基于MOFs材料光催化分解水制氢的研究进展
作者:
作者单位:

1.南昌大学 抚州医学院;2.南昌大学 化学化工学院

中图分类号:

TQ 116.2; O 643.36

基金项目:

国家自然科学基金(51263014);南昌大学抚州医学院重点科技项目(FYKJ202203)


Progress of hydrogen production by photocatalytic water splittingbased on MOFs
Author:
Affiliation:

1.Fuzhou Medical College,Nanchang University;2.School of Chemistry,Chemical Engineering Nanchang University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [108]
  • | | | |
  • 文章评论
    摘要:

    “双碳”目标的提出让氢能热度持续攀升,制氢技术突破是氢能连接能源消费终端的关键桥梁,光催化分解水制氢技术是实现太阳能低碳转化的有效途径。其中,利用具有比表面积和孔隙率高、结构可调、活性位点丰富等优势的金属有机框架(MOFs)材料光催化分解水制氢是近年来的研究热点。综述和评论了国内外基于MOFs材料光催化分解水制氢体系中半导体复合、金属离子掺杂、敏化剂修饰和贵金属负载等方法的改性原理、技术难点和制氢效果等,重点阐述比较了上述MOFs改性方法在抑制光生电子空穴对复合、优化MOFs禁带宽度和增加MOFs活性位点等方面的作用,提出了未来MOFs光催化分解水制氢可深入新型MOFs材料开发、敏化剂修饰工艺优化、拓展先进表征手段的研究方向。

    Abstract:

    The proposal of carbon emission peak and carbon neutrality target makes the heat of hydrogen energy continue to rise. The breakthrough of hydrogen production technology is the key bridge for hydrogen energy to connect the energy consumption terminal. The hydrogen production by photocatalytic water splitting technology is an effective way to realize the low-carbon transformation of solar energy. In recent years, the hydrogen production by photocatalytic water splitting by metal-organic frameworks (MOFs) materials with high specific surface area and porosity, adjustable structure and abundant active sites is a research hotspot. The modification principles, technical difficulties and hydrogen production effects of semiconductor composite, metal ion doping, sensitizer modification and noble metal deposition methods in photocatalytic water splitting based on MOFs materials at home and abroad are reviewed and commented. The roles of above MOFs modification methods in inhibiting photogenerated electron hole pair recombination, optimizing the band gap of MOFs and increasing the active sites of MOFs are emphatically expounded and compared. The future research directions of MOFs photocatalytic water splitting for hydrogen production were proposed, which can deepen the development of new MOFs materials, optimize the sensitizer modification process and expand the advanced characterization methods.

