水热法制备Ni/CeO2-Al2O3及催化乙炔选择性加氢
作者:
作者单位:

1.西北大学 化工学院;2.陕西延长石油延安能源化工有限责任公司

中图分类号:

TQ423.93

基金项目:

国家自然科学基金项目(21978237);陕西省自然科学基础研究计划项目(2021JLM-19);陕西省重点研发计划项目(2022GY-154);陕西省创新能力支撑计划项目(2020TD-028);陕西省教育厅专项计划项目(No.20JK0842)


Preparation of Ni/CeO2-Al2O3 by hydrothermal method and catalytic selective hydrogenation of acetylene
Author:
Affiliation:

1.School of Chemical Engineering,Northwest University;2.School of Chemical Engineering,Northwest University,Xi''an;3.Shaanxi Yanchang Petroleum Yan''an Energy and Chemical Company Limited,Yan''an

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用水热法制备不同CeO2质量分数(x%)的xCeO2-Al2O3载体,再采用初湿浸渍法制备Ni质量分数2%的Ni/xCeO2-Al2O3,通过乙炔选择性加氢制乙烯反应,结合XRD、SEM、H2-TPR、BET、XPS、NH3-TPD、TG等表征手段对Ni/xCeO2-Al2O3进行评价。结果表明,CeO2质量分数5%制备的Ni/5CeO2-Al2O3,表现出最佳的催化性能,在280 ℃的反应温度下,乙炔转化率为99.7%,乙烯选择性为94.9%。Ni/5CeO2-Al2O3具有最大的比表面积(164.2 m2/g)和孔径(7.2 nm),以及适当的氧空位含量〔9.20%,以Ce3+/(Ce3++Ce4+)计,下同〕。CeO2的添加减弱了Ni/Al的强相互作用,减少了惰性NiAl2O4尖晶石相的生成,有效提升了催化剂的活性、选择性和稳定性。在30 h的反应时间内,乙炔转化率下降至90%,原因在于反应过程中造成的碳沉积降低了Ni/5CeO2-Al2O3的比表面积(151.5 m2/g)和孔径(6.6 nm)。

    Abstract:

    Selective hydrogenation of acetylene is a key process in the ethylene industry to remove acetylene impurities and obtain high-quality ethylene products. The development of highly active and selective catalyst for acetylene hydrogenation, which are green and economical, is currently a hot and difficult research topic in this field. In this paper, xCeO2-Al2O3 supports with different CeO2 additions were synthesized by hydrothermal method and evaluated experimentally. The results showed that 2Ni/5CeO2-Al2O3 exhibited excellent catalytic performance with 99.7% conversion and 94.9% selectivity at 280℃ compared with the catalyst without CeO2 addition. However, the excess CeO2 would reduce the specific surface area and pore volume of the catalyst, block the catalyst pores, and affect the dispersion of Ni species on the surface, which in turn would affect the reaction performance of the catalyst. The catalyst samples were characterized by XRD, H2-TPR, SEM, BET, XPS, NH3-TPD and TG. The excellent performance was found to be mainly attributed to the addition of CeO2 attenuating the strong Ni-Al interactions and reducing the generation of inert NiAl2O4 spinel phases, which effectively enhanced the activity, selectivity and stability of the catalyst.

