棒状V3O7?H2O电极材料的制备及印刷超级电容器
作者:
作者单位:

荆楚理工学院 电子信息工程学院

中图分类号:

O614.51;TS871.1

基金项目:

湖北省高等学校优秀中青年科技创新团队(T2022038),荆门市重点科技计划项目(2021YFZD045,2020YFZD007),大学生创新创业训练计划项目(S202311336001)


Fabrication of rod-like V3O7?H2O electrode material and printing of supercapacitors
Author:
Affiliation:

Electronic Information Engineering College,Jingchu University of Technology

Fund Project:

The Outstanding Young and Middle-Aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province (No. T2022038), Jingmen Key Science and Technology Project (Nos. 2021YFZD045, 2020YFZD007), Innovation and Entrepreneurship Training Program for College Students (No. S202311336001).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以五氧化二钒(V2O5)为原料,利用溶剂热法一步制备一水合七氧化三钒(V3O7?H2O)纳米棒,以V3O7?H2O纳米棒为电极材料,探究丝网印刷工艺对电极电化学性能的影响,结合丝网印刷制备电极并组装超级电容器。采用SEM、EDS、XPS、FTIR等对样品的形貌与结构进行表征,结果表明已成功制备V3O7?H2O纳米棒。在电化学测试中,丝网印刷电极比电容可达268.0 F/g(电流密度为0.3 A/g),经过5000次循环后比电容保持率85.9%,优于涂抹电极的比电容(246.0 F/g)和比电容保持率(68.0%),这得益于丝网印刷的油墨规则排列的结构。此外,组装的纽扣超级电容器同样表现出优异的电化学性能,比电容和电容保持率为134.2 F/g(0.5 A/g电流密度)和91.2%(5000次充放电循环),且当功率密度为413.0 W/kg时,能量密度最高可达22.0 W?h/kg。本研究为后续印刷储能器件的研究提供了一条可供借鉴的思路。

    Abstract:

    Vanadic oxide (V2O5) served as the raw material, and the vanadium trioxide (V3O7?H2O) nanorod is prepared via a one-step solvothermal method. The V3O7?H2O nanorods are used as electrode materials to explore the influence of screen-printing technology on the electrochemical performance of electrodes. Then, screen-printing technology is used to prepare electrodes, followed by the assembling of the coin supercapacitor. The results of morphology and structure characterized by SEM, EDS, XPS and FT-IR find that V3O7?H2O nanorods have been successfully synthesized. In the electrochemical performance test, the specific capacitance of the screen-printed electrode can reach 268.0 F/g (the current density is 0.3 A/g), and the specific capacitance retention is still 85.9% after 5000 charge/discharge cycles, which is superior to the smear electrode specific capacity (246.0 F/g) and specific capacitance retention (68.0%). The reason can be attributed to the regular arrangement of ink structure of screen printing. Moreover, the coin supercapacitors can exhibit excellent electrochemical performance with specific capacitance and capacitance retention of 134.2 F/g (0.5 A/g current density) and 91.2% (after 5000 charge/discharge cycles). When the power density is 413.0 W/kg, the energy density is as high as 22.0 W h/kg. In this study, which can provide a reference for further research of printed energy storage devices.

