Abstract:Vanadic oxide (V2O5) served as the raw material, and the vanadium trioxide (V3O7?H2O) nanorod is prepared via a one-step solvothermal method. The V3O7?H2O nanorods are used as electrode materials to explore the influence of screen-printing technology on the electrochemical performance of electrodes. Then, screen-printing technology is used to prepare electrodes, followed by the assembling of the coin supercapacitor. The results of morphology and structure characterized by SEM, EDS, XPS and FT-IR find that V3O7?H2O nanorods have been successfully synthesized. In the electrochemical performance test, the specific capacitance of the screen-printed electrode can reach 268.0 F/g (the current density is 0.3 A/g), and the specific capacitance retention is still 85.9% after 5000 charge/discharge cycles, which is superior to the smear electrode specific capacity (246.0 F/g) and specific capacitance retention (68.0%). The reason can be attributed to the regular arrangement of ink structure of screen printing. Moreover, the coin supercapacitors can exhibit excellent electrochemical performance with specific capacitance and capacitance retention of 134.2 F/g (0.5 A/g current density) and 91.2% (after 5000 charge/discharge cycles). When the power density is 413.0 W/kg, the energy density is as high as 22.0 W h/kg. In this study, which can provide a reference for further research of printed energy storage devices.