{{item.text}}
白忠薛1,4,王学川1,2,4*,冯宇宇1,4,冯练享3,李佳俊1,4,李 彤2,4,潘伟佳1,4,刘新华1,2,4*
(1.陕西科技大学 轻工科学与工程学院,轻化工程国家级实验教学示范中心,陕西 西安 710021;2.陕西科技大学 化学与化工学院,陕西 西安 710021;3.山东力厚轻工新材料有限公司,山东 济南 250000;4.陕西科技大学 生物质与功能材料研究所,陕西 西安 710021)
摘要:生物质材料是由动物、植物以及微生物等生命体衍生得到的材料,具有来源广泛、绿色安全、可再生和可生物降解等重要特征。生物质基水凝胶是以天然生物质大分子为原材料制备的水凝胶,已广泛应用于污染物吸附、药物载体、生物工程以及多功能传感等领域。该文简要介绍了蛋白质类、纤维素类、海藻酸盐类、淀粉类和壳聚糖类水凝胶的特点。归纳了生物质基水凝胶在生物、应变、气体、湿度和温度方面的最新传感应用。最后,结合目前研究现状,指出了生物质基水凝胶未来推广应用面临的挑战,并提出了针对性解决思路。
关键词:生物质材料;水凝胶;传感器;生物检测;应变传感
中图分类号:TQ427.26
文献标识码:A
文章编号:1003-5214 (2023) 11-2357-09
收稿日期:2023-02-03; 定用日期:2023-04-03;
DOI: 10.13550/j.jxhg.20230063
基金项目:国家自然科学基金项目(2207081675、22278257);中国博士后科学基金项目(2021M692000);陕西省重点研发计划项目(2022GY-272);陕西省高校科协青年人才支持计划项目(20200424);教育厅产学研结合创新资助项目-2018 年“蓝火计划(惠州)”(CXZJHZ201801)
作者简介:白忠薛(1995—),男,博士生,E-mail:bs210111023@sust.edu.cn。联系人:王学川(1963—),男,教授,E-mail:wangxc@sust.edu.cn;刘新华(1991—),男,副教授,E-mail:liuxinhua@sust.edu.cn。
Progress on sensing applications of biomass-based hydrogels
BAI Zhongxue1,4, WANG Xuechuan1,2,4*, FENG Yuyu1,4, FENG Lianxiang3,LI Jiajun1,4, LI Tong2,4, PAN Weijia1,4, LIU Xinhua1,2,4*
(1.College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; 2.College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi,China; 3. Shandong Leahou Light Industrial of New Material Co., Ltd., Jinan 250000, Shandong, China; 4. Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China)
Abstract: Biomass materials, derived from living organisms such as animals, plants, and microorganisms,show important characteristics such as resourceful, green and safe, renewable, and biodegradable properties.Furthermore, biomass-based hydrogels, prepared from natural biomass macromolecules, have been widely used in pollutant adsorption, drug delivery, bioengineering, and multifunctional sensing.Herein, the characteristics of hydrogels made from protein, cellulose, alginate, starch, and chitosan were briefly introduced.Meanwhile, the latest sensing applications of biomass-based hydrogels in biology, strain, gas,humidity, and temperature were summarized.Finally, in consideration of the current research status, the challenges of the future applications of biomass-based hydrogels were pointed out and targeted solutions were proposed.
