Page 207 - 《精细化工》2023年第4期
P. 207

す 4 ᱌                 ᅦ֟ⶂ喑ぶ: ̶⅌⩟⸧䚥䩮⩢㼐⋟⌨ߍݯᄦ倅ࢸ䨯⻨ၽ⩢↍⮱ᒞ৺                                     g893g


                 㶕 1 ͧ MFS ⌨ߍݯ̻᪴⡛͚ऱ⻺⌨ߍݯᄦ                       ₐ䉌Ხ㶕䲏ᒏ᜽Ԋ៑㛉喑ើݣγ⩢㼐⋟⮱ܳ㼐喑๔
            Li/LNMO ⩢↍⩢ࡃ႓ᕔ㘪⮱ᒞ৺ᄦ℁ȡ̻⸧䚥ㆨぶ                         ๔᣽倅γ Li/LNMO ⩢↍ᓗ⣜ᕔ㘪ȡ
                                       2+
            ڣЃ⌨ߍݯⰥ℁喑MFS ͚ Mg হÿSO 3 ധఏहᬣౕ
                                          㶕 1   ̺ह⌨ߍݯ Li/LNMO ⩢↍⮱ᓗ⣜ᕔ㘪
                                 Table 1    Cyclig performances of LNMO/Li cells with different additives
                     ⌨ߍݯ              ⩢ࢸࡧ䬡/V         ᓗ⣜వ᪝/వ         ⩢≮Ժ⢴/C          ღ䛼Ԋᠮ⢴/%           ᪴⡛
                ͆䚥䙽                    3.5~4.9          300            1               65.90          [21]
                N-⩟ധॎড়                 3.5~5.0          200            0.5             89.50          [22]
                ̮䚥䙽                    3.5~4.9          200            1               88.40          [23]
                ρ⅌㠜ധι㠜ധ㛓               3.0~5.0          300            2               71.00          [14]
                1,3-͆⸧䚥ڲ䚜              3.5~4.9          100            0.5             93.80          [24]
                1,4-̮⸧䚥ڲ䚜              3.5~4.9          100            0.5             97.84
                MFS                   3.50~4.95         300            1               91.67          ᱙᪴

