Page 65 - 《精细化工》2022年第8期
P. 65

第 8 期                        王瑞瑞:  角蛋白基药物载体材料的发展及应用探讨                                   ·1565·


                 of wool-based keratin for tissue engineering[J]. Journal of Science:   nanoclusters for enhanced fluorescence emission and multifunctional
                 Advanced Materials and Devices, 2022, 7: 100398-100410.   applications[J]. Acta Biomaterialia, 2020, 101: 436-443.
            [5]   JIANG Z, YUAN J G, WANG P, et al. Dissolution and regeneration   [23]  GAIO E, GUERRINI A, BALLESTRI M, et al. Keratin nanoparticles
                 of wool  keratin in the deep eutectic solvent  of choline chloride-   co-delivering docetaxel and chlorin e6 promote synergic interaction
                 urea[J]. International Journal of Biological Macromolecules, 2018,   between chemo-  and photo-dynamic therapies[J]. Journal of
                 119: 423-430.                                     Photochemistry and Photobiology B: Biology, 2019, 199: 111598-
            [6]   TAN H B, WANG F Y, DING W, et al. Fabrication and evaluation of   111611.
                 porous keratin/chitosan (KCS) scaffolds for effectively accelerating   [24]  MOUSAVI S Z, MANTEGHIAN M, SHOJAOSADATI S A, et al.
                 wound healing[J]. Biomedical  & Environmental Sciences, 2015,   Preparation and characterization of magnetic keratin nanocomposite[J].
                 28(3): 178-189.                                   Materials Chemistry & Physics, 2018, 215: 40-45.
            [7]   MI X, CHANG Y, XU H L, et al. Valorization of keratin from food   [25]  LIN G Q, CHEN  H Y,  ZHOU H J,  et al. Avermectin/polyacrylate
                 wastes via crosslinking using non-toxic oligosaccharide derivatives[J].   nanoparticles: Preparation, characterization, anti-UV and sustained
                 Food Chemistry, 2019, 300: 125181-125188.         release properties[J]. International Journal of Polymeric  Materials,
            [8]   VAKILIAN S, JAMSHIDI A F, AL S S,  et al. A keratin-based   2019, 175: 291-299.
                 biomaterial as a promising dresser for skin wound healing[J]. Wound   [26]  ALUIGI A, CORBELLINI A, ROMBALDONI F, et al. Morphological
                 Medicine, 2019, 25(1): 100155-100164.             and structural investigation  of wool-derived keratin nanofibres
            [9]   DICKERSON M B, SIERRA A A, BEDFORD N M, et al. Keratin-   crosslinked by thermal treatment[J]. International Journal of Biological
                 based antimicrobial textiles, films, and nanofibers[J]. Journal of   Macromolecules, 2013, 57: 30-37.
                 Materials Chemistry B, 2013, 1: 5505-5514.    [27]  VARANKO A, SAHA S, CHILKOTI A. Recent trends in protein and
            [10]  CHEN  Y S, LI Y, YANG  X X, et  al. Glucose-triggered  in situ   peptide-based biomaterials for advanced drug delivery[J]. Advanced
                 forming  keratin  hydrogel for the treatment of diabetic wounds[J].   Drug Delivery Reviews, 2020, 156: 133-187.
                 Acta Biomaterialia, 2021, 125: 208-218.       [28]  ROY D C, TOMBLYN S, BURMEISTER D M, et al. Ciprofloxacin-
            [11]  MARTÍNEZ H A L, SANTIAGO V A L, ALVAREZ P M J. Chemical   loaded keratin hydrogels prevent pseudomonas aeruginosa infection
                 modification of keratin biofibres by graft polymerisation of methyl   and support healing in a porcine full thickness excisional wound[J].
                 methacrylate using redox initiation[J]. Materials Research Innovations,   Advances in Wound Care, 2015, 4: 457-468.
                 2013, 12(4): 184-191.                         [29]  TACHIBANA A, FURUTA Y, TAKESHIMA H, et al. Fabrication of
            [12]  CHEN S K, HORI N, KAJIYAMA  M,  et al. Thermal  responsive   wool keratin sponge scaffolds for long-term cell  cultivation[J].
                 poly(N-isopropylacrylamide) grafted chicken feather keratin prepared   Journal of Biotechnology, 2002, 93: 165-170.
                 via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and   [30]  SINGARAVELU  S, RAMANATHAN G, RAJA M  D,  et al.
                 properties[J]. International Journal of Biological Macromolecules,   Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge
                 2020, 153: 364-372.                               for tissue engineering application[J]. International Journal of Biological
            [13]  DOU J, WANG Y F, JIN X X, et al. PCL/sulfonated keratin mats for   Macromolecules Structure Function & Interactions, 2016, 86:
                 vascular tissue engineering scaffold with potential of catalytic nitric   810-819.