    参考文献
    [1] HARIBAL V P, CHEN Y, NEAL L, et al. Intensification of Ethylene Production from Naphtha via a Redox Oxy-Cracking Scheme: Process Simulations and Analysis[J]. Engineering, 2018, 4(5): 8.
    [2] TAKHT RAVANCHI M, SAHEBDELFAR S, KOMEILI S. Acetylene selective hydrogenation: a technical review on catalytic aspects[J]. Reviews in Chemical Engineering, 2018, 34(2): 215-237.
    [3] Urmès C, SCHWEITZER J M, CABIAC A, et al. Kinetic Study of the Selective Hydrogenation of Acetylene over Supported Palladium under Tail-End Conditions[J]. Catalysts, 2019, 9: 180.
    [4] YAN X, BAO J, YUAN C, et al. Gold on carbon and titanium oxides composites: Highly efficient and stable acetylene hydrogenation in large excess of ethylene[J]. Journal of Catalysis, 2016, 344: 194-201.
    [5] SUN X, LI F, SHI J, et al. Gold nanoparticles supported on MgOx-Al2O3 composite oxide: an efficient catalyst for selective hydrogenation of acetylene[J]. Applied Surface Science, 2019, 487: 625-633.
    [6] BRIDIER B, JAVIER Pérez-Ramírez. Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation[J]. Journal of the American Chemical Society, 2010, 132(12): 4321-4327.
    [7] ALMISBAA Z, ALJAMA H A, ALMAJNOUNI K. Acetylene Semi-Hydrogenation on Intermetallic Ni-In Catalysts: Ni Ensemble and Acetylene Coverage Effects from a Theoretical Analysis[J]. ACS catalysis, 2023, 13(11): 7358-7370.
    [8] LI F, ZHAO B, TAN Y, et al. Preparation of Al2O3-CeO2 by Hydrothermal Method Supporting Copper Oxide for the Catalytic Oxidation of CO and C3H8[J]. Industrial Engineering Chemistry Research, 2022, 61(14): 4739-4751.
    [9] JIANG M, WANG B, YAO Y, et al. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Applied Surface Science, 2013, 285: 267-277.
    [10] WANG B, DING G, SHANG Y, et al. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Applied Catalysis A General, 2012, 431/432: 144-150.
    [11] GAO C, LIN Y J, LI Y, et al. Preparation and Characterization of Spherical Mesoporous CeO2-Al2O3 Composites with High Thermal Stability[J]. Industrial Engineering Chemistry Research, 2009, 48(14): 6544-6549.
    [12] PROFETI L P R, TICIANELLI E A, ASSAF E M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals[J]. International Journal of Hydrogen Energy, 2009, 34(12): 5049-5060.
    [13] DING M Y, TU J Y, WANG T J, et al. Bio-syngas methanation towards synthetic natural gas (SNG) over highly active Al2O3-CeO2 supported Ni catalyst[J]. Fuel Processing Technology, 2015, 134: 480-486.
    [14] GAMA L, RIBEIRO M A, BARROS B S, et al. Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method[J]. Journal of Alloys and Compounds, 2009, 483: 453-455.
    [15] 马源, 肖晴月, 岳君容, 等. CeO2-Al2O3复合载体负载Ni基催化剂催化COx共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428.MA Y, XIAO Q Y, YUE J R, et al. Performance of CeO2-Al2O3 composite support-loaded Ni-based catalysts for catalytic COx co-methanation[J]. Chemical Progress, 2023, 42(5): 2421-2428.
    [16] RILEY C, ANDREW De?La?Riva, ZHOU S, et al. Synthesis of Nickel‐Doped Ceria Catalysts for Selective Acetylene Hydrogenation[J]. ChemCatChem, 2019, 11(5): 1526-1533.
    [17] JIAO Y, ZHANG J, DU Y, et al. Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce-Al2O3 bifunctional catalysts: Effects of SrO addition[J]. International Journal of Hydrogen Energy, 2016, 41(31): 13436-13447.
    [18] A D M, A Z P, A K T, et al. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol-ScienceDirect[J]. Materials Research Bulletin, 2016, 74: 425-435.
    [19] TANG H, LI Y, LIU N, et al. A Highly‐Efficient KF‐Modified Nanorod Support Zr-Ce Oxide Catalyst and its Application[J]. ChemCatChem, 2018, 10(20): 4739-4746.
    [20] DUFRESNE P, PAYEN E, GRIMBLOT J, et al. Study of nickel-molybdenum-.gamma.-aluminum oxide catalysts by x-ray photoelectron and Raman spectroscopy. Comparison with cobalt-molybdenum-.gamma.-aluminum oxide catalysts[J]. Journal of Physical Chemistry, 1981, 85(16): 2344-2351.
    [21] L, JUN, SALVATI, et al. ChemInform Abstract: Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and raman spectroscopies [J]. Chemischer Informationsdienst, 1982, 13(8): 10.
    [22] GARCIA-Garcia, F, J, et al. Quantitative analysis of Ni 2p photoemission in NiO and Ni diluted in a SiO2 matrix[J]. Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces, 2016, 644: 46-52.
    [23] YANG T, ALMEIDA C M R D, RAMASAMY D, et al. A detailed study of Au-Ni bimetal synthesized by the phase separation mechanism for the cathode of low-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2014, 269: 46-53.
    [24] GAO W, ZHANG Z, LI J, et al. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation[J]. Nanoscale, 2015, 7(27): 11686-11691.
    [25] CHEN L, ZHU Y, ZHENG H. Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts[J]. Journal of molecular catalysis, A. Chemical, 2011, 351: 217-227.
    [26] FU L, LI Y, CUI H, et al. Highly stable and selective catalytic deoxygenation of renewable bio-lipids over Ni/CeO2-Al2O3 for N-alkanes[J]. Applied Catalysis A General, 2021, 623: 118-258,
    [27] 陈婷, 管斌, 林赫, 等. 原位漫反射傅里叶变换红外光谱研究锰铁基催化剂上低温选择性催化还原反应机理[J]. 催化学报, 2014, 35(3): 294-301.CHEN T, GUAN B, LIN H, et al. In Situ Diffuse Reflection Fourier Transform Infrared Spectroscopy Study on the Mechanism of Low Temperature Selective Catalytic Reduction Reaction on Manganese Iron Based Catalysts[J]. Journal of Catalysis, 2014, 35(3): 294-301.
    [28] PARASTAEV A, MURAVEV V, OSTA E H, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts[J]. Nature Catalysis, 2020, 3: 526-533.
    [29] JIAO Y, ZHANG J, DU Y, et al. Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce-Al2O3 bifunctional catalysts: Effects of SrO addition[J]. International Journal of Hydrogen Energy, 2016, 41(31): 13436-13447.
    [30] Méndez F J, PICCOLO L, SOLANO R, et al. Promoting effect of ceria on the performance of NiPd/CeO2-Al2O3 catalysts for the selective hydrogenation of 1,3-butadiene in the presence of 1-butene[J]. New Journal of Chemistry, 2018, 42(13): 11165-11173.
    引证文献
引用本文

王颖侠,潘柳依,苏涛,李冬,李稳宏.水热法制备Ni/CeO2-Al2O3及催化乙炔选择性加氢[J].精细化工,2024,41(11):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-25
  • 最后修改日期:2024-01-26
  • 录用日期:2023-12-25
  • 在线发布日期: 2024-11-08
文章二维码