Preparation and properties of carboxymethyl chitosan-castor oil-based polyurethane pesticide sustained-release microspheres
DOI:
CSTR:
Author:
Affiliation:

Zhongkai University of Agriculture and Engineering

Clc Number:

O636.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Carboxymethyl chitosan-castor oil-based polyurethane microspheres (CO-CMCS-PU) were prepared from carboxymethyl chitosan (CMCS), castor oil (CO) and isophorone diisocyanate (IPDI) by self-emulsification, and drug-loaded microspheres (CO-CMCS-PU@AVM) were obtained by loading avermectin (AVM) by molecular self-assembly. The structure and morphology of the product were characterized by FTIR, 1HNMR, SEM and TGA, and the encapsulation efficiency, slow-release performance, anti-ultraviolet performance, leaf contact angle and adhesion performance of drug-loaded microspheres with different doses were explored. The results showed that compared with AVM dispersion, the retention rate of AVM in drug-loaded microspheres increased to 43% after ultraviolet irradiation, which indicated that CO-CMCS-PU carrier had good ultraviolet resistance. Compared with AVM dispersion, the contact angle of drug-loaded microspheres on cucumber leaves decreased by more than 20%, and the retention capacity increased by more than 40%, which indicated that they had good adhesion and wettability on cucumber leaves. The encapsulation efficiency of drug-loaded microspheres can reach more than 80%, which has good slow-release and pH-responsive release performance. The drug release behavior conforms to the First-order kinetic model, and the drug release is controlled by Fickian diffusion.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 26,2023
  • Revised:July 06,2023
  • Adopted:July 07,2023
  • Online: January 09,2024
  • Published:
Article QR Code