    参考文献
    [1] BREY J J. Use of hydrogen as a seasonal energy storage system to manage renewable power deployment in Spain by 2030[J]. International Journal of Hydrogen Energy, 2020, 46(63): 17447-17457.
    [2] ZHANG Y, SUN H, TAN J, et al. Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery[J]. Energy, 2022, 252: 124046.
    [3] Hydrogen Council. Hydrogen insights: a perspective on hydrogen investment, market development and cost competitiveness[R]. The Hydrogen council, 2021.
    [4] SCOVELL M D. Explaining hydrogen energy technology acceptance: A critical review[J]. International Journal of Hydrogen Energy, 2022, 47(19): 10441-10459.
    [5] ZHANG K(张抗), MIAO M(苗淼), ZHANG L Q(张立勤). Carbon Peaking and Carbon Neutrality Goals and Reflections on China′s Energy Transition Part Ⅲ— Fast Development of Non-fossil Fuel in China[J]. Sino-Global Energy(中外能源), 2022, 27(5): 1-9.
    [6] WAN Y M(万燕鸣), XIONG Y L(熊亚林), WANG X Y(王雪颖). Strategic analysis of hydrogen energy development in major Countries[J/OL]. Energy Storage Science and Technology(储能科学与技术): 1-10[2022-05-22]. DOI:10.19799/j.cnki.2095-4239.2022.0132.
    [7] LIU W, WAN Y M, XIONG Y L, et al. Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen[J]. International Journal of Hydrogen Energy, 2022.
    [8] AHSHAN R. Potential and economic analysis of solar-to-hydrogen production in the sultanate of oman[J]. Sustainability, 2021, 13(17): 9516.
    [9] OSHIRO K, FUJIMORI S. Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals[J]. Applied Energy, 2022, 313: 118803.
    [10] MIAO A K(苗安康), YUAN Y(袁越), WU H(吴涵), et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed energy(分布式能源), 2021, 6(4): 15-24.
    [11] TENG X Y(滕欣余), ZHANG G H(张国华), HU C S(胡辰树), et al. Analysis on hydrogen energy economy and low cost of hydrogen source in typical cities of China[J/OL]. Chemical Industry and Engineering Progress(化工进展): 1-9[2022-05-22]. DOI:10.16085/j.issn.1000-6613.2022-0393.
    [12] HUANG W L, DAI J, XIONG L H. Towards a sustainable energy future: Factors affecting solar-hydrogen energy production in China[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102059.
    [13] LIU G, SHENG Y, AGER J W, et al. Research advances towards large-scale solar hydrogen production from water[J]. EnergyChem, 2019, 1(2): 100014.
    [14] MA Z, DAVENPORT P, SAUR G. System and technoeconomic analysis of solar thermochemical hydrogen production[J]. Renewable energy, 2022, 190: 294-308.
    [15] GRIMM A, SAINTE-MARIE A, KRAMER G J, et al. Modeling photovoltaic-electrochemical water splitting devices for the production of hydrogen under real working conditions[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11764-11777.
    [16] IDRISS H. Hydrogen production from water: past and present[J]. Current Opinion in Chemical Engineering, 2020, 29: 74-82.
    [17] SADEGHI S, GHANDEHARIUN S. A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization[J]. Energy, 2022, 240: 122723.
    [18] MA R(马荣), SUN J(孙杰), LI D H(李东辉), et al. Self-floating high-efficient evaporative catalytic seawater hydrogen production system driven by concentrated solar energy based on Cu/TiO2/C-Wood composite[J]. CIESC Journal(化工学报), 2022, 73(4): 1695-1703.
    [19] LI B(李兵), WU F L(吴福礼), HUANG Y P(黄有鹏), et al. Preparation and photocatalytic properties of flower-like sphere Ti3C2/TiO2 composites[J]. Fine Chemicals(精细化工), 2022, 39(2): 261-268.
    [20] LIANG Z Q, XUE Y J, WANG X Y, et al. The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration[J]. Nano Materials Science, 2022.
    [21] LEE G J, CHIEN Y W, ANANDAN S, et al. Fabrication of metal-doped BiOI/MOF composite photocatalysts with enhanced photocatalytic performance[J]. International Journal of Hydrogen Energy, 2021, 46(8): 5949-5962.
    [22] 722-729.ZHOU Y L, LIN D Y, YE X Y, et al. Effect of ions on photocatalytic H2 production using corn straw as sacrificial agent[J]. CIESC Journal, 2022, 73(2): 722-729.
    [23] LI H Y, GONG H M, JIN Z L. Phosphorus modified Ni-MOF-74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2022, 307: 121166.
