反相乳液制备缔合型耐盐聚合物及流变性能评价
作者:
作者单位:

1.陕西科技大学 化学与化工学院 轻化工助剂化学与技术教育部重点实验室;2.中国石油集团川庆钻探工程有限公司长庆石油工程监督公司;3.College of engineering, Sudan University of Science and Technology

中图分类号:

TE348

基金项目:

陕西省外国专家服务计划(2022WGZJ-27);陕西省重点研发计划项目(2023-YBGY-307);陕西省教育厅产业化项目(21JC005)


Preparation and rheological properties evaluation of associative salt tolerant polymer by inverse emulsion
Author:
Affiliation:

1.Key Laboratory of Auxiliary Chemistry Technology for Light Chemical Industry of the Ministry of Education,College of Light Industry and Engineering,Shaanxi University of Science Technology;2.Key Laboratory of Auxiliary Chemistry Technology for Light Chemical Industry of the Ministry of Education,College of Light Industry and Engineering,Shaanxi University of Science Technology;3.Changqing petroleum engineering Supervision Company of CNPC Chuanqing Drilling Engineering Co,Ltd;4.College of engineering,Sudan University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    摘要:以丙烯酰胺(AM)、2-丙烯酰胺-十二烷基磺酸钠(AMC12S)、疏水单体GTE-10为原料,通过反相乳液聚合法制备了一种缔合型耐盐聚合物p(AM/AMC12S/GTE-10)。通过FTIR、1HNMR、SEM、TEM及激光粒度分析仪对其结构和形貌进行表征,并对其流变性能进行评价。结果表明,疏水单体GTE-10成功引入聚合物中,聚合完成后的乳液粒径分布集中且均一,盐的加入使得p(AM/AMC12S/GTE-10)分子聚集态更紧密,形成的空间网络结构更稳定。质量分数为0.7%的p(AM/AMC12S/GTE-10)聚合物水溶液在140 ℃时表现出较好的耐温性能;在120 ℃,170 s-1条件下剪切1 h,在质量浓度为20000 mg/L的NaCl和CaCl2水溶液中分别配制质量分数0.7%的聚合物溶液,其黏度分别为64.7和54.2 mPa·s;触变性能测试表明,聚合物具有较好的剪切恢复性能;黏弹性测试结果表明,盐水条件下储能模量(G′)>损耗模量(G″),金属离子与苯氧乙烯基发生络合反应,使分子间作用力增强,形成的空间结构更稳定且难被破坏,黏弹性更高。

    Abstract:

    Abstract: An associated salt-tolerant polymer p(AM/AMC12S/GTE-10) was prepared by reverse-phase emulsion polymerization using acrylamide (AM), 2-acrylamide-sodium dodecyl sulfonate (AMC12S) and hydrophobic monomer GTE-10 as materials. The structure and rheological properties were characterized by FTIR, 1HNMR, SEM, TEM and laser particle size analyzer. The results showed that the hydrophobic monomer GTE-10 was successfully introduced into the polymer, and the particle size distribution of the emulsion after polymerization was concentrated and uniform. The addition of salt made the aggregation of p(AM/AMC12S/GTE-10) molecules more compact, and the spatial network structure formed was more stable. p(AM/AMC12S/GTE-10) polymer aqueous solution with a mass fraction of 0.7% showed good temperature resistance at 140 ℃. After shearing at 120 ℃ and 170 s-1 for 1 h, 0.7% polymer solutions were prepared in 20,000 mg/L NaCl and CaCl2 aqueous solutions with viscosities of 64.7 and 54.2 mPa·s, respectively. The thixotropic tests show that the polymer has good shear recovery performance. The results of viscoelastic test show that the energy storage modulus (G ") is higher than the loss modulus (G "), and the metal ion and phenoxyethylene group have complex reaction, which enhances the intermolecular force, and the formed spatial structure is more stable and difficult to be destroyed, and the viscoelastic is higher.

