水性聚氨酯胶粘剂固含量提高策略的研究探索
作者单位:

华南理工大学

中图分类号:

TQ43?????

基金项目:

水性油墨和胶粘剂工程应用关键技术


Research and exploration of strategies for increasing solid content of waterborne polyurethane adhesive
Author:
Affiliation:

South China University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着环保意识和法规的加强,水性聚氨酯(WPU)作为一种环境友好型的水性树脂得到了广泛的应用和研究。目前,WPU产品在胶粘剂领域的主要问题之一是固含量,产品中过多的水会带来干燥、生产效率以及粘接性能方面的问题。本文综述了近年来关于制备高固含量低黏度的WPU的研究方法:优化相反转过程、增大空间利用率、减少水合层、内外乳化法结合、超支化结构等。总结了不同因素对相反转过程的影响,并阐述了如何通过改变工艺和设备来优化相反转过程。针对乳液粒子堆积密度极限、水合层厚度以及粘度等固含量受限制的因素,列举和阐述了相应的解决方案。通过提高固含量,将能解决水性聚氨酯胶粘剂干燥慢、施胶量不够的问题,对优化WPU胶粘剂的制备和使用有重要的实际意义。

    Abstract:

    With the strengthening of environmental awareness and regulations, waterborne polyurethane (WPU), as an environmentally friendly water-based resin, has been widely applied and studied. Currently, one of the main issues with WPU products in the adhesive field is the solid content. Excessive water content in the product leads to problems in drying, production efficiency, and adhesive performance. This paper provides a review of research methods for preparing high solids low viscosity WPU in recent years, including optimizing the phase inversion process, increasing space utilization, reducing hydration layer, combining internal and external emulsification methods, and hyperbranched structures. The review summarizes the impact of different factors on the phase inversion process and explains how to optimize this process through changes in techniques and equipment. Suggestions are presented for addressing factors that restrict solid content, such as limitations in emulsion particle packing density, hydration layer thickness, and viscosity. By increasing the solid content, the slow drying and insufficient bonding capacity issues in waterborne polyurethane adhesives can be resolved. This review has practical significance for optimizing the preparation and application of WPU adhesives.