    [24] ZHANG J, HU W, CAO S, et al. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting[J]. Nano Research, 2020, 13(9): 2313-2322.
    [25] SON N, DO J Y, KANG M. Characterization of core@shell-structured ZnO@Sb2S3 particles for effective hydrogen production from water photo spitting[J]. Ceramics International, 2017, 43(14): 11250-11259.
    [26] RAO V N, RAVI P, SATHISH M, et al. Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges[J]. Journal of Hazardous Materials, 2021, 415: 125588.
    [27] TASLEEM S, TAHIR M, KHALIFA W A. Current trends in structural development and modification strategies for metal-organic frameworks (MOFs) towards photocatalytic H2 production: A review[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14148-14189.
    [28] WANG Q, XIAO L, LIU X, et al. Special Z-scheme Cu3P/TiO2 hetero-junction for efficient photocatalytic hydrogen evolution from water[J]. Journal of Alloys and Compounds, 2022, 894: 162331.
    [29] ZHANG Z H(张智华). Preparation and catalytic properties of UiO-66 supported Pt catalysts[D]. Nanchang: Nanchang Uiversity(南昌大学), 2020.
    [30] ZHANG T T(张婷婷), TONG S Y(仝淑月), YANG X(杨熙), et al. Recent progress in application of porphyrin-based metal-organic framework materials in photocatalytic reactions[J]. Fine Chemicals(精细化工), 2019, 36(8): 1507-1512.
    [31] MESHRAM A A, AASHISH Moses K, BARAL S S, et al. Hydrogen production from water splitting of real-time industry effluent using novel photocatalyst[J]. Advanced Powder Technology, 2022, 33(3): 103488.
    [32] LIU Y, CHENG H, CHENG M, et al. The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment[J]. Chemical Engineering Journal, 2021, 417: 127914.
    [33] LIU D, JIN Z, ZHANG Y, et al. Light harvesting and charge management by Ni4S3 modified metal-organic frameworks and rGO in the process of photocatalysis[J]. Journal of Colloid and Interface Science, 2018, 529: 44-52.
    [34] LAN M, GUO R M, DOU Y, et al. Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation[J]. Nano Energy, 2017, 33: 238-246.
    [35] DUAN C, LIANG K, LIN J, et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review[J]. Science. China Materials, 2022, 65(2): 298-320.
    [36] QIU J, ZHANG X, XIE K, et al. Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 538: 569-577.
    [37] WANG R, GU L, ZHOU J, et al. Quasi-polymeric metal-organic framework UiO-66/g-C3N4heterojunctions for enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Advanced Materials Interfaces, 2015, 2(10): 1500037.
    [38] QIU J, YANG L, LI M, et al. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis[J]. Materials Research Bulletin, 2019, 112: 297-306.
    [39] YU Y(余岩). Heterostructure based on titanium-based semiconductor for hydrogen generation[D]. Hangzhou: Zhejiang University of Technology(浙江工业大学), 2019.
    [40] WANG C C, YI X H, WANG P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance[J]. Applied Catalysis B: Environmental, 2019, 247: 24-48.
    [41] ZHANG X, YU X, LI J, et al. Construction of MOFs/g-C3N4 composite for accelerating visible-light-driven hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022.
    [42] GARCRíA-SALCIDO V, MERCADO-OLIVA P, GUZMáN-MAR J L, et al. MOF-based composites for visible-light-driven heterogeneous photocatalysis: Synthesis, characterization and environmental application studies[J]. Journal of Solid State Chemistry, 2022, 307:122801.
    [43] LIU Y, HUANG D, CHENG M, et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting[J]. Coordination Chemistry Reviews, 2020, 409: 213220.
    [44] LUO L, WANG Y, HUO S, et al. Cu-MOF assisted synthesis of CuS/CdS(H)/CdS(C): Enhanced photocatalytic hydrogen production under visible light[J]. International Journal of Hydrogen Energy, 2019, 44(59): 30965-30973.
    [45] NIU L, ZHANG W G, LI H T, et al. The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting[J]. Journal of Materials Science, 2022, 57: 5768-5787.