    参考文献
    [1] ZHU S J, XUE X S, ZHANG J, et al. Application and Optimization of the Rheological Model for a Hydrophobically Associating Dendrimer Polymer.[J]. Polymers, 2022, 14(9).
    [2] ZHANG L Q(张林强). Study on settlement law of proppant in slippery water[J]. Contemporary chemical industry(当代化工), 2017, 46(04): 711-714.
    [3] YANG S, MAO J C, YANG B, et al. High Performance Hydrophobic Associated Polymer for Fracturing Fluids with Low-Dosage[J]. Petroleum Chemistry, 2020, 60(2).
    [4] PAN Y(潘一), FENG J N(冯俊楠), YANG S C(杨双春), et al. Synthesis of thermo-salt-resistant hydrophobic associated polyacrylamide and its prospect[J]. Applied chemical industry(应用化工), 2018, 47(08): 1772-1777.
    [5] TANG T(唐瑭). Study on a fracturing fluid with high suspension sand ratio and low damage.[D]. Southwest Petroleum University(西南石油大学), 2018.
    [6] KANG W L, HOU X Y, CHEN C, et al. Study on rheological behavior and salt-thickening mechanism of a synthesized twin-tailed hydrophobically modified polyacrylamide[J]. Journal of Molecular Liquids, 2019, 294(C).
    [7] PU W F, DU D J, LIU R. Preparation and evaluation of supramolecular fracturing fluid of hydrophobically associative polymer and viscoelastic surfactant[J]. Journal of Petroleum Science and Engineering, 2018, 167.
    [8] MA X P, MU H L, HU Y Y, et al. Synthesis and properties of hydrophobically associating polymer fracturing fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626.
    [9] HUANG C H(黄彩贺). Study on sand carrying performance of fracturing fluid and rheological dynamics of crosslinking process[D]. East China University of Science and Technology(华东理工大学), 2015.
    [10] SHI J M, WU Z L, DENG Q C, et al. Synthesis of hydrophobically associating polymer: temperature resistance and salt tolerance properties[J]. Polymer Bulletin, 2021, 79.
    [11] ZHANG Z(张争). Study on sand carrying and transportation law of slippery water in fractured fracture[D]. Xi ''an Shiyou University(西安石油大学), 2018.
    [12] HE J(何静), LI T T(李天太), WANG M X(王满学), et al. Study on the influencing factors of the relationship between the viscosity of clean fracturing fluid and its suspended sand[J]. Journal of Yangtze University(长江大学学报), 2014, 11(14): 73-76.
    [13] WU W(吴伟), LIU P P(刘平平), SUN H(孙昊), et al. Synthesis and application of AAMS-1 hydrophobic association polymer thickener for fracturing fluid[J]. Drilling fluid and completion fluid(钻井液与完井液), 2016, 33(05): 114-118.
    [14] ZHANG Y, MAO J C, ZHAO J Z, et al. Preparation of a Novel Fracturing Fluid System with Excellent Elasticity and Low Friction[J]. Polymers, 2019, 11(10).
    [15] MAO J C, CAO H M, ZHANG H, et al. Design of salt-responsive low-viscosity and high-elasticity hydrophobic association polymers and study of association structure changes under high-salt conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650.
    [16] SHI X D(史雪冬). Viscoelastic properties and stability of high temperature resistant polymers[D]. Northeast Petroleum University(东北石油大学), 2015.
    [17] XUE X S(薛新生). Effect of molecular structure on viscoelasticity of associated polymers and their seepage characteristics in porous media[D]. Southwest Petroleum Institute(西南石油学院), 2005.
    [18] XIA H F(夏惠芬), ZHANG J R(张九然), LIU S Y(刘松原). Viscoelasticity of polyacrylamide solution and its influencing factors[J]. Journal of Daqing Petroleum Institute(大庆石油学院学报), 2011, 35(01): 37-41 115-116.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘雅梦,赖小娟,杨振福,Yasir M. F. Mukhtar,文新,卢丽娟.反相乳液制备缔合型耐盐聚合物及流变性能评价[J].精细化工,2024,41(1):

复制
分享
文章指标
  • 点击次数:54
  • 下载次数: 600
  • HTML阅读次数: 52
  • 引用次数: 0
历史
  • 收稿日期:2023-04-06
  • 最后修改日期:2023-07-13
  • 录用日期:2023-06-15
  • 在线发布日期: 2024-01-09
文章二维码