Page 207 - 《精细化工》2023年第4期
P. 207
す 4 ᅦ֟ⶂ喑ぶ: ̶⅌⩟⸧䚥䩮⩢㼐⋟⌨ߍݯᄦ倅ࢸ䨯⻨ၽ⩢⮱ᒞ৺ g893g
㶕 1 ͧ MFS ⌨ߍݯ̻᪴⡛͚ऱ⌨ߍݯᄦ ₐ䉌Ხ㶕䲏ᒏԊ៑㛉喑ើݣγ⩢㼐⋟⮱ܳ㼐喑๔
Li/LNMO ⩢⩢ࡃ႓ᕔ㘪⮱ᒞ৺ᄦ℁ȡ̻⸧䚥ㆨぶ ๔倅γ Li/LNMO ⩢ᓗ⣜ᕔ㘪ȡ
2+
ڣЃ⌨ߍݯⰥ℁喑MFS ͚ Mg হÿSO 3 ധఏहᬣౕ
㶕 1 ̺ह⌨ߍݯ Li/LNMO ⩢⮱ᓗ⣜ᕔ㘪
Table 1 Cyclig performances of LNMO/Li cells with different additives
⌨ߍݯ ⩢ࢸࡧ䬡/V ᓗ⣜వ/వ ⩢≮Ժ⢴/C ღ䛼Ԋᠮ⢴/% ᪴⡛
͆䚥䙽 3.5~4.9 300 1 65.90 [21]
N-⩟ധॎড় 3.5~5.0 200 0.5 89.50 [22]
̮䚥䙽 3.5~4.9 200 1 88.40 [23]
ρ⅌㠜ധι㠜ധ㛓 3.0~5.0 300 2 71.00 [14]
1,3-͆⸧䚥ڲ䚜 3.5~4.9 100 0.5 93.80 [24]
1,4-̮⸧䚥ڲ䚜 3.5~4.9 100 0.5 97.84
MFS 3.50~4.95 300 1 91.67 ᱙᪴
[10] QIU Y J, LU D S, GAI Y Y, et al. Adiponitrile (ADN): A stabilizer
3 㐀䃧 for the LiNi 0.8Co 0.1Mn 0.1O 2(NCM811) electrode/electrolyte interface
of a graphite/NCM811 Li-ion cell[J]. ACS Applied Materials &
Interfaces, 2022, 14(9): 11398-11407.
ᄳ MFS ҉ࣹͧߌ㘪 ⩢㼐⋟⌨ ߍݯᑂڒ [11] YU X Y, WANG Y M, CAI H, et al. Enhancing the stability of high-
voltage lithium-ion battery by using sulfur-containing electrolyte
Li/LNMO ⩢͚喑जВౕэ㐌ⷠ䚥⯽⩢㼐⋟͚⽠Ⴧ additives[J]. Ionics, 2019, 25(4): 1447-1457.
[12] ZHAO W G, ZOU L F, ZHENG J M, et al. Simultaneous stabilization
LNMO ₐᲮহ䨯䉌Ხ喑ᬻ᭫倅⩢⮱⩢ࡃ႓ᕔ㘪ȡ of LiNi 0.76Mn 0.14Co 0.10O 2 cathode and lithium metal anode by lithium
䕇䓴 SEMȠXPSȠFTIR ぶ㶕ᒮࣷⰥڠ⩢ࡃ႓ᕔ㘪ⵁ bis(oxalato)borate as additive[J]. ChemSusChem, 2018, 11(13): 2211-
2220.
⾣䃮ᬻ喑MFS хٵλ⩢㼐⋟⏣ݯ⅔ࡃ喑ౕ⩢Ხ㶕䲏 [13] LEE S H, HWANG J Y, MING J, et al. Toward the sustainable
lithium metal batteries with a new electrolyte solvation chemistry[J].
ᒏ⩢㼐⋟⩹䲏㛉喑ज⽠Ⴧ⩢Ხ/⩢㼐⋟⩹䲏喑Ԋ៑ Advanced Energy Materials, 2020,10(20): 2000567.
⩢Ხᱽ᫆喑ើݣ⩢㼐⋟⮱ܳ㼐ȡ⌨ߍ 0.3% MFS ⮱ [14] BOLLOJU S, CHIOU C Y, VIKRAMADITYA T, et al.
Pentafluorophenyl diphenylphosphine as a dual-functional electrolyte
Li/LNMO ⩢ౕ 1 C Ժ⢴̸㏼ 300 ⁎ᓗ⣜ऻ喑ᩫ⩢ additive for LiNi 0.5Mn 1.5O 4 cathodes in high-voltage lithium-ion
batteries[J]. Electrochimica Acta, 2019, 299: 663-671.
℁ღ䛼ϻ 135.12 mA·h/g 䭺ѻ㜠 123.86 mA·h/g喑ღ䛼Ԋ [15] CHE Y X, LIN X Y, XING L D, et al. Protective electrode/electrolyte
ᠮ⢴倅䓫 91.67%喑̻ധ⩢㼐⋟Ⱕ℁倅 33.32%ȡ interphases for high energy lithium-ion batteries with p-toluenesulfonyl
fluoride electrolyte additive[J]. Journal of Energy Chemistry, 2021,
52: 361-371.