Key words: biomass materials; hydrogels; sensors; bio-detection; strain sensing
生物质材料是由动物、植物及微生物等生命体衍生得到的材料,具有可再生和可生物降解的重要特征。生物质材料资源丰富、来源广泛,还可以保护环境、节约其他资源、支撑人类的可持续发展[1-3]。水凝胶具有性质柔软、能保持一定的形状、能吸收大量的水、对环境敏感、来源丰富、价格低廉等优异特点[4-6]。生物质基水凝胶是基于蛋白质、纤维素、海藻酸盐、淀粉、壳聚糖等生物质材料制得的水凝胶,具有良好的生物相容性和生物可降解性等[7-9]。目前,已经开发出大量多功能型生物质基水凝胶,主要性能包括自愈合性、抗菌性、黏附性、导电性、紫外屏蔽效能、光学透明性能和刺激响应性能等。
生物质基水凝胶因其结构和性能上的优点而被广泛用于制备功能型传感器并应用于生物、应变、气体、湿度和温度等多种传感。如图1 所示,本文简要介绍了生物质基水凝胶的不同种类和特点,并详细介绍了其在传感领域的最新应用研究,旨在为相关领域的研究提供一定参考和指导。
图1 不同种类生物质基水凝胶及其应用
Fig.1 Different types and applications of biomass-based hydrogels
生物质基水凝胶结构性质稳定,具有良好的力学性能、生物相容性、可降解性、吸湿保湿性、生物再生性、生物活性、形状记忆性能以及形状自适应性等诸多优异性能[10]。目前,常用的生物质基水凝胶包括蛋白质类、纤维素类、海藻酸盐类、淀粉类和壳聚糖类等。
蛋白质是由氨基酸组成的高分子化合物,氨基酸先通过脱水缩合形成多肽,形成的多肽再通过盘曲、折叠、修饰最终形成蛋白质。蛋白质普遍具有良好的分散性、湿润性、持水能力和凝胶作用等特点。
蛋白质类水凝胶是蛋白质分子聚集的现象,是变性的蛋白质分子间排斥和吸引相互作用力平衡的结果,网络结构是由随机的或螺旋结构的多肽链组成。蛋白质类水凝胶一般具有性质稳定、力学性能较好、生物相容性等特点,但也存在微观结构稳定性差等不足。蛋白质类水凝胶已被应用于吸附剂[11]、组织支架[12]、药物控释载体[13]、生物器官模型、促进土壤肥力和保水性、延长生物降解[14]、压阻传感器[15]、压力传感器[16]等领域。
纤维素是由葡萄糖组成的大分子多糖,是通过β-D-葡萄糖残基彼此以1,4-苷键连接而成。纤维素普遍具有天然的亲水性、较高的韧性和强度等特点。
纤维素类水凝胶通常是用水溶性纤维素衍生物通过化学和物理交联制得。纤维素类水凝胶一般无色,具有良好的光学透明度、机械强度、生物相容性和环境友好性等特点,但也存在力学性能差等不足。纤维素类水凝胶已被开发应用于组织工程[17]、伤口敷料[18]、污染物吸附剂[19]、复杂伤口治疗[20]、刺激肝脏再生[21]、柔性电子皮肤[22]、应变传感器[23]等领域。
海藻酸盐是由海藻酸与金属离子组成的盐类,海藻酸盐分子是由(1→4)-β 交联的D-甘露糖醛酸和(1→4)-α 交联的古洛糖醛酸组成的长链聚合物。海藻酸盐普遍具有增稠性、凝胶性和成膜性等特点。
海藻酸盐类水凝胶通常是由G 单元上含有的羧基、羟基与二价阳离子键合形成。海藻酸盐类水凝胶一般具有良好的生物相容性、可降解性、吸湿保湿性、生物再生性、生物活性等特点,但也存在过强的吸水性、缺少细胞识别位点等不足。海藻酸盐类水凝胶已被开发应用于吸附染料、皮肤再生[24]、软组织工程[25]、电池电极[26]、有机污染物吸附剂[27]、湿度传感[28]、电化学传感[29]等领域。
淀粉是由葡萄糖分子聚合而成的多糖,淀粉分子直链部分由α-1,4 糖苷键连接,分支处由α-1,6 糖苷键连接,且分子链上含有大量的羟基。淀粉普遍具有流变性、凝胶性、热黏性等特点。
淀粉类水凝胶通常是由共价交联和氢键的相互作用而被快速制备。淀粉类水凝胶一般具有良好的生物可降解性、生物相容性、无毒等特点,但也存在耐水性差等不足。淀粉类水凝胶已被开发应用于伤口敷料[30]、运动检测[31]、施胶剂[32]、药物递送装置、太阳能驱动水蒸发器[33]、可穿戴电子设备[22]等领域。