    参考文献
    [1] 张东阳, 营飞, 马智俊, 等. 水性聚氨酯胶粘剂国内研究进展[J]. 粘接, 2019, 40(4): 53–57.
    [2] PERAZZO A, PREZIOSI V, GUIDO S. Phase inversion emulsification: current understanding and applications[J]. Advances in Colloid and Interface Science, 2015, 222: 581–599. DOI:10.1016/j.cis.2015.01.001.
    [3] WANG X, LI Q. A new method for preparing low viscosity and high solid content waterborne polyurethane—phase inversion research[J]. Progress in Organic Coatings, 2019, 131: 285–290. DOI:10.1016/j.porgcoat.2019.02.001.
    [4] DIAO S, ZHANG Y, ZHAO C, et al. Preparation of waterborne polyurethane based on different polyols: the effect of structure and crystallinity[J]. Journal of Polymer Research, 2022, 29(3): 105. DOI:10.1007/s10965-022-02960-4.
    [5] 李文杰, 郑燕玉, 郝丽丽. 影响水性聚氨酯相反转因素及产品性能的研究[J]. 分子科学学报, 2016, 32(04): 327–333. DOI:10.13563/j.cnki.jmolsci.2016.04.010.
    [6] DIAO S, ZHANG Y, ZHAO C, et al. Preparation of waterborne polyurethane with high solid content: the crystallinity control of soft segment and the organosilicon modification[J/OL]. Polymer Bulletin, 2023[2023–08–13]. https://doi.org/10.1007/s00289-023-04718-4. DOI:10.1007/s00289-023-04718-4.
    [7] LIU Y, MENG Z, WANG Y, 等. Analysis and modeling of viscosity for aqueous polyurethane dispersion as a function of shear rate, temperature, and solid content[J]. ACS Omega, 2020, 5(40): 26237–26244. DOI:10.1021/acsomega.0c03959.
    [8] ZHOU X, FANG C, LEI W, et al. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water: 1[J]. Scientific Reports, 2016, 6(1): 34574. DOI:10.1038/srep34574.
    [9] FANG C, PAN S, WANG Z, et al. Synthesis of waterborne polyurethane using snow as dispersant: structures and properties controlled by polyols utilization[J]. Journal of Materials Science & Technology, 2019, 35(7): 1491–1498. DOI:10.1016/j.jmst.2019.03.017.
    [10] ZHANG W, WANG D, WANG J-X, et al. High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content[J]. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1087–1099. DOI:10.1007/s11705-019-1895-z.
    [11] ZHOU X. Preparation and characterization of waterborne polyurethane with unique nanoparticles by controlling water[J]. Journal of Renewable Materials, 2022, 10(6): 1623–1639. DOI:10.32604/jrm.2022.018935.
    [12] LEI L, ZHONG L, LIN X, et al. Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink[J]. Chemical Engineering Journal, 2014, 253: 518–525. DOI:10.1016/j.cej.2014.05.044.
    [13] YAO A, LI H, LUO H, et al. A novel strategy for preparation of solvent-free high-solid content water-based polyurethane[J]. Journal of Polymer Research, 2023, 30(7): 258. DOI:10.1007/s10965-023-03628-3.
    [14] XIAN W, YUAN J, XIE Z, et al. Synthesis and properties of co2 copolymer-based waterborne polyurethane with high solid content[J]. Journal of Polymer Research, 2021, 28(7): 254. DOI:10.1007/s10965-021-02616-9.
    [15] 王武生, 王宇, 曾俊. 超高固含量水基聚氨酯分散体的合成理论与实践[J]. 聚氨酯工业, 2005(06): 1–5.
    [16] PENG S, JIN Y, SUN T, et al. Synthesis of high solid content waterborne polyurethanes with controllable bimodal particle size distribution[J/OL]. Journal of Applied Polymer Science, 2014, 131(12)[2022–09–17]. https://onlinelibrary.wiley.com/doi/abs/10.1002/app.40420. DOI:10.1002/app.40420.
    [17] PENG S-J, JIN Y, CHENG X-F, et al. A new method to synthesize high solid content waterborne polyurethanes by strict control of bimodal particle size distribution[J]. Progress in Organic Coatings, 2015, 86: 1–10. DOI:10.1016/j.porgcoat.2015.03.013.
    [18] HAN Y, HU J, XIN Z. In-situ incorporation of alkyl-grafted silica into waterborne polyurethane with high solid content for enhanced physical properties of coatings: 5[J]. Polymers, 2018, 10(5): 514. DOI:10.3390/polym10050514.
    [19] LI M, LIU F, LI Y, et al. Synthesis of stable cationic waterborne polyurethane with a high solid content: insight from simulation to experiment[J]. RSC Advances, 2017, 7(22): 13312–13324. DOI:10.1039/C7RA00647K.
