NF@Ni3S4@CoFe-LDHs核壳电极用于尿素辅助碱性析氧
作者:
作者单位:

1.陕西理工大学 材料科学与工程学院;2.陕西理工大学

中图分类号:

TQ116.2;TQ151

基金项目:

国家自然科学基金青年项目(51504147)


Core-shell NF@Ni3S4@CoFe-LDHs electrode for Urea-Assisted Oxydrogen Reaction in Alkaline Media
Author:
Affiliation:

1.School of Material Science and Engineering,Shaanxi University of Technology;2.School of Material Science and Engineering

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [10]
  • | | |
  • 文章评论
    摘要:

    电解水制氢的阳极析氧反应(OER)需要较高的过电位来克服缓慢动力学。为此,利用理论过电势为0.37 V的尿素氧化反应(UOR)来降低阳极反应过电势。采用水热和电化学沉积的方法,构建异质核壳结构的NF@Ni3S4@CoFe-LDHs催化电极用于尿素辅助碱性析氧反应。得益于分级结构和异质物种在界面的协同作用,电极表面对中间产物吸附和质子的解吸速率加快,水和尿素分子的分解能垒大大降低。在x mol/L的尿素(x=0.1,0.33和0.5)和1mol/L KOH混合溶液中,该电极驱动10 mA/cm2的电流密度仅需要100 mV的过电势。在0.33 mol/L的碱性尿素溶液中, NF@Ni3S4@CoFe-LDHs电极驱动的最高电流密度比1mol/L KOH溶液中高116 mA,并可在稳定运行20 h的同时保持良好的循环性。该催化电极在碱性电解水制氢和尿素污水处理方面有较好的而应用前景。

    Abstract:

    The anodic oxygen evolution reaction (OER) of hydrogen production from electrolytic water requires a high over potential to overcome the slow kinetics. Therefore, urea oxidation reaction (UOR) with a theoretical overpotential of 0.37 V was used to decrease the anodic overpotential. Hydrothermal and electrochemical deposition methods were used to construct heterogeneous core-shell structure NF@Ni3S4@CoFe-LDHs catalytic electrode which used in basic urea solution. Due to the synergistic effect of hierarchical structure and heterogeneous species at the interface, the adsorption of intermediate products and the desorption of protons on the electrode surface are accelerated, and the decomposition energy barrier of water and urea molecules is greatly reduced. In the mixed solution of x mol/L urea (x=0.1, 0.33 and 0.5) with 1mol/L KOH, it only need 100 mV overpotential to drive 10mA/cm2 current density. In 0.33 mol/L alkaline urea solution, the NF@Ni3S4@CoFe-LDHs can driven 116mA higher than that in 1mol/L KOH solution, and it can operate stably for 20 h while maintaining good circularity. The catalytic electrode has good application prospects in hydrogen production from alkaline water and urea wastewater treatment.