壳聚糖是由氨基葡萄糖分子组成的糖类。壳聚糖分子具有规整的分子链,其结构单元中存在—NH2 基团。壳聚糖普遍具有生物降解性、细胞亲和性、生物效应、无毒性、抑菌、抗癌、降脂、增强免疫等特点。
壳聚糖类水凝胶是由壳聚糖及其衍生物富含的羟基和氨基通过接枝改性、化学交联、聚电解质复合等方法制备。壳聚糖类水凝胶一般具有低毒性、良好生物相容性、生物降解性等特点,但也存在强度不够、溶胀度小等不足。壳聚糖类水凝胶已被开发应用于吸附剂[34]、光催化[35]、封装材料[36]、药物传递、细胞摄取[37]、传感超级电容器[38]、柔性可拉伸传感器[39]等领域。
由于具有独特的结构特征、良好的生物特性和优异的应用特点,生物质基水凝胶被广泛用于构筑功能型传感器,并应用于生物、应变、气体、湿度和温度多种传感[40-42]。
生物传感是指对生物物质敏感并将其浓度变化转换为电信号变化。生物质基水凝胶具有选择性好、灵敏度高、分析速度快、成本低等特点[43],在血糖检测、蛋白质检测、微小核糖核酸(MiRNA)检测、无机盐检测等方面具有广泛应用[44]。
2.1.1 血糖检测
生物质基水凝胶可用于制备高吸水性和高血糖灵敏度的生物传感器[45]。为提高在人体血清中检测的准确性,SHEN 等[46]开发了一种具有荧光生物探针的自修复羧甲基壳聚糖(CMCS)/氧化羧甲基纤维素(OCMC)水凝胶,用于葡萄糖检测。在这个生物传感系统中,金纳米簇(AuNCs)和葡萄糖氧化酶(GOx)被封装到CMCS/OCMC 水凝胶基质中作为荧光生物探针。具有荧光生物探针的CMCS/OCMC水凝胶对葡萄糖传感表现出高灵敏度,线性检测范围为0.01~5 mmol/L,检测限为0.029 mmol/L,涵盖了临床检测中的葡萄糖水平。GUNATILAKE 等[47]提出将合成的TiO2纳米管的超亲水性和毛细血管特性融入海藻酸盐基质,合成了一种新型的三维TiO2 纳米管/海藻酸盐水凝胶,用于检测葡萄糖。此水凝胶传感器减少了葡萄糖的检测时间,同时在基质中获得了葡萄糖的快速和均匀的比色检测。随后,KIM等[48]开发了由聚-γ-谷氨酸(PGA)和壳聚糖制成的水凝胶,该水凝胶可有效地将GOx 和磁性纳米粒子(MNP)保留在其中。葡萄糖检测依赖于在葡萄糖存在下通过捕获的GOx 介导的催化作用生成H2O2,使用这种策略,目标葡萄糖可以在5~100 μmol/L 的宽线性范围内成功被检测到,最低检测限为 3 μmol/L,足以诊断人血中的高水平葡萄糖(高血糖)。
为了赋予真实血液样本良好的重现性,KIM 等[49]制备了与反离子电泳电极接触的透明聚乙烯醇/β-环糊精聚合物纳米纤维(NF)水凝胶,可用于无创连续监测高达1 mmol/L 的间质液葡萄糖含量的生物传感器平台。该平台具有宽线性范围、高灵敏度(47.2 μA·L/mmol)、低传感极限(0.01 mmol/L),可以准确测量人血清葡萄糖浓度。如图2 所示,WANG 等[50]以纳米纤维素(CNF)、聚乙烯醇(PVA)、碳点(CQs)、无水乙二胺(EDA)等为主要原料,利用原位水热法成功制得了一种新型多功能水凝胶(NPC)。该水凝胶可在室温(25 ℃)下进行自我修复,并显示出双发射荧光和高机械强度(拉伸强度高达2.98 MPa)。生物质基水凝胶的电容式传感器对葡萄糖浓度表现出出色的线性电容响应能力,并实现了具有多个线性相关性的实时葡萄糖检测。最近,LIANG 等[51]设计了一种基于季铵化壳聚糖和氧化葡聚糖的自修复水凝胶,并将CeO2/MnO2 中空纳米球在水凝胶中作为电催化介质共价连接。葡萄糖氧化酶通过与CeO2/MnO2中空纳米球的强静电相互作用而装载。水凝胶在可弯曲芯片上的共价键形成了一个葡萄糖传感器,该传感器显示出宽线性范围(1~111 mmol/L)、快速响应(<3 s)和高灵敏度〔176 μA·L/(mmol·cm2)〕。
