新型交联聚醚酰亚胺电介质的制备及储能特性
作者:
作者单位:

1.东华大学纤维材料改性国家重点实验室;2.河南工程学院

中图分类号:

TB3

基金项目:

国家重点研发计划项目;河南省科技攻关项目;河南工程学院博士培育基金


Preparation and energy storage performances of novel cross-linked polyetherimide dielectrics
Author:
Affiliation:

1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,Shanghai;2.College of Materials Engineering,Henan University of Engineering,Zhengzhou

Fund Project:

National Key R&D Program of China;Science and Technology Project of Henan Province;Foundation for Doctorate Research of Henan University of Engineering

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    采用2,4,6-三氨基嘧啶(TAP)作为交联剂制备了一种具有交联结构的新型聚醚酰亚胺电介质材料。结果表明,随着TAP含量的增加,交联聚醚酰亚胺的击穿强度逐渐增大,当TAP含量为2 wt%时,交联聚醚酰亚胺的击穿强度提升至399.4 MV/m,相较于非交联聚醚酰亚胺提高了23.3%。由于交联结构抑制了内部极化损耗和弛豫损耗,交联聚醚酰亚胺电介质材料的介电损耗随着TAP含量的增加而降低。此外,交联结构进一步提升了聚醚酰亚胺电介质材料高温下的放电能量密度(Ud)和充放电效率(η),当TAP含量为2 wt%时,交联聚醚酰亚胺在150 °C时的最大Ud为2.53 J/cm3,相较于聚醚酰亚胺提升了24.8%。该研究为制备高温下具有更优Ud和η的聚醚酰亚胺电介质材料提供了新思路。

    Abstract:

    Novel polyetherimide (PEI) dielectrics with cross-linked networks were firstly prepared by utilizing 2,4,6-Triaminopyrimidine (TAP) as cross-linker. The results showed that the breakdown strength of cross-linked PEI with 2 wt% TAP increased to 399.4 MV/m, showing an increment of 23.3% in comparison with non-cross-linked PEI. Additionally, owing to the restrained polarization loss and relaxation loss by cross-linked networks, the dielectric loss of cross-linked PEI dielectric gradually decreased with increasing content of TAP. Of particular significance was that the c-PEI dielectrics exhibited improved discharged energy density (Ud) and charge-discharge efficiency (η) at high temperature. The maximum Ud of cross-linked PEI with 2 wt% TAP was 2.53 J/cm3 at 150 °C, which was 24.8% higher than non-cross-linked PEI. This research provides an innovative strategy to achieve novel PEI dielectrics with improved Ud and η at high temperature.

