Page 184 - 《精细化工》2023年第1期
P. 184

·176·                             精细化工   FINE CHEMICALS                                 第 40 卷

            参考文献:                                                  Chemical Industry and Engineering  Progress (化工进展), 2021,
                                                                   40(6): 3258- 3269.
            [1]   FAN L P (樊立萍), XUE S (薛松). Improvement in the performance   [18]  NAEIMI A, EKRAMI-KAKHKI M S, DONYAGARD F. Enhanced
                 of streptomycin wastewater MFC treatment and electricity generation   electrocatalytic performance of Pt nanoparticles immobilized on
                 by co-substrate addition[J]. Journal of Fuel Chemistry and   novel electrospun PVA@Ni/NiO/Cu complex bio-nanofiber/chitosan
                 Technology (燃料化学学报), 2017, 45(3): 370-377.
            [2]   DING Y H  (丁予涵), HU X (胡翔). Study on the removal of low   based on Calotropis procera plant for methanol electrooxidation[J].
                                                                   International Journal of Hydrogen Energy, 2021, 46(36): 18949-
                 content ceftazidime in water by microbial fuel cell[J]. Technology of
                 Water Treatment (水处理技术), 2021, 47(4): 40-44.      18963.
            [3]   CHEN P, GUO X Y, LI S N, et al. A review of the bioelectrochemical   [19]  ZHOU C (周闯),  LI P W (李普旺), QU  Y H (屈云慧),  et al.
                 system as an emerging versatile technology for reduction of antibiotic   Research progress of water resistance  modification  of polyvinyl
                 resistance genes[J]. Environment International, 2021, 156: 106689.   alcohol film[J]. Polymer Bulletin (高分子通报) , 2021, (2): 9-16.
            [4]   ZHANG S, YANG Y L, LU J, et al. A review of bioelectrochemical   [20]  GAUTAM L, WARKAR S G, AHMAD S I. A review on carboxylic
                 systems for antibiotic removal: Efficient antibiotic removal and   acid cross-linked polyvinyl alcohol: Properties and applications[J].
                 dissemination of antibiotic resistance genes[J]. Journal of Water   Polymer Engineering and Science, 2022, 62(4): 225-246.
                 Process Engineering, 2020, 37: 101421.        [21]  SAMAEI S H A, BAKERI G, LASHKENARI M S. A comparative
            [5]   QIN Y (秦悦), LIN X  Q (林小秋), ZHENG L  S  (郑琳姗),  et al.   study on the performance of highly conductive sulfonated poly(ether
                 Research progress of modified electrodes in microbial fuel cell for   ether ketone) PEM  modified by halloysite nanotubes, sulfonated
                 simultaneously enhancing electricity generation and organic   polystyrene and  phosphotungstic acid[J]. Korean Journal of
                 pollutants degradation[J]. Fine Chemicals (精细化工), 2021, 38(9):   Chemical Engineering, 2022, 39(12): 353-366.
                 1737-1746.                                    [22]  PENG Q, LI Y, QIU M,  et al.  Enhancing proton conductivity of
            [6]   ZHANG G Y, LIANG D X, ZHAO Z S, et al. Enhanced performance   sulfonated  poly(ether  ether  ketone)-based  membranes  by
                 of microbial fuel cell with electron  mediators from tetracycline   incorporating phosphotungstic-acid-coupled graphene oxide[J].
                 hydrochloride  degradation[J]. Environmental Research, 2022, 206:   Industrial & Engineering Chemistry Research, 2021, 60: 4460-4470.
                 112605.                                       [23]  LIU X, ZHANG J F, ZHENG C Y, et al. Oriented proton-conductive
            [7]   FAN L P, SHI J Y, GAO T. Comparative study on the effects of three   nano-sponge facilitated polymer electrolyte membranes[J]. Energy &
                 membrane  modification methods  on the performance of microbial   Environmental Science, 2020, 13(1): 297-309.
                 fuel cell[J]. Energies, 2020, 13(6): 1383.     [24]  XU G X, XUE S J, WEI Z L, et al. Stabilizing phosphotungstic acid
            [8]   FAN L P, SHI J Y, GAO T. PVDF-modified Nafion membrane for   in Nafion membrane via targeted silica fixation for high-temperature
                 improved performance of MFC[J]. Membranes, 2020, 10(8): 185.   fuel cell application[J]. International  Journal of Hydrogen Energy,
            [9]   VATANPOUR  V,  MEHRABANI S  A N, KESKIN B,  et al. A   2020, 46(5): 4301-4308.
                 comprehensive review on the applications of boron nitride   [25]  SANKARAN A, KUMARAGURU K. Poly(m-phenylene-diamine)-
                 nanomaterials in membrane fabrication and modification[J].   coated 316L SS: A promising material for bipolar plates in PEMFC
                 Industrial & Engineering Chemistry Research, 2021, 60(37):   environment[J]. Materials and Corrosion, 2019, 70(9): 1646-1656.