    [46] WANG Z, JIN Z, WANG G, et al. Efficient hydrogen production over MOFs(ZIF-67) and g-C3N4 boosted with MoS2 nanoparticles[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13039-13050.
    [47] CAO M, YANG F, ZHANG Q, et al. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production[J]. Journal of Materials Science Technology, 2021, 76: 189-199
    [48] GUO J, LIANG Y, LIU L, et al. Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution[J]. Applied Surface Science, 2020, 522: 146356.
    [49] MAO S, ZOU Y, SUN G, et al. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2021, 581: 1-10.
    [50] JIN Z, LI T, WANG K, et al. Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2022, 609: 212–223.
    [51] YU H, XIAO P, WANG P, et al. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2016, 193: 217-225.
    [52] SHEN L, LUO M, LIU Y, et al. Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2015, 166-167: 445-453.
    [53] XUE K, HE R, YANG T, et al. MOF-based In2S3-X2S3(X=Bi; Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic performance under visible light[J]. Applied Surface Science, 2019, 493: 41-54.
    [54] EI-BERY H M, ABDELHAMID H N. Photocatalytic hydrogen generation via water splitting using ZIF-67 derived Co3O4@C/TiO2[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105702.
    [55] TRIPATHY S P, SUBUDHI S, DAS S, et al. Hydrolytically stable citrate capped Fe3O4@UiO-66-NH2 MOF: A hetero-structure composite with enhanced activity towards Cr(VI) adsorption and photocatalytic H2 evolution[J]. Journal of Colloid and Interface Science, 2022, 606: 353-366.
    [56] ZHANG M, SHANG Q, WAN Y, et al. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation[J]. Applied Catalysis B: Environmental, 2019, 241: 149-158.
    [57] GUO F, GUO J H, WANG P, et al. Facet-dependent photocatalytic hydrogen production of metal–organic framework NH2-MIL-125(Ti)[J]. Chemical Science, 2019, 10(18): 4834-4838.
    [58] SUN L, YUAN Y, WANG F, et al. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution[J]. Nano Energy, 2020, 74: 104909.
    [59] ZHANG L, WANG G, HAO X, et al. MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2020, 395: 125113.
    [60] ZHANG Y, JIN Z. Effective electron-hole separation over controllable construction of WP/UiO-66/CdS heterojunction for efficiently improved photocatalytic hydrogen evolution under visible-light-driven[J]. Physical Chemistry Chemical Physics, 2019.
    [61] JIN Z, ZHANG Y, MA Q. Orthorhombic WP co-catalyst coupled with electron transfer bridge UiO-66 for efficient visible-light-driven H2 evolution[J]. Journal of Colloid and Interface Science, 2019, 556: 689-703.
    [62] LI T, JIN Z. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science, 2022, 605: 385-397.
    [63] LIU S, CHI D, ZOU Q, et al. MOFs-derived MoS2/C3N4 composites with highly efficient charge separation for photocatalytic H2 evolution[J]. Inorganica Chimica Acta, 2022, 533: 120787.
    [64] HE B, CHEN S, CUI Y, et al. Hollow polymeric ionic liquid spheres with hierarchical electron distribution: A novel composite of g-C3N4 for visible light photocatalytic water splitting enhancement[J]. Chemical Engineering Journal, 2022, 440: 135625.
    [65] ZHOU W C, ZHANG W D. Anchoring nickel complex to g-C3N4 enables an efficient photocatalytic hydrogen evolution reaction through ligand-to-metal charge transfer mechanism[J]. Journal of Colloid and Interface Science, 2022, 616: 791-802.
    [66] ZHANG H, LI Q, WENG B, et al. Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal–organic frameworks for enhanced photocatalytic hydrogen generation[J]. Chemical Engineering Journal, 2022, 442: 136144.
    [67] LIANG Y, SHANG R, LU J, et al. 2D MOFs enriched g-C3N4 nanosheets for highly efficient charge separation and photocatalytic hydrogen evolution from water[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2797-2810.
    [68] ZHAO S, XU J, MAO M, et al. Protonated g-C3N4 cooperated with Co-MOF doped with Sm to construct 2D/2D heterojunction for integrated dye-sensitized photocatalytic H2 evolution[J]. Journal of Colloid and Interface Science, 2021, 583: 435-447.
