THANGAVEL P, KANNAN R, dressing based on electrospun gelatin/keratin nanofibrous mats for
et al. An investigation of konjac glucomannan-keratin hydrogel skin wound repair[J]. Materials Science & Engineering C: Materials
scaffold loaded with Avena sativa extracts for diabetic wound for Biological Applications, 2017, 79: 533-571.
healing[J]. Colloids and surfaces B: Biointerfaces, 2018, 165: [34] WAN X Z, LIU S, XIN X X, et al. S-nitrosated keratin composite
92-102. mats with NO release capacity for wound healing[J]. Chemical
[17] NAKATA R, OSUMI Y, MIYAGAWA S, et al. Preparation of keratin Engineering Journal, 2020, 400: 125964-125990.
and chemically modified keratin hydrogels and their evaluation as [35] FERRARIS S, GIACHET F T, MIOLA M, et al. Nanogrooves and
cell substrate with drug releasing ability[J]. Journal of Bioscience keratin nanofibers on titanium surfaces aimed at driving gingival
and Bioengineering, 2015, 120(1): 111-116. fibroblasts alignment and proliferation without increasing bacterial
[18] HAN S, HAM T R, HAQUE S, et al. Alkylation of human hair adhesion[J]. Materials Science and Engineering C, 2017, 76: 1-12.
keratin for tunable hydrogel erosion and drug delivery in tissue [36] DUNCAN W J, GREER P F C, LEE M H, et al. Wool-derived
engineering applications[J]. Acta Biomaterialia, 2015, 23: 1-13. keratin hydrogel enhances implant osseointegration in cancellous
[19] LI Y M, ZHI X L, LIN J T, et al. Preparation and characterization of bone[J]. Journal of Biomedical Materials Research B: Applied
DOX loaded keratin nanoparticles for pH/GSH dual responsive Biomaterials, 2018, 106: 2447-2454.
release[J]. Materials Science & Engineering C: Materials for [37] SAJEEV J, LOVE R. Effect of keratin preparations on cementoblast
Biological Applications, 2017, 73: 189-197. OCCM-30 and fibroblast L929 cells[J]. Biotechnology and
[20] LIU P C, WU Q, LI Y M, et al. DOX-conjugated keratin Bioengineering, 2020, 7: 1105-1113.
nanoparticles for pH-sensitive drug delivery[J]. Colloids and [38] ZHANG Y J, SUN T, JIANG C. Biomacromolecules as carriers in
Surfaces B: Biointerfaces, 2019, 181: 1012-1018. drug delivery and tissue engineering[J]. Acta Pharmaceutica Sinica
[21] ALUIGI A, BALLESTRI M, GUERRINI A, et al. Organic solvent- B, 2018, 8(1): 34-50.
free preparation of keratin nanoparticles as doxorubicin carriers for [39] PARK M, SHIN H K, KIM B S, et al. Effect of discarded keratin-
antitumour activity[J]. Materials Science and Engineering C, 2018, based biocomposite hydrogels on the wound healing process in
vivo[J]. Materials Science & Engineering C, 2015, 55: 88-94.
90: 476-484.
[22] LI Y, CAO Y, WEI L, et al. The assembly of protein-templated gold (下转第 1574 页)