    参考文献
    [1] MU S N, LIU Q R, KIDKHUNTHOD P, et al. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries[J]. National Science Review, 2021, 8(7): 178.
    [2] Yi T F, SARI H M K, X.Z. Li, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: 105955.
    [3] MIAO L, DUAN H, ZHU D Z, et al. Boron "gluing" nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity[J]. Journal of Materials Chemistry A, 2021, 9: 2714-2724.
    [4] GU Y Y, MIAO L, YIN Y, et al. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors[J]. Chinese Chemical Letters, 2021, 32: 1491-1496.
    [5] MIAO L, SONG Z Y, ZHU D Z, et al. Ionic liquids for supercapacitive energy storage: a mini-review[J]. Energy Fuel, 2021, 35: 8443-8455.
    [6] LI C, ZHANG X, LV Z S, et al. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors[J]. Chemical Engineering Journal, 2021, 414: 128781.
    [7] XIE K, QIN X T, WANG X Z, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24(3): 347-352.
    [8] ALAM A, SAEED G, LIM S. Screen-printed activated carbon/silver nanocomposite electrode material for a high performance supercapacitor[J]. Materials Letters, 2020, 273: 127933.
    [9] FARAJI S, ANI F N. The development supercapacitor from activated carbon by electroless plating a review, Renew Sust[J]. Energy Review, 2015, 42: 823-834.
    [10] LIAO L, JIANG D, ZHENG K, et al. Industry-scale and environmentally stable Ti3C2Tx MXene based film for flexible energy storage devices[J]. Advanced Functional Materials, 2021, 31: 2103960.
    [11] FU H, ZHANG A, JIN F, et al. Origami and layered-shaped ZnNiFe-LDH synthesized on Cu(OH)2 nanorods array to enhance the energy storage capability[J] [J]. Colloid Interf. Sci, 2022, 607: 1269–1279.
    [12] CAO Z Y, WEI B Q. A perspective: carbon nanotube macro-films for energy storage[J]. Energy Environmental Science: EES, 2013, 6(11): 3183-3201.
    [13] HUANG J W (黄继伟), QIAN X R (钱学仁), AN X H (安显慧), at al. Research progress of flexible oxide electrode materials for supercapacitors [J]. Journal of Functional Materials (功能材料), 2019, 50(08): 8040-8050.
    [14] LEE S W, KWON S, KIM K M, at al. Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery[J]. Molecules,2021,26(22): 6950.
    [15] MOPOUNG S, SITTHIKHANKAEW R, MINGMOON N. Preparation of Anode Material for Lithium Battery from Activated Carbon [J]. International Journal of Renewable Energy Development, 2020, 10(1): 91.
    [16] YU K, WANG Y, WANG X, et al. Preparation of porous carbon anode materials for lithium-ion battery from rice husk[J]. Materials Letters, 2019, 253: 405-408.
    [17] YANG J, SAGAR R U R, ANWAR T, et al. Graphene foam as a stable anode material in lithium‐ion batteries[J]. International Journal of Energy Research, 2022, 46(4): 5226-5234.
    [18] GAN X L (甘学苓). Study on Preparation and Zinc-ion Batteries performance of Vanadium Oxide Electrode Materials[D]. Wuhan: Central China Normal University (华中师范大学), 2022.
    [19] KARADE S S, LALWANI S, EUM J H, at al. Coin cell fabricated symmetric supercapacitor device of two-steps synthesized V2O5 Nanorods[J]. Journal of Electroanalytical Chemistry, 2020, 864: 114080.
    [20] LU Z L (鲁中良), LI J (李坚), LI S (李赛) at al. Research Progress in Design and Manufacture of Graphene 3D Electrodes Based on 3D Printing Technology [J]. Journal of Mechanical Engineering (机械工程学报), 2021, 57(23): 169-181.
    [21]ZHANG Y (张勇), YANG J (杨净), YAN X H (闫新华), at al. Research progress in preparing nickel cobaltelectrode material by electrodeposition. attery Bimonthly (电池), 2021, 51(03): 305-309.
    [22] BAO Q L, WU J H, FAN L Q. Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors[J]. Journal of Energy Chemistry, 2017, 26: 1252-1259.
    [23] PUJARI R B, LOKHANDE A C, YADAV A A, at al. Synthesis of MnS microfibers for high performance flexible supercapacitors[J]. Materials Design, 2016, 108; 510-517.
