MES捕获CO2及高效催化转化研究进展
DOI:
CSTR:
作者:
作者单位:

武汉科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Advances in microbial electrosynthesis for CO2 capture and efficient catalytic conversion
Author:
Affiliation:

1.Wuhan University of Science &2.amp;3.Technology;4.Wuhan University of Science & Technology;5.University Wuhan of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微生物电合成(Microbial electrosynthesis,MES)为二氧化碳还原为乙酸盐和其他多碳物提供了一条可持续的生化转化途径,利用电能驱动微生物固定CO2具有原料容易、操作条件温和、不含有毒物质、环境可持续性等特点,为全球碳中和、碳减排带来了新机遇。在研究人员对提高产率、转化效率、碳链延长方面的深入研究下,基于对电极材料的选择、修饰,菌群的驯化,操作条件的限制,乙酸最高产率达1330g/(m2?d),催化转化C1废气并耦合二次发酵生产了C2-C4产物以及具有更长碳链的中链脂肪酸。在概述阴极电活性微生物吸收胞外电子的分子机制捕获和转化CO2的基础上,综述了合成有机酸的代谢原理、二维和三维等电极材料使用现状以及提高产物产率、产物及碳链延长的方法,并对未来MES的研究方向做出了展望。

    Abstract:

    Microbial electrosynthesis (MES) provides a sustainable biochemical transformation path for the reduction of carbon dioxide to acetate and other multi carbon substances. Using electric energy to drive microorganisms to fix CO2 has the characteristics of easy raw materials, mild operating conditions, no toxic substances and environmental sustainability, which brings new opportunities for global carbon neutralization and carbon emission reduction. Under the in-depth study of researchers on improving yield, conversion efficiency and carbon chain extension, based on the selection and modification of electrode materials, the domestication of flora and the limitation of operating conditions, the maximum yield of acetic acid was 1330g / (m2 ? d). The C2-C4 products and medium chain fatty acids with longer carbon chain were produced by catalytic conversion of C1 waste gas and coupled secondary fermentation. On the basis of summarizing the molecular mechanism of cathodic electroactive microorganisms absorbing extracellular electrons, capturing and transforming CO2, the metabolic principle of synthetic organic acids, the application status of two-dimensional and three-dimensional electrode materials, and the methods to improve product yield, product and carbon chain extension are reviewed, and the research direction of MES in the future is prospected.

    参考文献
    相似文献
    引证文献
引用本文

王黎,张爱心,张嘉方,胡宁,白俞何,陆帅. MES捕获CO2及高效催化转化研究进展[J].精细化工,2022,39(7):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-14
  • 最后修改日期:2022-03-14
  • 录用日期:2022-03-21
  • 在线发布日期: 2022-06-10
  • 出版日期:
文章二维码