图2 一步水热法制备的自愈水凝胶的示意图及其自愈机制[50]
Fig.2 Schematic diagram of self-healing hydrogel prepared by one-step hydrothermal method and its self-healing mechanism[50]
2.1.2 蛋白质检测
生物质基水凝胶可用于制备具有良好选择性和灵敏度的蛋白质传感器[52-53]。PILOTO 等[54]将分子印迹聚合物与碳量子点组合得到的印迹材料(MIP@CQD)结合到纤维素水凝胶中,从而成功制备了印迹纤维素水凝胶,该水凝胶可用于检测与胰腺癌(PC)相关的蛋白质生物标志物CA19-9。随着CA19-9 浓度的增加,印迹纤维素水凝胶发生荧光猝灭,线性范围为2.76×10–2~5.23×102 U/mL,在1000倍稀释的人血清中,显示出1.58×10–3 U/mL 的检测限和1.76 的印迹因子。为降低血清样本在检测过程中的变异情况,SINGH 等[55]利用介孔纳米结构半胱氨酸石墨烯水凝胶制备了一种用于人心肌肌红蛋白定量检测的双模微流控生物传感器。该生物传感器的灵敏度为196.66 μA·μg/(L·cm2),检测浓度线性范围为0.004~1000 μg/L,检测下限为4 ng/L,标准样品和真实血清样本的检测内变异系数分别<8%和9%。同时,LIN 等[56]利用海藻酸钠与Ca2+的物理相互作用,合成了凝血酶适体1 功能化的磁性海藻酸钠水凝胶(Malg-Apt1),并将其用于分离和富集凝血酶的“信号启动”化学发光生物传感器。在最佳条件下,该传感器可检测低至2.178×10–13 mol/L 的凝血酶,检测范围为8.934×10–13~ 5.956×10–10 mol/L,具有良好的选择性,在检测体液凝血酶方面显示出潜在的应用。
2.1.3 MiRNA 检测
生物质基水凝胶可作为具有高灵敏度和宽检测范围的MiRNA 传感器的组成部分[57]。为打破交联固有限制,LANGFORD 等[58]将巯基寡核苷酸(MO)与丙烯酰胺部分功能化,并纳入聚合物水凝胶作为响应交联用于MiRNA 序列检测(如图3 所示)。MO交联可以被基于MiRNA 的短目标分析物单链DNA序列选择性地裂解,诱导出用光学方法测量的独特膨胀反应。MO 交联通过改善热稳定性、无盐要求和比同类生物传感器高1000 倍的灵敏度,提供了比基于DNA 的系统更重要的改进,促进了更广泛的感应条件。
图3 1 μL MO 交联水凝胶(黑色“凝胶区”)在硅片(7.6 mm宽)上用A1 单链DNA 或R1 单链DNA(10 pmol/L)溶胀30 min 的图像(硅片的边缘被用作计量刻度,凝胶区被手动识别,忽略浸出的碳和硅片上的反射)[58]
Fig.3 Analyzed image taken using a mobile phone of 1 μL MO cross-linked hydrogel (black "gel area") on silicon wafer (7.6 mm wide) swollen in A1 single-stranded DNA or R1 single-stranded DNA(10 pmol/L) for 30 min (Wafer edges were used for scale and gel area was manually identified, ignoring leached carbon and the reflection on the wafer)[58]
