Preparation of NiO/MgAl2O4 catalysts by ball-milling method for catalytic lean burn of high-diluted methane
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    NiO catalysts supported on MgAl2O4 spinel were prepared by ball-milling method, and the effects of Ni source, NiO loading, ball-to-powder ratio, ball-milling speed and calcination temperature on catalytic lean burn of high-diluted methane were investigated with instruments like H2-TPR, BET, XRD and SEM, etc. Weaker interaction between the Ni precursor and carrier was found in catalysts prepared by ball-milling than by impregnation or deposition-precipitation, to produce the NiO species with higher catalytic activity after calcination. In ball milling, the factors of Ni source and loading, ball-to-powder ratio and ball-milling speed, and calcination temperature as well, all can affect catalytic performance by altering the grain size or bonding state of NiO species on carrier surface. The NiO/MgAl2O4 catalyst prepared from nickel acetate with 10% in mass fraction of NiO loading, ball-milled at ball-to-powder ratio of 2∶1 and 400 r/min, and calcined at 700℃ has demonstrated better stability and activity, and its pseudo first-order reaction rate constant at 600℃ was 0.489 L/(g·s), which is higher than that of La0.8Ca0.2FeO3 or La0.8Sr0.2MnO3 perovskite supported on MgAl2O4 spinel.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 22,2020
  • Revised:March 11,2020
  • Adopted:March 27,2020
  • Online: April 13,2020
  • Published:
Article QR Code