    [69] ZHANG Z G(张子格). Rare ions doped TiO2 nanomaterials and applied in dye-sensitized solar cells[D]. Tianjin: School of Chemical Engineering, Tianjin University(天津大学化工学院), 2016.
    [70] MELILLO A, CABRERO-ANTONINO M, NAVALóN S, et al. Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition[J]. Applied Catalysis B: Environmental, 2020, 278: 119345.
    [71] JARYAL R, KUMAR R, KHULLAR S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions[J]. Coordination Chemistry Reviews, 2022, 464: 214542.
    [72] SYZGANTSEVA M A, IRELAND C P, EBRAHIM F M, et al. Metal substitution as the method of modifying electronic structure of metal-organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(15): 6271-6278.
    [73] CHANG N, CHEN Y R, XIE F, et al. Facile construction of Z-scheme AgCl/Ag-doped-ZIF-8 heterojunction with narrow band gaps for efficient visible-light photocatalysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126351.
    [74] PORTILLO A S, BALDOVí H G, FERNANDEZ M T G, et al. Ti as mediator in the photoinduced electron transfer of mixed-metal NH2–UiO-66(Zr/Ti): Transient absorption spectroscopy study and application in photovoltaic Cell[J]. Journal of Physical Chemistry C, 2017, 121(12): 7015-7024.
    [75] XU X X, CUI Z P, GAO X, et al. Photocatalytic activity of transition-metal-ion-doped coordination polymer (CP): photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs[J]. Dalton Trans, 2014, 43(23): 8805-8813.
    [76] LIU J, JIANG S L, ZHANG Q. Doping copper ions in a metal-organic framework (UiO-66-NH2): Location effect examined by ultrafast spectroscopy[J]. Chinese Journal of Chemical Physics, 2020, 33(4): 394-400.
    [77] PARNICKA P, LISOWSKI W, KLIMCZUK T, et al. A novel (Ti/Ce)UiO-X MOFs@TiO2 heterojunction for enhanced photocatalytic performance: Boosting via Ce4+/Ce3+ and Ti4+/Ti3+ redox mediators[J]. Applied Catalysis B: Environmental, 2022, 310: 121349.
    [78] LI L R(李亮荣), SUN W C(孙戊辰), CHEN Z J(陈祖杰), et al. Effect of carrier modification on reforming to produce hydrogen of ethanol steam catalyzed by Ni//La2O2CO3 [J]. Rare Metals and Cemented Carbides(稀有金属与硬质合金), 2021, 49(4): 50-54.
    [79] LI L R(李亮荣), CHEN Z J(陈祖杰), FU B(付兵), et al. MgO composite carrier supported Ni to catalyze stream reforming of ethanol to produce hydrogen [J]. Chemical Engineering(China)(化学工程), 2021, 49(7):12-15+36.
    [80] LI L R(李亮荣), DING Y H(丁永红), DENG Z W(邓志伟), et al. Research progress of reforming hydrogen production catalysts modified by La, Ce and other rare earths[J]. Rare Metals and Cemented Carbides(稀有金属与硬质合金), 2022, 50(2): 45-49+74.
    [81] SUN X, YUAN K, ZHANG Y. Advances and prospects of rare earth metal-organic frameworks in catalytic applications[J]. Journal of Rare Earths, 2020, 38(8): 801-818.
    [82] HENDRICKX K, JOOS J J, VOS A D, et al. Exploring lanthanide doping in UiO-66: A combined experimental and computational study of the electronic structure[J]. Inorganic Chemistry, 2018, 57(9): 5463-5474.
    [83] AN Y, LIU Y, BIAN H, et al. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands[J]. Science Bulletin, 2019, 64(20): 1502-1509.
    [84] LI S, TAN J, JIANG Z, et al. MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H2 and O2 production[J]. Chemical Engineering Journal, 2020, 384: 123354.
    [85] HAN K, LI W, REN C, et al. Dye-sensitized SrTiO3-based photocatalysts for highly efficient photocatalytic hydrogen evolution under visible light[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112: 4-14.
    [86] JIANG G, LIU X, JIAN H, et al. Cu-clusters nodes of 2D metal-organic frameworks as a cost-effective noble-metal-free cocatalyst with high atom-utilization efficiency for efficient photocatalytic hydrogen evolution[J]. Chinese Chemical Letters, 2021.
    [87] AKHTARUZZAMAN Md, SHAHIDUZZAMAN Md, SELVANATHAN V, et al. Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review[J]. Applied Materials Today, 2021, 25: 101204.