࣯㔰᪴⡛喟 [16] HUANG W N, XING L D, WANG Y T, et al. 4-(Trifluoromethyl)-
benzonitrile: A novel electrolyte additive for lithium nickel manganese
[1] LI S, LUO Z, LI L, et al. Recent progress on electrolyte additives for oxide cathode of high voltage lithium ion battery[J]. Journal of
stable lithium metal anode[J]. Energy Storage Materials, 2020, 32: Power Sources, 2014, 267: 560-565.
306-319. [17] ZUO X X, DENG X, MA X D, et al. 3-(Phenylsulfonyl)propionitrile as a
[2] XU J K (ᒽ㐔ᐭ), LIU Y S (ٰ݅⩌), SHAN Z Q (ࢂᔍᑧ). A higher voltage bifunctional electrolyte additive to improve the
dual-function electrolyte additive for wettability improvement and performance of lithium-ion batteries[J]. Journal of Materials Chemistry
dendrites suppression in lithium metal batteries[J]. Fine Chemicals A, 2018, 6(30): 14725-14733.
(㏳ࡃጒ), 2021, 38(10): 2103-2110, 2124. [18] CHEN H Y, CHEN J W, ZHANG W G, et al. Enhanced cycling
[3] LIU Y C, HONG L, JIANG R, et al. Multifunctional electrolyte stability of high-voltage lithium metal batteries with a trifunctional
additive stabilizes electrode-electrolyte interface layers for high- electrolyte additive[J]. Journal of Materials Chemistry A, 2020, 8(42):
voltage lithium metal batteries[J]. ACS Applied Materials & Interfaces, 22054-22064.
2021,13(48): 57430-57441. [19] KONG L L, WANG L, NI Z C, et al. Lithium-magnesium alloy as a
[4] FAN X L, WANG C S. High-voltage liquid electrolytes for Li stable anode for lithium-sulfur battery[J]. Advanced Functional
batteries: Progress and perspectives[J]. Chemical Society Reviews, Materials, 2019, 29(13): 1808756.
2021, 50(18): 10486-10566. [20] YANG T X, ZENG H N, WANG W L, et al. Lithium
[5] ZHANG J Y (ᑍଶ⢶), LEI Y (䰤㠞), LI Y L (ᱻ䷉ݖ). Effects of bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte
fluorinated benzonitrile additives on performance of lithium ion additive for 5 V LiNi 0.5Mn 1.5O 4-based lithium-ion batteries with
batteries[J]. Fine Chemicals (㏳ࡃጒ), 2022, 39(4): 783-789. enhanced electrochemical performance[J]. Journal of Materials
[6] LI F, HE J, LIU J D, et al. Gradient solid electrolyte interphase and Chemistry A, 2019, 7(14): 8292-8301.
lithium-ion solvation regulated by bisfluoroacetamide for stable [21] TAN C L, YANG J, PAN Q C, et al. Optimizing interphase structure
lithium metal batteries[J]. Angewandte Chemie International Edition, to enhance electrochemical performance of high voltage LiNi 0.5Mn 1.5O 4
2021, 60(12): 6600-6608. cathode via anhydride additives[J]. Chemical Engineering Journal,
[7] HEKMATFAR M, HASA I, EGHBAL R, et al. Effect of electrolyte 2021, 410: 128422.
additives on the LiNi 0.5Mn 0.3Co 0.2O 2 surface film formation with [22] CHEN J H, GAO Y, LI C H, et al. Interface modification in high
lithium and graphite negative electrodes[J]. Advanced Materials voltage spinel lithium-ion battery by using N-methylpyrrole as an
Interfaces, 2020, 7(1): 1901500. electrolyte additive[J]. Electrochimica Acta, 2015, 178: 127-133.
[8] LI S Y, LI L X, LIU J L, et al. Using a lithium difluoro(sulfato)borate [23] TAN C L, WANG N, PAN Q C, et al. Enhancing the electrochemical
additive to improve electrochemical performance of electrolyte based performance of a high-voltage LiNi 0.5Mn 1.5O 4 cathode in a carbonate-
on lithium bis(oxalate)borate for LiNi 0.5Mn 1.5O 4/Li cells[J]. based electrolyte with a novel and low-cost functional additive[J].
Electrochimica Acta, 2015, 155: 321-326. Chemistry-A European Journal, 2020, 26(53): 12233-12241.
[9] XU Y, LIU J L, ZHOU L, et al. FEC as the additive of 5 V electrolyte [24] XU D W (ᒽ͉ь). Study on reaction and mechanism of cyclic
and its electrochemical performance for LiNi 0.5Mn 1.5O 4[J]. Journal of sulfonate ester as electrolyte additives in lithium-ion battery[D].
Electroanalytical Chemistry, 2017, 791: 109-116. Guangzhou: South China University of Technology (ࡻࢄ⤳ጒ๔႓), 2020.