表面活性剂改性Fe3O4对As(Ⅴ)和As(Ⅲ)的吸附(急)
作者:
作者单位:

1.新疆农业大学 资源与环境学院;2.新疆农业大学 数理学院;3.新疆农业大学 水利与土木工程学院

中图分类号:

TQ630 ;X501

基金项目:

新疆维吾尔自治区自然科学基金(2022D01B20);新疆水利工程安全与水灾害防治重点实验室2022年开放课题(ZDSYS-JS-2022-13);国家自然科学基金(41761097、42007161、42067035);第67批中国博士后科学基金会面上项目(2020M673643XB)


Adsorption of As(Ⅴ) and As(Ⅲ) by surfactant-modified Fe3O4
Author:
Affiliation:

1.College of Resource and Environment,Xinjiang Agricultural University;2.College of Mathematics and Physics,Xinjiang Agricultural University;3.College of Water Conservancy and Civil Engineering,Xinjiang Agricultural University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用三种构型的阳离子表面活性剂〔十六烷基三甲基溴化铵(CTAB)、二亚甲基-1,2-二(N-十二烷基-N,N-二甲基溴化铵) (Gemini 12-2-12)和溴化十烃季胺(Bola)〕分别修饰Fe3O4纳米颗粒,制得Fe3O4@CTAB、Fe3O4@Gemini和Fe3O4@Bola纳米颗粒(三者统称Fe3O4@surfactants)。将其用于水中As(Ⅴ)和As(Ⅲ)的处理。通过XRD、TEM、FTIR和磁性测量系统(VSM)对其形貌进行了表征,同时对As(Ⅴ)和As(Ⅲ)的吸附进行吸附动力学、吸附等温模型拟合和吸附行为研究,并考察了Fe3O4@surfactants的吸附-解吸再生循环性能及结构稳定性。结果表明,Fe3O4@surfactants对As(Ⅴ)的吸附效果均高于As(Ⅲ),吸附符合准二级动力学模型和Langmuir吸附等温模型,且Gemini 12-2-12表面活性剂所修饰的Fe3O4纳米颗粒的吸附容量最大。该吸附过程的吸附驱动力主要来自阳离子表面活性剂分子在固液界面的排列行为、表面活性剂头基与阴离子的静电作用以及尾链与As(Ⅴ)、As(Ⅲ)之间的配位作用。以去除效率较高的As(Ⅴ)进行循环实验,经过5次吸附-解吸循环实验后,Fe3O4@surfactants对As(Ⅴ)的吸附率依然维持在85%左右,且纳米颗粒回收率均在90%以上。

    Abstract:

    By using three configurations of cationic surfactants〔cetyltrimethylammonium bromide(CTAB), Dimethylene-1,2-bis(N-dodecyl-N,N-dimethylammonium bromide)(Gemini 12-2-12) and decamethonium bromide(Bola)〕modified Fe3O4 nanoparticles to produce Fe3O4@CTAB, Fe3O4@Gemini and Fe3O4@Bola (all three are collectively called Fe3O4@surfactants). Respectively, which were used for the treatment of As(Ⅴ) and As(Ⅲ) in water. The morphology was characterized by XRD, TEM, FTIR and magnetic measurement system(VSM), while the adsorption kinetics, adsorption isotherm model fitting and adsorption behavior of As(Ⅴ) and As(Ⅲ) were studied, and the adsorption-desorption regeneration cycle performance and structural stability of Fe3O4@surfactants were investigated. The results showed that the adsorption effect of Fe3O4@surfactants on As(Ⅴ) was higher than that of As(Ⅲ), the adsorption was consistent with the quasi-secondary kinetic model and the Langmuir adsorption isotherm model, and the adsorption capacity of Fe3O4 nanoparticles modified by Gemini 12-2-12 surfactant was the largest. The adsorption driving force of this adsorption process mainly comes from the arrangement behavior of cationic surfactant molecules at the solid-liquid interface, the electrostatic interaction between the surfactant head group and the anion, and the coordination between the tail chain and As(Ⅴ) and As(Ⅲ). The cycle experiment was conducted with As(Ⅴ), which has a high removal efficiency. After five adsorption-desorption cycles, the adsorption rate of As(Ⅴ) by Fe3O4@surfactants was still maintained at about 85%, and the recovery of nanoparticles were all above 90%.

