Characterization of Ni2P/Fe-HAP Catalyst and Its Surface Interaction Mechanism in Phenol Hydrogenation
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The carrier Fe-HAP was synthesized by ion exchange method using commercially available low-grade HAP as raw material, and then supported Ni2P/HAP and Ni2P/Fe-HAP catalysts were prepared by impregnation method. The catalyst was characterized by N2 adsorption-desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry (TG). Doping Fe3+ greatly increases the specific surface area of the carrier, Ni2P dispersed on the surface of Fe-HAP and good thermal stability. The reaction system was prepared by hydrogenation of phenol to cyclohexanone. The catalytic performance of Ni2P/HAP and Ni2P/Fe-HAP catalysts was compared using cyclohexanone prepared from phenol hydrogenation as the reaction system at a reaction temperature of 150 ° C, a pressure of 0.5 MPa, and a time of 3.5 h. It was found that the Ni2P/Fe-HAP catalyst showed good catalytic activity and cyclohexanone selectivity.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 19,2019
  • Revised:March 19,2020
  • Adopted:March 23,2020
  • Online: April 13,2020
  • Published:
Article QR Code