Synthesis and Electrochemical Performance of Carbon-coated LiMnVO4 Nanomaterials
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

O611

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Carbon-coated LiMnVO4 nanomaterials with different carbon mass fraction were synthesized by a combined sol-gel reaction and hydrothermal process, using LiAc•2H2O, Mn(Ac)2•4H2O, V2O5 and H2O2 as raw materials and glucose as carbon source. The morphology and structure were characterized by SEM、TEM、XRD、Raman、EDS、TG. The results indicated that the as-prepared samples presented cubic crystal structure, and had good dispersibility after carbon coated. Electrochemical measurement results confirmed that carbon-coated LiMnVO4 nanomaterials with different carbon mass fraction (0%, 5%, 10% and 15%) as anode materials for LIBs delivered initial reversible capacities of 682, 686, 696 and 580 mAh/g under the same conditions, remained 226, 336, 513 and 440 mAh/g after 60 cycles. Hence, carbon-coated LiMnVO4 nanomaterials with 10% carbon mass fraction have better cycling stability and higher reversible capacity than others.The appropriate carbon mass fraction not only increases the interface stability of nanomaterials, inhibits the growth and agglomeration of grains, but also improves the electronic conductivity of composite electrode materials.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 02,2017
  • Revised:March 08,2018
  • Adopted:March 19,2018
  • Online: November 26,2021
  • Published:
Article QR Code