    参考文献
    [1]Barakat M A, Ismat-Shah S. Utilization of anion exchange resin Spectra /Gel for separation of arsenic from water[J]. Arabian Journal of Chemistry, 2013, 6(3): 307-311.
    [2]CULLEN W R, REIMER K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(4): 713-764.
    [3]LI Z H, BEACHNER R, MCMANAMA Z, et al. Sorption of arsenic by surfactant-modified zeolite and kaolinite[J]. Microporous and Mesoporous Materials, 2007, 105(3): 291-297.
    [4]RAHMAN M M, NG J C, NAIDU R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans[J]. Environmental Geochemistry and Health, 2009, 31(1): 189-200.
    [5]MIN L L(闵伶俐), ZHENG Y M(郑煜铭), ZHONG L B(钟鹭斌), et al. Preparation of a novel iron oxide / chitosan composite nanofiber and its adsorption of arsenate from water[J]. Acta Scientiae Circumstantiae(环境科学学报), 2014, 34(12): 2979-2984.
    [6]ALVARADO S, GUEDEZ M, LUE-MERU M P, et al. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor)[J]. Bioresource Technology, 2008, 99(17): 8436-8440.
    [7]DOMINGUEZ R A, CHAVAN K, GARCIA V, et al. Arsenic removal from natural waters by adsorption or ion exchange: an environmental sustainability assessment[J]. Industrial and Engineering Chemistry Research, 2014, 53(49): 18920-18927.
    [8]HE Y G, LIU J T, HAN G, et al. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal[J]. Journal of Membrane Science, 2018, 555(3): 299-306.
    [9]YU X, TONG S, GE M, et al. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal[J]. Journal of Materials, Chemistry A, 2013, 1(3): 959-965.
    [10]LUO X B, WANG C C, LUO S, et al. Adsorption of as (Ⅲ) and as (Ⅴ) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites[J]. Chemical Engineering Journal, 2012, 187: 45-52.
    [11]KYRIAKOPOULOS G, XIARCHOS I, DOULIA D. Treatment of contaminated water with pesticides via adsorption[J]. International Journal of Environmental Techology and Management, 2007, 6(5): 515-524.
    [12]GECOL H, ERGICAN E, FUCHS A. Molecular level separation of arsenic(Ⅴ) from water using cationic surfactant micelles and ultrafiltration membrane[J]. Journal of Membrane Science, 2004, 241(1): 105-119.
    [13]MONDAL P, BALOMAJUMDER C, MOHANTY B. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe(Ⅲ) impregnated activated carbon: effects of shaking time, pH and temperature[J]. Journal of Hazardous Materials, 2007, 144(1-2): 420-426.
    [14]KYRIAKOPOULOS G, DOULIA D. Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review[J]. Separation and Purification Reviews, 2006, 35(3): 97-191.
    [15]CAI P, ZHENG H, WANG C, et al. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxides[J]. Journal of Hazardous Materials, 2012, 213: 100-108.
    [16]TRIPATHY S S, RAICHUR A M. Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(Ⅴ) from water[J]. Chemical Engineering Journal, 2008, 138(1): 179-186.
    [17]KYRIAKOPOULOS G, HOURDAKIS A, DOULIA D. Adsorption of pesticides on resins[J]. Journal of Envirenmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38(2): 157-168.
    [18]WONG W W, WONG H Y, BADRUZZAMAN A B M, et al. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review[J]. Nanotechnology, 2017, 28(4): 042001-0420032.
    [19]LATA S, SAMADDER S R. Removal of arsenic from water using nano adsorbents and challenges: a review[J]. Journal of Environmental Management, 2016, 166: 387-406.
    [20]WANG X Z(王雪兆), QI L H(齐连怀), YANG Q X(杨清香), et al. Preparation and catalytic properties of Au/Fe3O4 nanocomposites[J]. Fine Chemicals(精细化工), 2013, 30(08): 860-865+905.
    [21]WANG T, ZHANG L Y, WANG H Y, et al. Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly (diallyldimethylammonium chloride) and their application in arsenic removal[J]. ACS Applied Materials and Interfaces, 2013, 5(23): 12449-12459.