    参考文献
    FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2021, 122(3): 3820-3878.
    [2] WU X, CHEN X, ZHANG Q M, et al. Advanced dielectric polymers for energy storage[J]. Energy Storage Materials, 2022, 44: 29-47.
    [3] FAN B, ZHOU M, ZHANG C, et al. Polymer-based materials for achieving high energy density film capacitors[J]. Progress in Polymer Science, 2019, 97: 101143.
    [4] LI H, ZHOU Y, LIU Y, et al. Dielectric polymers for high-temperature capacitive energy storage[J]. Chemical Society Reviews, 2021, 50(11): 6369-6400.
    [5] 李琦,李曼茜. 高温聚合物薄膜电容器介电材料评述与展望[J]. 高电压技术,2021,47(9):3105-3123.
    [6] ZHA J W, ZHENG M S, FAN B H, et al. Polymer-based dielectrics with high permittivity for electric energy storage: A review[J]. Nano Energy, 2021, 89: 106438.
    [7] ZHOU Y, WANG Q. Advanced polymer dielectrics for high temperature capacitive energy storage[J]. Journal of Applied Physics, 2020, 127: 240902.
    [8] TANG Y, XU W, NIU S, et al. Cross-linked dielectric materials for high-temperature capacitive energy storage[J]. Journal of Materials Chemistry A, 2021, 9(16): 10000-10011.
    [9] 查俊伟,田娅娅,刘雪洁,董晓迪,郑明胜.本征型耐高温聚酰亚胺储能电介质研究进展[J].高电压技术,2021,47(05):1759-1770.
    [10] LI Q, CHEN L, GASINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.
    [11] ZHANG Y, LIU Z, ZHU L, et al. Enhanced Discharged Efficiency and High Energy Density at Elevated Temperature in Polymer Dielectric via Manipulating Relaxation Behavior[J]. CCS Chemistry, 2020, 2(5): 1169-1177.
    [12] YOU Y, LIU S, TU L, et al. Controllable fabrication of poly (arylene ether nitrile) dielectrics for thermal-resistant film capacitors[J]. Macromolecules, 2019, 52(15): 5850-5859.
    [13] OMIDVAR M, STAFFORD C M, LIN H. Thermally stable cross-linked P84 with superior membrane H2/CO2 separation properties at 100 ℃[J]. Journal of Membrane Science, 2019, 575: 118-125.
    [14] 沈忠慧,江彦达,李宝文,张鑫.高储能密度铁电聚合物纳米复合材料研究进展[J].物理学报,2020,69(21):105-117..
    [15] SHAO L, CHUNG T S, GOH S H, et al. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance[J]. Journal of Membrane Science, 2005, 256(1-2): 46-56.
    [16] ZHANG T, CHEN X, THAKUR Y, et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature[J]. Science Advances, 2020, 6(4): eaax6622.
    [17] YOU Y, LIU S, TU L, et al. Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors[J]. Macromolecules, 2019, 52(15): 5850-5859.
    [18] DUAN G Y, CAO Y T, QUAN J, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength[J]. Journal of Materials Science, 2020, 55(19): 8170-8184.
    [19] LIU J, ZHANG Y, W WANG Z, et al. Optimizing electric field distribution via tuning cross-linked point size for improving the dielectric properties of polymer nanocomposites[J]. Nanoscale, 2020, 12(23): 12416-12425.r
    [20] WANG Y, HUANG X, LI T, et al. Novel crosslinkable high-k copolymer dielectrics for high-energy-density capacitors and organic field-effect transistor applications[J]. Journal of Materials Chemistry A, 2017, 5(39): 20737-20746.
    [21] LIU X J, ZHENG M S, CHEN G, et al. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties[J]. Energy & Environmental Science, 2022, 15, 56-81.
    [22] HUAN T D, BOGGS S, TEYSSEDRE G, et al. Advanced polymeric dielectrics for high energy density applications[J]. Progress in Materials Science, 2016, 83: 236-269.
    [23] DUAN G Y, WANG Y, YU J R, et al. Novel poly (m-phenyleneisophthalamide) dielectric composites with enhanced thermal conductivity and breakdown strength utilizing functionalized boron nitride nanosheets[J]. Macromolecular Materials and Engineering, 2019, 304(11): 1900310.
    [24] DAI Z H, LI T, GAO Y, et al. Achieving high dielectric permittivity, high breakdown strength and high efficiency by cross-linking of poly (vinylidene fluoride)/BaTiO3 nanocomposites[J]. Composites Science and Technology, 2019, 169: 142-150.
    [25] MA R, BALDWIN A F, WANG C, et al. Rationally designed polyimides for high-energy density capacitor applications[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10445-10451.
    [26] QIAO R, WANG C, CHEN S, et al. High-temperature dielectric polymers with high breakdown strength and energy density via constructing the electron traps in blends[J]. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106679.
    [27] JIN L, LIU J, ZHU L, et al. Cross-linked poly (aryl ether ketone)/boron nitride nanocomposites containing a stable chemical bonding structure as high temperature dielectrics[J]. Composites Science and Technology, 2021, 213: 108949.
    [28] SONG N, YAO H, MA T, et al. Decreasing the dielectric constant and water uptake by introducing hydrophobic cross-linked networks into co-polyimide films[J]. Applied Surface Science, 2019, 480: 990-997.
    [29] WEI R, TU L, YOU Y, et al. Fabrication of cross-linked single-component polyarylene ether nitrile composite with enhanced dielectric properties[J]. Polymer, 2019, 161: 162-169.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

段广宇,胡凤英,郑鑫,李姚,邵文轩,胡祖明.新型交联聚醚酰亚胺电介质的制备及储能特性[J].精细化工,2023,40(4):

复制
分享
文章指标
  • 点击次数:112
  • 下载次数: 729
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-14
  • 最后修改日期:2022-10-07
  • 录用日期:2022-10-08
  • 在线发布日期: 2023-06-12
文章二维码