    [24] YUN X W, XIONG Z Y, TU L, at al. Hierarchical porous graphene film: An ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance[J]. Carbon, 2017, 125: 308-317.
    [25] CATARINEU N R, LIN D, ZHU C, at al. High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes[J]. Chemical Engineering Journal, 2023, 465: 142544.
    [26] TU Q, LI X R, XIONG Z Y, at al. Screen-printed advanced all-solid-state symmetric supercapacitor using activated carbon on flexible nickel foam[J]. Journal of Energy Storage, 2022, 53: 105211.
    [27] ZHOU Y Y, QIU Z F, LV M K, at al. Preparation and characterization of V2O5 macro-plates[J]. Materials Letters, 2007, 61(19-20): 4073-4075.
    [28] TU Q, ZHANG Q, SUN X Y, at al. Construction of three-dimensional nickel-vanadium hydrotalcite with ball-flower architecture for screen-printed asymmetric supercapacitor[J]. Applied Surface Science, 2023, 615: 156347.
    [29] EVANS G P, POWELL M J, JOHNSON I D, at al. Room temperature vanadium dioxide-carbon nanotube gas sensors made via continuous hydrothermal flow synthesis Sensor[J]. Senssors and Actuators B-chemical, 2018, 255: 1119-1129.
    [30] REDDY C V S, WALKER J E H, WICKER S S A, et al. Synthesis of VO2 (B) nanorods for Li battery application[J]. Current Applied Physics, 2009, 9(6): 1195-1198.
    [31 BEKE S, K?R?SI L, PAPP S, at al. XRD and XPS analysis of laser treated vanadium oxide thin films[J]. Applied Surface Science, 2009, 255(24): 9779-9782.
    [32] MJEJRI I, ETTEYEB N, SEDIRI F. Hydrothermal synthesis of mesoporous rod-like nanocrystalline vanadium oxide hydrate V3O7.H2O from hydroquinone and V2O5[J]. Materials Research Bulletin, 2013: 3335-3341.
    [33] Ma J, Wu Q, Chen Y. An oxides-hydrothermal approach from bulky V2O5 powder to V3O7.H2O nanoribbons or V3O7 nanoflowers in various ethanol/water mixed solvent[J]. Materials Research Bulletin, 2009, 44(5): 1142-1147.
    [34] ZHOU X, WU G, WU J, et al. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(9): 3973-3982.
    [35] CHENG S Q, WENG X FWANG Q N, at al. Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen[J]. Chinese Journal of Catalysis , 2022, 43(04): 1092-1100.
    [36] LI M, Ai T T, KOU L J, at al. Synthesis and electrochemical performance of V2O5 nanosheets for supercapacitor[J]. Aip Advances, 2022, 12(5).
    [37] SONG M W (宋伟明), XU L Y (徐立洋), SUN L (孙立), at al. Synthesis of MCM-41 Mesoporous Carbon Materials and Their Electrochemical Performance[J]. Fine Chemicals (精细化工), 2017, 34(02): 128-133.
    [38] ZHANG Y L(张亚利),SUN D T(孙典亭),GUO G L(郭国霖), at al. Equivalent circuit transformation rules for similar graphs on electrochemical AC impedance complex plan and capacitance complex plan (Ⅱ)── transformation of equivalent circuits containing Warburg impedance [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2000(07): 1086-1092.
    [39] PENG C Y, JIN M M, HAN D, at al. Structural engineering of V2O5 nanobelts for flexible supercapacitors[J]. Materials Letters,2022, 320: 132391.
    [40] JAIN A, MANIPPADY S R, TANG R, at al. Vanadium oxide nanorods as an electrode material for solid state supercapacitor[J]. Scientific Reports, 2022, 12(1): 21024.
    [41] HOU Z Q, YANG Z G, GAO Y P, at al. Synthesis of vanadium oxides nanosheets as anode material for asymmetric supercapacitor[J]. Chemical Papers, 23:5074–5083.
    [42] KARACA E, PEKMEZ K, PEKMEZ N ?. Electrosynthesis of polypyrrole-vanadium oxide composites on graphite electrode in acetonitrile in the presence of carboxymethyl cellulose for electrochemical supercapacitors[J]. Electrochimica Acta, 2018, 273: 379-391.
    [43] LIU H J, ZHU W L, LONG D F, at al. Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors [J]. Applied Surface Science, 2019, 478: 383-392.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

涂倩,王婧璐,郑茵茵,林宝莹,张强,刘善培,陈良哲.棒状V3O7?H2O电极材料的制备及印刷超级电容器[J].精细化工,2024,41(5):

复制
分享
文章指标
  • 点击次数:38
  • 下载次数: 288
  • HTML阅读次数: 11
  • 引用次数: 0
历史
  • 收稿日期:2023-06-12
  • 最后修改日期:2023-08-23
  • 录用日期:2023-07-25
  • 在线发布日期: 2024-04-29
文章二维码