氧-氮等离子体表面改性石墨烯用于α,β-不饱和醛水相加氢反应
DOI:
CSTR:
作者:
作者单位:

1.常州大学药学院 生物与食品工程学院;2.常州大学石油化工学院;3.生物质高效炼制及高质化利用国家地方联合工程研究中心;4.常州大学药学院 生物与食品工程学院,生物质高效炼制及高质化利用国家地方联合工程研究中心

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Oxygen-ammonia plasma surface modified graphene for aqueous hydrogenation of α,β-unsaturated aldehydes
Author:
Affiliation:

1.School of Pharmacy School of Biological and Food Engineering,Changzhou University;2.School of Petrochemical Engineering,Changzhou University;3.National-Locial Joint Engineering Research Center of Biomass Refining and High Quality Utilzation;4.School of Pharmacy School of Biological and Food Engineering,Changzhou University,National-Locial Joint Engineering Research Center of Biomass Refining and High Quality Utilzation

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用冷等离子体表面改性技术在石墨烯表面引入适量含氮基团,通过优化等离子体气源、等离子体放电功率、放电时间和工作气压等工艺条件,高效制备具有两亲表面的氮掺杂石墨烯(NDGR)。采用傅里叶变换红外光谱(FT-IR)、拉曼光谱仪(Raman)、有机元素分析(OEA)、透射电子显微镜(TEM)和水接触角(WCA)等方法对其进行表征。接着以NDGR为载体,制备铂纳米催化剂Pt/NDGR,用于肉桂醛和巴豆醛水相加氢反应。结果表明,采用等离子体两步接枝工艺,即先以氧气(O2)为等离子体气源活化石墨烯表面,再以氨(NH3)为等离子体气源在石墨烯表面接枝含氮基团得到的氮掺杂石墨烯NDGR(O2-NH3)具有最佳的表面性质。与原始石墨烯负载Pt催化剂(Pt/GR)相比,最佳条件 (放电功率140 W, 工作气压200 Pa,放电时间6 min) 下制备的NDGR(O2-NH3)负载Pt催化剂Pt/NDGR(O2-NH3)在肉桂醛(CAL)和巴豆醛(CRAL)水相加氢反应中显示出优良的催化性能。反应条件为80 ℃,3 MPa下,Pt/NDGR(O2-NH3)在4 h内催化肉桂醛的转化率达98%,对不饱和醇肉桂醇(COL)保持高选择性(约84%);而在巴豆醛水相加氢反应中,Pt/NDGR(O-NH)的表观速率常数kapp达0.53 h-1,远高于Pt/GR (0.37 h-1)。接近完全反应时,Pt/NDGR(O-NH3)亦对巴豆醇(CROL)保持了高选择性(约40%)。Pt/NPGR(O2-NH3)的高催化性能得益于石墨烯表面接枝少量含氮基团后表面性质的增强,包括Pt纳米粒子锚定位点的增加、对底物的高吸附性能以及金属-载体间协同作用。

    Abstract:

    Nitrogen-doped graphene (NDGR) with amphiphilic surface was efficiently prepared by introducing nitrogen-containing groups on graphene by cold plasma surface modification. By adjusting plasma gas source, discharge power, discharge time and working pressure, the process was optimized. As-prepared NDGR was characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), organic elemental analysis (OEA), transmission electron microscopy (TEM) and water contact angles (WCA). Platinum nano-catalysts supported by NDGR (Pt/NDGR) were evaluated for selective hydrogenation of cinnamaldehyde and crotonaldehyde in water. The results showed that a nitrogen-doped graphene NDGR(O2-NH3) with the excellent surface properties was obtained by a two-step plasma grafting method, that is, using oxygen (O2) as plasma gas source to activate the graphene surface and then using ammonia (NH3) as plasma gas source to graft nitrogen-containing groups on the surface. Compared with graphene supported Pt catalyst (Pt/GR), Pt/NDGR(O2-NH3) prepared under the optimum conditions (discharge power 140 w, working pressure 200 Pa, discharge time 6 min) showed excellent catalytic performance in the aqueous hydrogenation of cinnamaldehyde (CAL) and crotonaldehyde (CRAL). Under the reaction conditions of 80 oC and 3 MPa, CAL conversion over Pt/NDGR(O2-NH3) reached 98% within 4 h, and the selectivity to unsaturated alcohol cinnamyl alcohol (COL) remained high (about 84%). In aqueous hydrogenation of CRAL, the apparent rate constant kapp over Pt/NDGR(O2-NH3) was 0.53 h-1, much higher than that of Pt/GR (0.37 h-1). The selectivity to CROL also remained high (about 40%) at nearly complete reaction. The high catalytic performance of Pt/NDGR(O2-NH3) was attributed to the enhanced properties of graphene surface after grafting a small number of nitrogen-containing groups on it, including the increased anchoring sites for Pt nano-particles, high adsorption performance to substrates and metal-support interaction.

    参考文献
    相似文献
    引证文献
引用本文

王一龙,王平,张盟,易霞,魏亚男,朱劼.氧-氮等离子体表面改性石墨烯用于α,β-不饱和醛水相加氢反应[J].精细化工,2024,41(7):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-16
  • 最后修改日期:2023-09-14
  • 录用日期:2023-08-28
  • 在线发布日期: 2024-07-11
  • 出版日期:
文章二维码