Page 184 - 《精细化工》2023年第1期
P. 184
·176· 精细化工 FINE CHEMICALS 第 40 卷
参考文献: Chemical Industry and Engineering Progress (化工进展), 2021,
40(6): 3258- 3269.
[1] FAN L P (樊立萍), XUE S (薛松). Improvement in the performance [18] NAEIMI A, EKRAMI-KAKHKI M S, DONYAGARD F. Enhanced
of streptomycin wastewater MFC treatment and electricity generation electrocatalytic performance of Pt nanoparticles immobilized on
by co-substrate addition[J]. Journal of Fuel Chemistry and novel electrospun PVA@Ni/NiO/Cu complex bio-nanofiber/chitosan
Technology (燃料化学学报), 2017, 45(3): 370-377.
[2] DING Y H (丁予涵), HU X (胡翔). Study on the removal of low based on Calotropis procera plant for methanol electrooxidation[J].
International Journal of Hydrogen Energy, 2021, 46(36): 18949-
content ceftazidime in water by microbial fuel cell[J]. Technology of
Water Treatment (水处理技术), 2021, 47(4): 40-44. 18963.
[3] CHEN P, GUO X Y, LI S N, et al. A review of the bioelectrochemical [19] ZHOU C (周闯), LI P W (李普旺), QU Y H (屈云慧), et al.
system as an emerging versatile technology for reduction of antibiotic Research progress of water resistance modification of polyvinyl
resistance genes[J]. Environment International, 2021, 156: 106689. alcohol film[J]. Polymer Bulletin (高分子通报) , 2021, (2): 9-16.
[4] ZHANG S, YANG Y L, LU J, et al. A review of bioelectrochemical [20] GAUTAM L, WARKAR S G, AHMAD S I. A review on carboxylic
systems for antibiotic removal: Efficient antibiotic removal and acid cross-linked polyvinyl alcohol: Properties and applications[J].
dissemination of antibiotic resistance genes[J]. Journal of Water Polymer Engineering and Science, 2022, 62(4): 225-246.
Process Engineering, 2020, 37: 101421. [21] SAMAEI S H A, BAKERI G, LASHKENARI M S. A comparative
[5] QIN Y (秦悦), LIN X Q (林小秋), ZHENG L S (郑琳姗), et al. study on the performance of highly conductive sulfonated poly(ether
Research progress of modified electrodes in microbial fuel cell for ether ketone) PEM modified by halloysite nanotubes, sulfonated
simultaneously enhancing electricity generation and organic polystyrene and phosphotungstic acid[J]. Korean Journal of
pollutants degradation[J]. Fine Chemicals (精细化工), 2021, 38(9): Chemical Engineering, 2022, 39(12): 353-366.
1737-1746. [22] PENG Q, LI Y, QIU M, et al. Enhancing proton conductivity of
[6] ZHANG G Y, LIANG D X, ZHAO Z S, et al. Enhanced performance sulfonated poly(ether ether ketone)-based membranes by
of microbial fuel cell with electron mediators from tetracycline incorporating phosphotungstic-acid-coupled graphene oxide[J].
hydrochloride degradation[J]. Environmental Research, 2022, 206: Industrial & Engineering Chemistry Research, 2021, 60: 4460-4470.
112605. [23] LIU X, ZHANG J F, ZHENG C Y, et al. Oriented proton-conductive
[7] FAN L P, SHI J Y, GAO T. Comparative study on the effects of three nano-sponge facilitated polymer electrolyte membranes[J]. Energy &
membrane modification methods on the performance of microbial Environmental Science, 2020, 13(1): 297-309.
fuel cell[J]. Energies, 2020, 13(6): 1383. [24] XU G X, XUE S J, WEI Z L, et al. Stabilizing phosphotungstic acid
[8] FAN L P, SHI J Y, GAO T. PVDF-modified Nafion membrane for in Nafion membrane via targeted silica fixation for high-temperature
improved performance of MFC[J]. Membranes, 2020, 10(8): 185. fuel cell application[J]. International Journal of Hydrogen Energy,
[9] VATANPOUR V, MEHRABANI S A N, KESKIN B, et al. A 2020, 46(5): 4301-4308.
comprehensive review on the applications of boron nitride [25] SANKARAN A, KUMARAGURU K. Poly(m-phenylene-diamine)-
nanomaterials in membrane fabrication and modification[J]. coated 316L SS: A promising material for bipolar plates in PEMFC
Industrial & Engineering Chemistry Research, 2021, 60(37): environment[J]. Materials and Corrosion, 2019, 70(9): 1646-1656.