    [88] MICHERONI D, LIN Z, CHEN Y S, et al. Luminescence enhancement of cis-[Ru(bpy)2(py)2]2+ via confinement within a metal-organic framework[J]. Inorganic Chemistry, 2019, 58(12): 7645-7648.
    [89] ZHOU X F(周雪飞). Synthesis and characterization of dye-sensitized TiO2 photocatalyst[D]. Tiayuan: North University of China(中北大学), 2021.
    [90] MIALANE P, MELLOT-DRAZNIEKS C, GAIROLA P, et al. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: from synthesis to characterization and applications in catalysis[J]. Chemical Society Reviews, 2021, 50: 6152-6220.
    [91] ZHENG H Q, HE X H, ZENG Y N, et al. Boosting the photoreduction activity of Cr(VI) in metal-organic frameworks by photosensitiser incorporation and framework ionization[J]. Journal of Materials Chemistry A, 2020,8: 17219-17228.
    [92] WHELAN é, STEUBER F W, GUNNLAUGSSON T, et al. Tuning photoactive metal-organic frameworks for luminescence and photocatalytic applications[J]. Coordination Chemistry Reviews, 2021, 437: 213757.
    [93] DING H, XU M, ZHANG S, et al. Organic blue-colored D-A-p-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation[J]. Renewable Energy, 2020, 155: 1051-1059.
    [94] KATAOKA Y, SATO K, MIYAZAKI Y, et al. Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n[J]. Energy Environmental Science, 2009, 2: 397-400.
    [95] HOU C C, LI T T, CAO S, et al. Incorporation of a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution[J]. Journal of Materials Chemistry A, 2015, 3(9): 10386-10394.
    [96] LIU X L, WANG R, ZHANG M Y, et al. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation[J]. APL Materials, 2015, 3(10): 104403.
    [97] ZHANG X, PENG T, SONG S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2016, 4: 2365-2402.
    [98] WU L, TONG Y, GU L, et al. MOFs as an electron-transfer-bridge between a dye photosensitizer and a low cost Ni2P co-catalyst for increased photocatalytic H2 generation[J]. Sustainable Energy Fuels, 2018, 2: 2502-2506.
    [99] LI S, WU F, LIN R, et al. Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization[J]. Chemical Engineering Journal, 2022, 429: 132217.
    [100] SHI J, CHEN F, HOU L, et al. Eosin Y bidentate bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2020, 280: 119385.
    [101] LI Y, YANG B, LIU B. MOF assisted synthesis of TiO2/Au/Fe2O3 hybrids with enhanced photocatalytic hydrogen production and simultaneous removal of toxic phenolic compounds[J]. Journal of Molecular Liquids, 2021, 322: 114815.
    [102] YANG J, WANG D, HAN H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909.
    [103] WANG D, SONG Y, CAI J, et al. Effective photo-reduction to Pt nanoparticles deposited on MIL-100(Fe) for visible-light-induced hydrogen evolution[J]. New Journal of Chemistry, 2016, 40(11): 9170-9175.
    [104] XING H, TENG S, XING Z, et al. Effect of Pt cocatalyst on visible light driven hydrogen evolution of anthracene-based zirconium metal-organic framework[J]. Applied Surface Science, 2020, 532: 147000.
    [105] XIAO J D, SHANG Q, XIONG Y, et al. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters[J]. Angewandte Chemie International Edition, 2016, 128(32): 9535-9539.
    [106] JIANG H L, XIAO J D, HAN L, et al. Integration of plasmonic effect and schottky junction into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(4): 1103-1107.
    [107] LIU P, HAN X. Comparative analysis on similarities and differences of hydrogen energy development in the World''s top 4 largest economies: A novel framework[J]. International Journal of Hydrogen Energy, 2022, 47(16): 9485-9503.
    [108] Hydrogen Council. Hydrogen Scaling up, A sustainable pathway for the global energy transition[R]. Bonn: The Hydrogen Council, 2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李亮荣,梁 娇,彭 建,艾盛,齐海霞.基于MOFs材料光催化分解水制氢的研究进展[J].精细化工,2023,40(3):

复制
分享
文章指标
  • 点击次数:292
  • 下载次数: 620
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-06-29
  • 最后修改日期:2022-08-24
  • 录用日期:2022-09-05
  • 在线发布日期: 2023-08-14
文章二维码