                 13391-13424.                                  [26]  KANNAPIRAN N, MUTHUSAMY A, RENGANATHAN B, et al.
            [10]  FAN L P, GAO T. Applications  of  nanoscale polypyrrole proton   Magnetic,  electrical  and  gas  sensing  properties  of
                 exchange membrane in microbial fuel cells[J]. International Journal   poly(o-phenylenediamine)/MnCoFe 2O 4 nanocomposites[J]. Applied
                 of Electrochemical Sciences, 2019, 14: 470-480.   Physics A, 2020, 126(12): 1-13.
            [11]  RAJA R R S, RASHMI W, KHALID M, et al. Recent progress in the   [27]  YU-PISAREVSKAYA  E, KLYUEV  A L, EFIMOV O N,  et al.
                 development of aromatic polymer-based proton exchange   Electrochemical behavior of novel composite based  on reduced
                 membranes for fuel cell applications[J]. Polymers, 2020, 12(5): 1061.   graphene oxide, poly-o-phenylenediamine, and silicotungstic аcid[J].
            [12]  DAI J M, ZHANG Y,  WANG G,  et al. Structural architectures of   Russian Journal of Electrochemistry, 2021, 57(9): 921-929.
                 polymer proton exchange membranes  suitable for high-temperature   [28]  FAN L P,  XUE S. Overview on electricigens for microbial fuel
                 fuel cell applications[J]. Science  China Materials, 2022, 65(2):   cell[J]. The Open Biotechnology Journal, 2016, 10(1): 398-406.
                 273-297.                                      [29]  KIM H, KIM M C, KIM S B, et al. Porous SnO 2 nanostructure with a
            [13]  CHEN J Y, CAO J M, ZHANG R J,  et al. Modifications on   high specific surface area for improved electrochemical
                 promoting the proton conductivity of polybenzimidazole-based   performance[J]. RSC Advances, 2020, 10(18): 10519-10525.
                 polymer  electrolyte  membranes in fuel cells[J]. Membranes, 2021,   [30]  KIM S W, CHOI S Y, RHEE H W. A novel sPEEK nanocomposite
                 11(11): 826.                                      membrane with  well-controlled sPOSS aggregation  in tunable
            [14]  YESASWI C S,  RAMA-SREEKANTH P S. Characterization of   nanochannels for fast proton conduction[J]. Nanoscale, 2018, 10(38):
                 silver-coated teflon fabric-reinforced  Nafion ionic polymer  metal   18217.
                 composite with carbon nanotubes and graphene nanoparticles[J].   [31]  NIE K H (聂凯会), GENG Z (耿振), WANG Q Y (王其钰), et al.
                 Iranian Polymer Journal, 2022, 31(4): 485-502.    Experimental  measurement and analysis methods  of cyclic
            [15]  WANG H F, WEN T Y, SHAO Z C, et al. High proton conductivity   voltammetry for lithium batteries[J]. Energy Storage Science and
                 in Nafion/Ni-MOF composite membranes promoted by ligand   Technology (储能科学与技术), 2018, 7(3): 539-553.
                 exchange under ambient conditions[J]. Inorganic Chemistry, 2021,   [32]  DAS B, GAUR S S, KATHA  A R,  et al. Crosslinked  poly(vinyl
                 60(14): 10492-10501.                              alcohol) membrane as separator for  domestic wastewater fed dual
            [16]  HUANG X Y, WANG J L, WANG L L. Esterification modification   chambered microbial fuel cells[J]. International Journal of Hydrogen
                 and characterization of polyvinyl alcohol anion exchange membrane   Energy, 2021, 46(10): 7073-7086.
                 for direct methanol fuel cell[J]. Journal of Polymer Research, 2022,   [33]  CHAKRABORTY  I, DAS S, DUBEY B K,  et al. Novel low cost
                 29(3): 99.                                        proton exchange  membrane  made from sulphonated biochar for
            [17]  LIU C (刘超), DONG A J (董岸杰), ZHANG J H (张建华).     application in microbial fuel cells[J]. Materials Chemistry and
                 Research progress of  modified polyvinyl alcohol membrane[J].   Physics, 2020, 239: 122025.
   179   180   181   182   183   184   185   186   187   188   189