    [22]MAITY D, AGRAWAL D C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media[J]. Journal of Magnetism and Magnetic Materials, 2006, 308(1): 46-55.
    [23]WANG C H(汪彩虹), CHEN S R(陈硕然), YE C Q(叶常青), et al. Research progress on monodisperse Fe3O4 magnetic nanoparticles[J]. Chemical Industry and Engineering Progree(化工进展), 2016, 35(S1): 242-247.
    [24]MULLIGAN C N, YONG R N, GIBBS B F. Surfactant-enhanced remediation of contaminated soil: a review[J]. Engineering Geology, 2001, 60(1): 371-380.
    [25]MULLIGAN C N. Environmental applications for biosurfactants[J]. Environment Pollution, 2005, 133(2): 183-198.
    [26]WEST C C, HARWELL J H. Surfactants and subsurface remediation[J]. Enviroment Science and Technology, 1992, 26(12): 2324-2330.
    [27]ZHAO X L, SHI Y L, WANG T H, et al. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples[J]. Journal of Chromatography A, 2008, 1188(2): 140-147
    [28]HUANG W(黄文),ZHOU M F(周梅芳). SDS coated Fe3O4 magnetic nanoparticles for adsorption of Cd2+ and Zn2+ in aqueous solution[J]. Chinese Journal of Environmental Engineering(环境工程学报), 2012, 6(4): 1251-1256.
    [29]PAN J, GUAN B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide[J]. Journal of Hazardous Materials, 2010, 183(1-3): 341-346.
    [30]HU B J, LUO H J. Adsorption of hexavalent chromium onto montmorillonite modified with hydroxyaluminum and cetyltrimethylammonium bromide[J]. Applied Surface Science, 2010, 257(3): 769-775.
    [31]Hu J S, Zhong L S, Song W G, et al. Synthesis of hierarchically structured metal oxides and their application in heavy metal ionremoval[J].Advanced Materials,2008,20:2977-2982.
    [32]ZHANG H, YANG D R, JI Y J, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process[J]. The Journal of Physical Chemistry, B, 2004, 108(13): 3955-3958.
    [33]YE X C, JIN L H, CAGLAYAN H, et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives[J]. ACS Nano, 2012, 6(3): 2804-2817.
    [34]YANG F Y(杨方源), ZHAO Y L(赵尉伶), SUN Y(孙英), et al. Study on the arsenic removal effect of surfactant-modified magnetic nanoparticles[J]. Journal of Xinjiang Agricultural University(新疆农业大学学报), 2021, 40(3): 188-195.
    [35]WANG T, ZHANG L, WANG H, et al. Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly (diallyldimethylammonium chloride) and their application in arsenic removal[J]. ACS Applied Materials and Interfaces, 2013, 5(23): 12449-12459.
    [36]LIU J F, ZHAO Z, JIANG G. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental Science and Technology, 2008, 42(18): 6949-6954.
    [37]HUANG J B(黄建滨), HAN F(韩峰). Research Progress of New Surfactants—Bola-type Surfactants and Gemini-type Surfactants[J]. University Chemistry(大学化学), 2004, 19(4): 2-11.
    [38]CHEN W F(陈维芳), WANG H Y(王宏岩), YU Z(于哲), et al. Adsorption of arsenate and arsenite by cationic surfactant-modified activated carbon[J]. Acta Scientiae Circumstantiae(环境科学学报), 2013, 33(12): 3197-3204.
    [39]JIN Y J, LIU F, TONG M P, et al. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2012, 227: 461-468.
    [40]KOOMSON B, ASIAM E K. Arsenic adsorption by some iron oxide minerals: influence of interfacial chemistry[J]. Ghana Mining Journal, 2020, 20(2): 43-48.
    [41]TIAN Y, YU B, LI X, et al. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents[J]. Journal of Materials Chemistry, 2011, 21(8): 2476-2481.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵尉伶,杜泽,任星屿,孙英,周金龙,杨方源.表面活性剂改性Fe3O4对As(Ⅴ)和As(Ⅲ)的吸附(急)[J].精细化工,2022,39(11):

复制
分享
文章指标
  • 点击次数:39
  • 下载次数: 497
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-05-25
  • 最后修改日期:2022-06-21
  • 录用日期:2022-07-04
  • 在线发布日期: 2023-08-14
文章二维码