为了提高MiRNA 检测的准确性,MOHAMMADI等[59]将多种醛前体合成的碳点与壳聚糖反应制备碳点-壳聚糖纳米复合水凝胶,然后用DNA 探针对其进行功能化,以检测MCF-7 癌细胞中的MiRNA-21。DNA 水凝胶生物测定策略对MiRNA-21 具有良好的稳定性和极高的灵敏度,具有合适的线性范围(0.1~125 fmol/L)和检测限(0.03 fmol/L)。样品分析中,生物传感器与MCF-7 癌细胞浓度在1000~25000、1000~25000 和1000~6000 个细胞/mL 之间具有良好的线性关系。如图4 所示,YANG 等[60]将光电化学(PEC)信号分子嵌入由透明质酸钠盐、胺修饰DNA双链和富含胺基的聚乙烯亚胺形成的DNA 水凝胶中制备了生物传感器。该传感器对MiRNA-155 具有较高的灵敏度,检测限低至0.41 fmol/L,线性范围为1.0~100 pmol/L。该生物传感平台为构建用于检测不同目标的同质PEC 生物传感器提供了一种通用策略。
图4 TiO2 包埋水凝胶的构建示意图(a);基于目标响应水凝胶耦合核酸外切酶Ⅲ(Exo Ⅲ)和切刻内切酶(Nb.BbvCI)的miRNA-155 均相PEC 传感器的原理示意图(b)[60]
Fig.4 Schematic diagram of construction of TiO2 embedded hydrogel (a); Schematic diagram of principle of miRNA-155 homogeneous PEC sensor based on target response hydrogel coupling exonuclease Ⅲ (ExoⅢ) and endonuclease (Nb.BbvCI) (b)[60]
注:EDC 为1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐;NHS为N-羟基丁二酰亚胺
2.1.4 无机盐检测
生物质基水凝胶也可用于制备高选择性和低检测限的无机盐传感器[61]。为提高传感器对无机盐离子的高选择性,WANG 等[62]研制了一种具有良好生物相容性的双功能纤维素纳米纤维(CNF)仿生生物传感器,该传感器将捕获的Ag+作为乙酰胆碱酯酶(AChE)检测的识别位点,如图5 所示。基于CNF 的仿生生物传感器(CNF-DNA)在其他干扰金属离子存在下仍可以检测低至6~10 nmol/L 的Ag+。之后,SU 等[63]用玉米淀粉和海藻酸钠的天然成分制造双网水凝胶。淀粉-海藻酸钠水凝胶表现出多孔的微观结构和高强度。用淀粉和海藻酸钠制备的水凝胶在检测到混合溶液体积分数0.4%的Ca2+后,同时在160%的应变下具有最高的断裂强度(281.51 kPa)和韧性(61.61 kJ/m3)。最近,HE 等[15]开发了一种基于氧化羧甲基纤维素的自修复水凝胶,其具有优异的Ag+传感和吸附能力。结果表明,此水凝胶对Ag+具有灵敏的检测和高吸附能力,检测限为3.798 μmol/L,最大吸附量为407 mg/g。
图5 通过化学接枝制造CNF-DNA 以及对Ag+和乙酰胆碱酯酶的选择性识别[62]
Fig.5 Fabrication of CNF-DNA via chemical grafting and the selective recognition of Ag+ ions and acetylcholinesterase[62]
注:ATCh 为乙酰硫代胆碱
目前,大部分生物质基水凝胶生物传感器是将探针分子固定在水凝胶中设计得到,主要通过分子键合使水凝胶的体积或折射率发生变化,该方法限制了可检测的分析物类型。因此,未来需要积极融合数字科技,实现检测一站化,利用各学科优势,通过跨学科合作将生物质基水凝胶生物传感器打造得更智能、更精准、更快速。