                 oxide generation[J]. Materials Science and Engineering C, 2020, 107:   [31]  GONG X Y, DANG G Y, GUO J, et al. A sodium alginate/feather
                 110246-110254.                                    keratin composite fiber with skin-core structure as the carrier for
            [14]  MUKHERJEE A,  KABUTARE Y  H, GHOSH P. Dual  crosslinked   sustained drug release[J]. International Journal of  Biological
                 keratin-alginate fibers formed  via ionic complexation  of amide   Macromolecules, 2020, 155: 386-392.
                 networks with improved toughness for assembling into braids[J].   [32]  YE J P, GONG J S, SU C, et al. Fabrication and characterization of
                 Polymer Testing, 2019, 81: 106286-106295.         high molecular keratin based nanofibrous membranes for wound
            [15]  DAS A,  DAS A,  BASU A,  et al. Newer guar gum ester/chicken   healing[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194:
                 feather keratin interact films for tissue engineering[J]. International   111158-111197.
                 Journal of Biological Macromolecules, 2021, 180: 339-354.   [33]  YAO C  H, LEE C  Y, HUANG C  H, et al. Novel bilayer wound
            [16]  VEERASUBRAMANIAN P K,  THANGAVEL P,  KANNAN R,   dressing  based on electrospun gelatin/keratin nanofibrous mats for
                 et al.  An investigation of konjac glucomannan-keratin hydrogel   skin wound repair[J]. Materials Science & Engineering C: Materials
                 scaffold loaded with  Avena sativa extracts for  diabetic wound   for Biological Applications, 2017, 79: 533-571.
                 healing[J]. Colloids and surfaces B: Biointerfaces, 2018, 165:   [34]  WAN X Z,  LIU S, XIN X X, et al. S-nitrosated keratin composite
                 92-102.                                           mats with NO release capacity for wound healing[J]. Chemical
            [17]  NAKATA R, OSUMI Y, MIYAGAWA S, et al. Preparation of keratin   Engineering Journal, 2020, 400: 125964-125990.
                 and chemically  modified  keratin hydrogels and their evaluation as   [35]  FERRARIS S, GIACHET F T, MIOLA M, et al. Nanogrooves and
                 cell substrate with drug releasing ability[J]. Journal of Bioscience   keratin nanofibers  on titanium surfaces aimed at driving gingival
                 and Bioengineering, 2015, 120(1): 111-116.        fibroblasts alignment and  proliferation without increasing bacterial
            [18]  HAN S, HAM T  R, HAQUE S,  et al.  Alkylation of human  hair   adhesion[J]. Materials Science and Engineering C, 2017, 76: 1-12.
                 keratin for tunable hydrogel erosion  and drug delivery in tissue   [36]  DUNCAN W J, GREER P F C, LEE M H,  et al. Wool-derived
                 engineering applications[J]. Acta Biomaterialia, 2015, 23: 1-13.   keratin  hydrogel enhances implant osseointegration  in  cancellous
            [19]  LI Y M, ZHI X L, LIN J T, et al. Preparation and characterization of   bone[J]. Journal of Biomedical Materials Research B: Applied
                 DOX loaded keratin nanoparticles for pH/GSH dual responsive   Biomaterials, 2018, 106: 2447-2454.
                 release[J].  Materials Science &  Engineering C: Materials for   [37]  SAJEEV J, LOVE R. Effect of keratin preparations on cementoblast
                 Biological Applications, 2017, 73: 189-197.       OCCM-30 and fibroblast L929 cells[J]. Biotechnology and
            [20]  LIU P C, WU Q, LI Y M,  et al.  DOX-conjugated keratin   Bioengineering, 2020, 7: 1105-1113.
                 nanoparticles for pH-sensitive drug delivery[J]. Colloids and   [38]  ZHANG Y J, SUN T, JIANG C. Biomacromolecules as carriers in
                 Surfaces B: Biointerfaces, 2019, 181: 1012-1018.   drug delivery and tissue engineering[J]. Acta Pharmaceutica Sinica
            [21]  ALUIGI A, BALLESTRI M, GUERRINI A, et al. Organic solvent-   B, 2018, 8(1): 34-50.
                 free preparation of keratin nanoparticles as doxorubicin carriers for   [39]  PARK M, SHIN H K, KIM B S, et al. Effect of discarded keratin-
                 antitumour activity[J]. Materials Science and Engineering C, 2018,   based biocomposite hydrogels on the wound healing  process in
                                                                   vivo[J]. Materials Science & Engineering C, 2015, 55: 88-94.
                 90: 476-484.
            [22]  LI Y, CAO Y, WEI L, et al. The assembly of protein-templated gold          (下转第 1574 页)
   60   61   62   63   64   65   66   67   68   69   70