植物纤维自支撑MnO2/活性炭电极的绿色制备及其赝电容超级电容器性能
DOI:
CSTR:
作者:
作者单位:

1.三峡大学材料与化工学院、湖北宜化集团有限责任公司;2.三峡大学材料与化工学院;3.湖北宜化集团有限责任公司;4.三峡大学材料与化工学院,宜昌 湖北 443200;5.湖北宜化集团有限责任公司,宜昌 湖北 443200

作者简介:

通讯作者:

中图分类号:

TQ630

基金项目:

宜昌市科技研究与开发项目(A-22-01-042);湖北省自然科学基金联合基金(JCZRLH202400248);湖北省能源和环境材料化学学科创新引智基地(2018-19-1);国家自然科学基金(22308192);


Green Preparation of Plant Fiber Based Self-Supporting MnO2/Activated Carbon Electrode and its Pseudocapacitive Supercapacitor Performance
Author:
Affiliation:

1. College of Materials and Chemical Engineering, China Three Gorges University 443200, Yichang, China;2. Hubei Yihua Group Co., Ltd. 443200, Yichang, China;3.Three Gorges University;4.College of Materials and Chemical Engineering, China Three Gorges University 443200, Yichang, China;5.Hubei Yihua Group Co., Ltd. 443200, Yichang, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现电极的绿色制备,以棉纤维、纳米纤维素、羧甲基纤维素钠和共聚丙烯酸酯乳液为粘接剂、炭黑(CB)和碳纤维(CF)为导电剂、活性炭(AC)为活性物质、水为分散剂制备自支撑电极(SSE);为了进一步提高电极导电性,采用自制CB导电液对SSE导电强化处理构建自支撑导电增强电极(CSSE)。通过SEM、BET氮吸附、接触角和电化学性能测试,结果表明SSE具有丰富的孔洞结构,电解液可快速润湿电极;导电强化可有效提高电极导电性,电极具有丰富的离子微通道和导电通路。为了进一步提高超级电容器(SC)能量密度,采用简单的一步水相碳还原法制备AC负载二氧化锰(MnO2@AC),然后制备CSSE-MnO2电极,并与AC电极组装非对称超级电容器ASC(CSSE-MnO2//AC),并考察其在中性Na2SO4电解质和氧化还原电解液中的电化学性能。研究表明:在中性Na2SO4电解液中加入氧化还原活性电解质柠檬酸铁铵,可以在电极表面发生快速可逆的氧化还原反应,进一步提高ASC在2.0~2.4 V电压窗内的电化学性能,组装的ASC表现出极高的面积比电容(在电流密度为3~11 mA/cm2时为1.5 F/cm2)、宽的工作电压窗口(2.0~2.4 V)、令人满意的倍率性能(在电流密度为84 mA/cm2时为1.2 F/cm2) 和出色的循环稳定性(在2 A/g下循环10000次后仍保持80%的初始容量);在功率密度为300 W/kg时,具有高达37.6 Wh/kg的能量密度。CSSE制备工艺简便且成本低廉,为开发廉价安全储能器件提供了一种新的、简单可行的策略。

    Abstract:

    To achieve the green preparation of electrodes, a self-supporting electrode (SSE) was prepared using cotton fiber, nano-cellulose, sodium carboxymethyl cellulose, and copolyacrylate emulsion as adhesives, carbon black (CB) and carbon fiber (CF) as conductive agents, activated carbon (AC) as the active material, and water as the dispersant. To further enhance the conductivity of the electrode, a self-made CB conductive slurry was used to conductively strengthen the SSE, creating a conductively strengthened self-supporting electrode (CSSE). Characterization through SEM, BET nitrogen adsorption, contact angle, and electrochemical performance tests revealed that the SSE possesses a rich porous structure that allows rapid wetting by the electrolyte. The conductive strengthening effectively improved the conductivity of the electrode, resulting in abundant ionic microchannels and conductive pathways. To further boost the energy density of supercapacitors (SC), AC loaded with manganese dioxide (MnO2@AC) powder was prepared using a simple one-step aqueous carbon reduction method. Subsequently, a CSSE-MnO2 electrode was fabricated and paired with an AC electrode to assemble an asymmetric supercapacitor known as ASC (CSSE-MnO2//AC). Its electrochemical performance was evaluated in both neutral Na2SO4 electrolyte and redox electrolytes. The study found that the addition of redox-active electrolyte ammonium iron citrate to the neutral Na2SO4 electrolyte enables rapid and reversible redox reactions on the electrode surface, further enhancing the electrochemical performance of the ASC within a voltage window of 2.0~2.4 V. The assembled ASC exhibited exceptional areal capacitance (1.5 F/cm2 at a current density of 3~11 mA/cm2), a wide operating voltage window (2.0~2.4 V), satisfactory rate capability (1.2 F/cm2 at a current density of 84 mA/cm2), and outstanding cycling stability (maintaining 80% of its initial capacity after 10,000 cycles at 2 A/g). It achieved a remarkable energy density of 37.6 Wh/kg at a power density of 300 W/kg. The simple and cost-effective preparation process of CSSE offers a novel and feasible strategy for developing inexpensive, and safe energy storage devices.

    参考文献
    相似文献
    引证文献
引用本文

黄志亮,周昌林,吴星胜,李建国,骆长江,汪磊,蔡忠.植物纤维自支撑MnO2/活性炭电极的绿色制备及其赝电容超级电容器性能[J].精细化工,2025,42(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-05-26
  • 录用日期:2024-04-23
  • 在线发布日期: 2025-04-27
  • 出版日期:
文章二维码