                                                               [10]  QIU Y J, LU D S, GAI Y Y, et al. Adiponitrile (ADN): A stabilizer
            3   㐀䃧                                                 for the LiNi 0.8Co 0.1Mn 0.1O 2(NCM811) electrode/electrolyte interface
                                                                   of  a  graphite/NCM811  Li-ion  cell[J].  ACS  Applied  Materials  &
                                                                   Interfaces, 2022, 14(9): 11398-11407.
                 ᄳ MFS ҉ࣹͧߌ㘪 ⩢㼐⋟⌨ ߍݯᑂڒ                         [11]  YU X Y, WANG Y M, CAI H, et al. Enhancing the stability of high-
                                                                   voltage  lithium-ion  battery  by  using  sulfur-containing  electrolyte
            Li/LNMO ⩢↍͚喑जВౕэ㐌ⷠ䚥⯽⩢㼐⋟͚⽠Ⴧ                             additives[J]. Ionics, 2019, 25(4): 1447-1457.
                                                               [12]  ZHAO W G, ZOU L F, ZHENG J M, et al. Simultaneous stabilization
            LNMO ₐᲮহ䨯䉌Ხ喑ᬻ᭫᣽倅⩢↍⮱⩢ࡃ႓ᕔ㘪ȡ                              of LiNi 0.76Mn 0.14Co 0.10O 2 cathode and lithium metal anode by lithium
            䕇䓴 SEMȠXPSȠFTIR ぶ㶕ᒮࣷⰥڠ⩢ࡃ႓ᕔ㘪ⵁ                           bis(oxalato)borate as additive[J]. ChemSusChem, 2018, 11(13): 2211-
                                                                   2220.
            ⾣䃮ᬻ喑MFS хٵλ⩢㼐⋟⏣ݯ⅔ࡃ喑ౕ⩢Ხ㶕䲏                           [13]  LEE  S  H,  HWANG  J  Y,  MING  J,  et al.  Toward  the  sustainable
                                                                   lithium metal batteries with a new electrolyte solvation chemistry[J].
            ᒏ᜽⩢㼐⋟⩹䲏㛉喑ज⽠Ⴧ⩢Ხ/⩢㼐⋟⩹䲏喑Ԋ៑                                Advanced Energy Materials, 2020,10(20): 2000567.
            ⩢Ხᱽ᫆喑ើݣ⩢㼐⋟⮱ܳ㼐ȡ⌨ߍ 0.3%  MFS ⮱                       [14]  BOLLOJU  S,  CHIOU  C  Y,  VIKRAMADITYA  T,  et al.
                                                                   Pentafluorophenyl  diphenylphosphine  as  a  dual-functional  electrolyte
            Li/LNMO ⩢↍ౕ 1 C Ժ⢴̸㏼ 300 ⁎ᓗ⣜ऻ喑ᩫ⩢                       additive  for  LiNi 0.5Mn 1.5O 4  cathodes  in  high-voltage  lithium-ion
                                                                   batteries[J]. Electrochimica Acta, 2019, 299: 663-671.
            ℁ღ䛼ϻ 135.12 mA·h/g 䭺ѻ㜠 123.86 mA·h/g喑ღ䛼Ԋ           [15]  CHE Y X, LIN X Y, XING L D, et al. Protective electrode/electrolyte
            ᠮ⢴倅䓫 91.67%喑̻ധ⵭⩢㼐⋟Ⱕ℁᣽倅 33.32%ȡ                         interphases for high energy lithium-ion batteries with p-toluenesulfonyl
                                                                   fluoride electrolyte additive[J]. Journal of Energy Chemistry, 2021,
                                                                   52: 361-371.
            ࣯㔰᪴⡛喟                                              [16]  HUANG W N, XING L D, WANG Y T, et al. 4-(Trifluoromethyl)-
                                                                   benzonitrile: A novel electrolyte additive for lithium nickel manganese
            [1]   LI S, LUO Z, LI L, et al. Recent progress on electrolyte additives for   oxide  cathode  of  high  voltage  lithium  ion  battery[J].  Journal  of
                 stable  lithium  metal  anode[J].  Energy  Storage  Materials,  2020,  32:   Power Sources, 2014, 267: 560-565.
                 306-319.                                      [17]  ZUO X X, DENG X, MA X D, et al. 3-(Phenylsulfonyl)propionitrile  as  a
            [2]   XU  J  K  (ᒽ㐔ᐭ),  LIU  Y  S  (ٰ݅⩌),  SHAN  Z  Q  (ࢂᔍᑧ).  A   higher  voltage  bifunctional  electrolyte  additive  to  improve  the
                 dual-function  electrolyte  additive  for  wettability  improvement  and   performance of lithium-ion batteries[J]. Journal of Materials Chemistry
                 dendrites  suppression  in  lithium  metal  batteries[J].  Fine  Chemicals   A, 2018, 6(30): 14725-14733.
                 (㇫㏳ࡃጒ), 2021, 38(10): 2103-2110, 2124.        [18]  CHEN  H  Y,  CHEN  J  W,  ZHANG  W  G,  et al.  Enhanced  cycling
            [3]   LIU  Y  C,  HONG  L,  JIANG  R,  et al.  Multifunctional  electrolyte   stability of high-voltage lithium metal batteries with a trifunctional
                 additive  stabilizes  electrode-electrolyte  interface  layers  for  high-   electrolyte additive[J]. Journal of Materials Chemistry A, 2020, 8(42):
                 voltage lithium metal batteries[J]. ACS Applied Materials & Interfaces,   22054-22064.
                 2021,13(48): 57430-57441.                     [19]  KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a
            [4]   FAN  X  L,  WANG  C  S.  High-voltage  liquid  electrolytes  for  Li   stable  anode  for  lithium-sulfur  battery[J].  Advanced  Functional
                 batteries:  Progress  and  perspectives[J].  Chemical  Society  Reviews,   Materials, 2019, 29(13): 1808756.
                 2021, 50(18): 10486-10566.                    [20]  YANG  T  X,  ZENG  H  N,  WANG  W  L,  et al.  Lithium
            [5]   ZHANG J Y (ᑍଶ⢶), LEI Y (䰤㠞), LI Y L (ᱻ䷉ݖ). Effects of   bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte
                 fluorinated  benzonitrile  additives  on  performance  of  lithium  ion   additive  for  5  V  LiNi 0.5Mn 1.5O 4-based  lithium-ion  batteries  with
                 batteries[J]. Fine Chemicals (㇫㏳ࡃጒ), 2022, 39(4): 783-789.   enhanced  electrochemical  performance[J].  Journal  of  Materials
            [6]   LI F, HE J, LIU J D, et al. Gradient solid electrolyte interphase and   Chemistry A, 2019, 7(14): 8292-8301.
                 lithium-ion  solvation  regulated  by  bisfluoroacetamide  for  stable   [21]  TAN C L, YANG J, PAN Q C, et al. Optimizing interphase structure
                 lithium metal batteries[J]. Angewandte Chemie International Edition,   to enhance electrochemical performance of high voltage LiNi 0.5Mn 1.5O 4
                 2021, 60(12): 6600-6608.                          cathode  via  anhydride  additives[J].  Chemical  Engineering  Journal,
            [7]   HEKMATFAR M, HASA I, EGHBAL R, et al. Effect of electrolyte   2021, 410: 128422.
                 additives  on  the  LiNi 0.5Mn 0.3Co 0.2O 2  surface  film  formation  with   [22]  CHEN J  H,  GAO  Y,  LI C H,  et al. Interface  modification  in high
                 lithium  and  graphite  negative  electrodes[J].  Advanced  Materials   voltage  spinel  lithium-ion  battery  by  using  N-methylpyrrole  as  an
                 Interfaces, 2020, 7(1): 1901500.                  electrolyte additive[J]. Electrochimica Acta, 2015, 178: 127-133.
            [8]   LI S Y, LI L X, LIU J L, et al. Using a lithium difluoro(sulfato)borate   [23]  TAN C L, WANG N, PAN Q C, et al. Enhancing the electrochemical
                 additive to improve electrochemical performance of electrolyte based   performance of a high-voltage LiNi 0.5Mn 1.5O 4 cathode in a carbonate-
                 on  lithium  bis(oxalate)borate  for  LiNi 0.5Mn 1.5O 4/Li  cells[J].   based  electrolyte  with  a  novel  and  low-cost  functional  additive[J].
                 Electrochimica Acta, 2015, 155: 321-326.          Chemistry-A European Journal, 2020, 26(53): 12233-12241.
            [9]   XU Y, LIU J L, ZHOU L, et al. FEC as the additive of 5 V electrolyte   [24]   XU  D  W  (ᒽ͉ь).  Study  on  reaction  and  mechanism  of  cyclic
                 and its electrochemical performance for LiNi 0.5Mn 1.5O 4[J]. Journal of   sulfonate  ester  as  electrolyte  additives  in  lithium-ion  battery[D].
                 Electroanalytical Chemistry, 2017, 791: 109-116.   Guangzhou: South China University of Technology (ࡻࢄ⤳ጒ๔႓), 2020.
   202   203   204   205   206   207   208   209   210   211   212