    [20] HUANG H, ZHANG D, FANG S, et al. Tuning the optical properties of high solid waterborne polyurethane from matt to anti-glare[J]. Progress in Organic Coatings, 2019, 126: 44–52. DOI:10.1016/j.porgcoat.2018.10.019.
    [21] CHAI C, MA Y, LI G, et al. The preparation of high solid content waterborne polyurethane by special physical blending[J]. Progress in Organic Coatings, 2018, 115: 79–85. DOI:10.1016/j.porgcoat.2017.10.021.
    [22] HOU J, MA Y, ZHANG Z, et al. The relationship between solid content and particle size ratio of waterborne polyurethane: 6[J]. Coatings, 2019, 9(6): 401. DOI:10.3390/coatings9060401.
    [23] ZHANG H-M, HAN G-P, CHENG W-L, et al. Cationic co2-based waterborne polyurethane with high solid content and excellent ageing resistance[J]. Chinese Journal of Polymer Science, 2022, 40(10): 1183–1192. DOI:10.1007/s10118-022-2738-9.
    [24] QIAN L, XIANG-MEI W. Synthesis of a water polyurethane emulsion with high solid content, low viscosity via core–shell method[J]. Progress in Organic Coatings, 2019, 131: 435–440. DOI:10.1016/j.porgcoat.2019.02.041.
    [25] CHEN B, XIONG W, ZHOU C, et al. High solid and low viscosity waterborne polyurethane acrylate with excellent anti-corrosion and anti-bacterial performances[J]. Progress in Organic Coatings, 2023, 183: 107767. DOI:10.1016/j.porgcoat.2023.107767.
    [26] DAI S, GAO L, YAN F, et al. Synergistic of anionic and nonionic monomers for high solid content bio-based waterborne polyurethane sizing agents[J]. Composites Communications, 2023, 38: 101498. DOI:10.1016/j.coco.2023.101498.
    [27] 候婧辉, 张子涵, 马一飞, 等. 高固含量磺酸型水性聚氨酯的制备与性能[J]. 高分子材料科学与工程, 2020, 36(01): 152–158. DOI:10.16865/j.cnki.1000-7555.2019.0350.
    [28] LEE S K, KIM B K. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini[J]. Journal of Colloid and Interface Science, 2009, 336(1): 208–214. DOI:10.1016/j.jcis.2009.03.028.
    [29] BAO L, FAN H, CHEN Y, et al. Synthesis of 1,4-butanediol di(3-diethylamino-2-hydroxylpropyl alcohol) ether and cationic waterborne polyurethane with high solids content[J]. Advances in Polymer Technology, 2018, 37(3): 906–912. DOI:10.1002/adv.21736.
    [30] 刘斌, 曹文质, 曾俊. 内乳化-外乳化结合法制备高固含量wpu分散体[J]. 中国胶粘剂, 2016, 25(03): 18-20 24. DOI:10.13416/j.ca.2016.03.005.
    [31] ERDEM B, BHATTACHARJEE D. Ultra-high solid content polyurethane dispersion and a continuous process for producing ultra-high solid content polyurethane dispersions: 8821983[P/OL]. 2014–09–02[2023–03–16]. https://www.freepatentsonline.com/8821983.html.
    [32] LI B, XIN X, LIU H, et al. Synthesis and properties of polyurethane-acrylate hybrid emulsion via monomer dilution method and emulsification method[J]. Progress in Organic Coatings, 2017, 112: 263–269. DOI:10.1016/j.porgcoat.2017.08.001.
    [33] ZHU Z, LI R, ZHANG C, et al. Preparation and properties of high solid content and low viscosity waterborne polyurethane—acrylate emulsion with a reactive emulsifier: 2[J]. Polymers, 2018, 10(2): 154. DOI:10.3390/polym10020154.
    [34] GAO Y, LIU W, TANG L, 等. Synthesis and properties of star-shaped polyesters for high-solid-content two-component polyurethane wood coatings[J]. Journal of Macromolecular Science, Part A, 2021, 58(8): 550–556. DOI:10.1080/10601325.2021.1894075.
    [35] HAN Y, HU J, XIN Z. Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing[J]. Progress in Organic Coatings, 2019, 130: 8–16. DOI:10.1016/j.porgcoat.2019.01.031.
    [36] GAO L, YAN F, DAI S, et al. Synthesis of hyperbranched polyurethane sizing agent with high-solid content via self-catalytic method for improving interfacial adhesion of cf/pa6 composites[J]. Composites Science and Technology, 2022, 228: 109664. DOI:10.1016/j.compscitech.2022.109664.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏至远,叶代勇.水性聚氨酯胶粘剂固含量提高策略的研究探索[J].精细化工,2024,41(9):

复制
分享
文章指标
  • 点击次数:106
  • 下载次数: 1254
  • HTML阅读次数: 14
  • 引用次数: 0
历史
  • 收稿日期:2023-08-20
  • 最后修改日期:2023-10-21
  • 录用日期:2023-10-17
  • 在线发布日期: 2024-09-10
文章二维码