13391-13424. [26] KANNAPIRAN N, MUTHUSAMY A, RENGANATHAN B, et al.
[10] FAN L P, GAO T. Applications of nanoscale polypyrrole proton Magnetic, electrical and gas sensing properties of
exchange membrane in microbial fuel cells[J]. International Journal poly(o-phenylenediamine)/MnCoFe 2O 4 nanocomposites[J]. Applied
of Electrochemical Sciences, 2019, 14: 470-480. Physics A, 2020, 126(12): 1-13.
[11] RAJA R R S, RASHMI W, KHALID M, et al. Recent progress in the [27] YU-PISAREVSKAYA E, KLYUEV A L, EFIMOV O N, et al.
development of aromatic polymer-based proton exchange Electrochemical behavior of novel composite based on reduced
membranes for fuel cell applications[J]. Polymers, 2020, 12(5): 1061. graphene oxide, poly-o-phenylenediamine, and silicotungstic аcid[J].
[12] DAI J M, ZHANG Y, WANG G, et al. Structural architectures of Russian Journal of Electrochemistry, 2021, 57(9): 921-929.
polymer proton exchange membranes suitable for high-temperature [28] FAN L P, XUE S. Overview on electricigens for microbial fuel
fuel cell applications[J]. Science China Materials, 2022, 65(2): cell[J]. The Open Biotechnology Journal, 2016, 10(1): 398-406.
273-297. [29] KIM H, KIM M C, KIM S B, et al. Porous SnO 2 nanostructure with a
[13] CHEN J Y, CAO J M, ZHANG R J, et al. Modifications on high specific surface area for improved electrochemical
promoting the proton conductivity of polybenzimidazole-based performance[J]. RSC Advances, 2020, 10(18): 10519-10525.
polymer electrolyte membranes in fuel cells[J]. Membranes, 2021, [30] KIM S W, CHOI S Y, RHEE H W. A novel sPEEK nanocomposite
11(11): 826. membrane with well-controlled sPOSS aggregation in tunable
[14] YESASWI C S, RAMA-SREEKANTH P S. Characterization of nanochannels for fast proton conduction[J]. Nanoscale, 2018, 10(38):
silver-coated teflon fabric-reinforced Nafion ionic polymer metal 18217.
composite with carbon nanotubes and graphene nanoparticles[J]. [31] NIE K H (聂凯会), GENG Z (耿振), WANG Q Y (王其钰), et al.
Iranian Polymer Journal, 2022, 31(4): 485-502. Experimental measurement and analysis methods of cyclic
[15] WANG H F, WEN T Y, SHAO Z C, et al. High proton conductivity voltammetry for lithium batteries[J]. Energy Storage Science and
in Nafion/Ni-MOF composite membranes promoted by ligand Technology (储能科学与技术), 2018, 7(3): 539-553.
exchange under ambient conditions[J]. Inorganic Chemistry, 2021, [32] DAS B, GAUR S S, KATHA A R, et al. Crosslinked poly(vinyl
60(14): 10492-10501. alcohol) membrane as separator for domestic wastewater fed dual
[16] HUANG X Y, WANG J L, WANG L L. Esterification modification chambered microbial fuel cells[J]. International Journal of Hydrogen
and characterization of polyvinyl alcohol anion exchange membrane Energy, 2021, 46(10): 7073-7086.
for direct methanol fuel cell[J]. Journal of Polymer Research, 2022, [33] CHAKRABORTY I, DAS S, DUBEY B K, et al. Novel low cost
29(3): 99. proton exchange membrane made from sulphonated biochar for
[17] LIU C (刘超), DONG A J (董岸杰), ZHANG J H (张建华). application in microbial fuel cells[J]. Materials Chemistry and
Research progress of modified polyvinyl alcohol membrane[J]. Physics, 2020, 239: 122025.