    参考文献
    [1]ANJUM M A, JEONG H Y, LEE M H, et al. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites[J]. Advanced Materials, 2020, 30 (20): 1707105-1707113.
    [2]王红霞,徐婉怡,张早校.可再生电力电解制绿色氢能的发展现状与建议[J/OL].化工进展:1-19 [2022-06-26]. DOI:10.16085/ j.issn.1000-6613.2022-0159.
    [3]SUN C C, DONG Q C, YANG J, et al. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting [J]. Nano Research, 2016, 9(8): 2234-2243.
    [4]WANG C, LU H L, MAO Z Y, et al. Bimetal schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis [J]. Advanced Functional Materials, 2020, 30(21): 2000556-2000565.
    [5]YANG X Y, KANG L Y, WEI Z M, et al. A self-sacrificial templated route to fabricate CuFe prussian blue analogue/Cu(OH)2 nanoarray as an efficient pre-catalyst for ultrastable bifunctional electro-oxidation [J]. Chemical Engineering Journal, 2021,422: 130139-130145.
    [6]LI J N, LI J P, GONG M, et al. Catalyst design and progresses for urea oxidation electrolysis in alkaline media [J]. Topics in Catalysis, 2021, 64:532–558.
    [7]LI Y, HU L S, ZHENG W R, et al. Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction [J]. Nano Energy, 2018, 52:360-368.
    [8]DURATE M F, ROCHA I M, FUGUEIRDEDO J L, et al. CoMn-LDH@carbon nanotube composites: bifunctional electrocatalysts for oxygen reactions [J]. Catalysis Today, 2018, 301:17-24.
    [9]HU J, ZHANG C X, ZHANG Y Z, et al. Interface modulation of MoS2/metal oxide heterostructures for efficient hydrogen evolution electrocatalysis [J]. Small, 2020, 16(28): 2002212-2002220.
    [10]WANG X, LIU C K, LI Q, et al. 3D Heterogeneous Co3O4@Co3S4 nanoarrays grown on Ni foam as a binder-free electrode for lithium-ion batteries [J]. ChemElectroChem, 2018, 5(12): 309-315.
    [11]FU Q, HAN J C, WANG X J, et al. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis [J]. Advanced Materials, 2021, 33 (16): 1907818-1907841.
    [12]CAO J M, ZHOU J, ZHANG Y F, et al. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction [J]. ACS Applied Materials Interfaces,2018, 10(2): 1752-1760.
    [13]MOHAMMED-IBRAHIM J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction[J]. Journal of Power Sources, 2020, 448: 227375-227424.
    [14]HUA L Y, ZENG X, WEI X Q, et al. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures [J]. Applied Catalysis B: Environmental, 2020, 273: 119014-1190020.
    [15]CHEN J D, ZHENG F, ZHANG S J, et al. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis [J]. ACS Catalysis, 2018, 8:11342?11351.
    [16]ZHOU L X, GUO M C, LI Y, et al. One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH)2 nanowires grown on Ni foam for high-efficiency oxygen evolution reaction [J]. Chemical Communications, 2019, 55(29): 4218-4221.
    [17]DU X Q, LI J X, ZHANG X S, et al. Fe and Cu dual-doped Ni3S4 nanoarray with less low-valence Ni species for boosting water oxidation reaction [J]. Dalton Transactions, 2022, 51(4): 1594-1602.
    [18]WANG H Q, ZHANG W J, ZHANG X W, et al. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte [J]. Nano Research, 2021, 14: 4857-4864.
    [19]ZHANG Y X, YANG M, JIANG X, et al. Self-supported hierarchical CoFe-LDH/NiCo2O4/NF core-shell nanowire arrays as an effective electrocatalyst for oxygen evolution reaction [J]. Journal of Alloys and Compounds, 2020, 818: 153345-153351.
    [20]CHEN B W (陈保卫), GAO W J (高文君), DU S M (杜庶铭), et al. Synthesis and catalytic performance comparison of rod-shaped FeS2/NiS2 and FeP/Ni2P [J]. Fine Chemicals(精细化工), 2020, 37(12): 2467-2473.
    [21]TONG R, XU M, HUANG H M, et al. 3D V-Ni3S2@CoFe-LDH core-shell electrocatalysts for efficient water oxidation [J]. International Journal of Hydrogen Energy, 2021, 46(80): 39636-39644.
    [22]WANG T, WU H M, FENG C Q, et al. MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis [J]. Journal of Materials Chemistry A, 2020, 8(35): 18106-18116.
    [23]WANG X Y, ZHAN W Z, ZHANG J L, et al. Co(OH)2 nanosheets array doped by Cu2+ ions with optimal electronic structure for urea-assisted electrolytic hydrogen generation [J]. ChemElectroChem, 2021, 8(10): 1881-1891.
    [24]LI R Q, WAN X Y, CHEN B L, et al. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis [J]. Chemical Engineering Journal, 2021, 409: 128240-128246.
    [25]HU S N, FENG C Q, WANG S Q, et al. Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition[J]. ACS Applied Materials Interfaces, 2019, 11: 13168-13175.
    [26]XIE J F, GAO L, CAO S S, et al. Copper-incorporated hierarchical wire-on-sheet α-Ni(OH)2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation[J]. Journal of Materials Chemistry A, 2019, 7(22):13577-13584.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卫学玲,包维维,邹祥宇,李文虎,蒋 鹏,艾桃桃. NF@Ni3S4@CoFe-LDHs核壳电极用于尿素辅助碱性析氧[J].精细化工,2023,40(2):

复制
分享
文章指标
  • 点击次数:102
  • 下载次数: 473
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-06-28
  • 最后修改日期:2022-08-03
  • 录用日期:2022-08-04
  • 在线发布日期: 2022-12-26
  • 出版日期: 2022-09-30
文章二维码