Supramolecular micro-nano coating based on strong hydrogen bonding modified filter membrane
DOI:
CSTR:
Author:
Affiliation:

1.School of Naval Architecture and Maritime,Zhejiang Ocean University;2.School of Marine Engineering Equipment,Zhejiang Ocean University;3.School of Energy and Power Engineering,Jiangsu University

Clc Number:

Fund Project:

National Natural Science Foundation of China (No. 51606168); Senior Talents Research Fundation of Jiangsu University (21JDG048); Research and Practice Project of Energy and Power Teaching in Colleges and Universities (NDJZW2021Z-45)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the issue of poor recyclability of oil/water separated filter membrane, tannic acid-copper (TA-CuⅡ) was adhered by supramolecular binder of tannic acid-polyvinyl alcohol (TA-PVA) to form tannic acid-polyvinyl alcohol-copper (TA-PVA-CuⅡ) coating modified polyvinylidene fluoride (PVDF) filter membrane, and the superhydrophilic/underwater superoleophobic TA-PVA-CuⅡ@PVDF membrane with stable micro-nano coating was prepared. The results showed that under the function of hydrophilic micro-nano coating of TA-PVA-CuⅡ, the water contact angle and underwater oil contact angle of TA-PVA-CuⅡ@PVDF membrane respectively was 0° and 151.0°. In addition, the membrane flux and separation efficiency of TA-PVA-CuⅡ@PVDF membrane about emulsified oil could reach 1169.30 L/(m2·h) and 99.99%, respectively, which exhibited excellent oil/water separation performance. Moreover, the effect of CuⅡ modification time on the recyclability and coating durability of TA-PVA-CuⅡ@PVDF membrane was compared and analyzed. It was found that the TA-PVA-CuⅡ@PVDF membrane modified by CuⅡ for 20 min had the best recyclability and coating durability with 15 cycles of separation times and the flux change rate of which was 6.6%.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 07,2023
  • Revised:August 05,2023
  • Adopted:August 07,2023
  • Online: April 11,2024
  • Published:
Article QR Code