应变传感是指将应变信号按照规律转换成输出电信号。生物质基水凝胶具有良好的拉伸性能、抗疲劳性能、生物相容性和导电性等性能[64],制备的压力传感器能够进行良好的信号采集,可以精确监测人体活动。QU 等[65]通过超声辅助合成的方法制备了木质素增强的热响应型聚离子液体水凝胶。该水凝胶表现出较高的拉伸性能(>1425%)和优良的韧性(>132 kPa),并在体温范围内(36.5~37.3℃)表现出显著的热响应灵敏度(0.217/℃),可用于实时远程动作捕捉和手势识别。ZHENG 等[66]通过按比例混合聚乙烯醇、硼砂、丝素蛋白和单宁酸设计了一种离子导电复合水凝胶。该水凝胶具有优异的拉伸性(应变>1000%),并与人体皮肤显示出良好的保形接触。当受到外部应变损坏时,水凝胶可以在没有外部刺激的情况下快速自我修复。如图6 所示,该导电水凝胶还具有较宽的应变传感范围(>650%)和可靠的稳定性,将其附着在皮肤表面时可以监测手指关节、腕关节、膝关节等大应变运动,甚至可以检测吞咽、微笑、和面部表情等微应变行为。电阻变化率/%=(R-R0)/R0×100,其中,R0和R 分别为初始电阻值和实时电阻值。
图6 复合水凝胶黏附在皮肤上后的应变传感性能,包括手指弯曲(a)、手腕弯曲(b)和膝盖弯曲(坐下和站立)(c);复合水凝胶的传感性能在切割和接触后的自我修复能力(d)[66]
Fig.6 Strain sensing performances of composite hydrogel when adhering to the skin, relative resistance changing over time during finger bending (a), wrist bending (b), and knee bending (c) (sitting down and standing); Sensing properties of composite hydrogels ability to self-repair after cutting and contact (d)[66]
为提高生物质基水凝胶的应用性能,WANG 等[67]提出将聚乙烯醇(PVA)溶解在氯化胆碱基(DES)中作为水凝胶基质,获得DES/PVA/纤维素纳米晶体(CNCs)/石墨状氮化氮纳米片(g-C3N4)水凝胶(如图7 所示)。该水凝胶具有优异的机械性能,包括优异的拉伸强度(2.55 MPa)、伸长率率(1200%)和拉伸模量(3.65 MPa),可以准确地检测手指、手腕、肘部和膝盖等关节处的运动。之后,LI 等[68]采用木质素基碳作为导电填料设计压敏水凝胶(PSH),木质素基碳均匀分布在聚乙烯醇、羧甲基壳聚糖和纤维素纳米纤维共同组成的复合水凝胶体系中。该复合水凝胶的断裂抗拉强度和压缩应力分别为 133 kPa 和37.7 kPa。TONG 等[69]利用烯丙基纤维素在NaOH/尿素存在下由自由基聚合时产生化学交联制备了纤维素离子水凝胶。该水凝胶可产生126%拉伸应变,并显示出高柔韧性,可用于感知人体运动。
图7 水凝胶制备的示意图[67]
Fig.7 Schematic diagram of hydrogel preparation[67]
目前,生物质基水凝胶应变传感器普遍存在结构稳定性差、自黏性弱、抗冻性和抗脱水性差等不足,这些因素极大地限制了该类传感器在复杂环境条件下的潜在应变监测应用。因此,需要继续探索升级传感平台,更加细化传感器件构成,使生物质基水凝胶应变传感器应用更加稳定和精确。
气体传感是指用于探测特定气体成分浓度变化,并将其转换为输出的电信号变化。生物质基水凝胶制成的气体传感器具有室温操作性强、拉伸性能优异、透明度较高等特点,在NH3、O2、CO2 等气体检测方面具有广泛的用途[70]。为提高气体传感器对NO2 的高选择性和灵敏度,WU 等[71]基于聚丙烯酰胺/卡拉胶双网络水凝胶制备了可伸缩气体传感器,发现该水凝胶在室温下对NO2 和NH3 气体高度敏感。该双网络水凝胶传感器具有高灵敏度,拉伸应变可以达到1200%,在水凝胶溶剂中引入丙三醇可以有效地将NO2 灵敏度提高1.68 倍。之后,LIU等[72]选择了生物质水凝胶L-谷氨酸和聚-L-谷氨酸作为复合敏感材料,提出了一种在25 ℃潮湿环境中具有高灵敏度、安全无毒、绿色环保的电学NH3传感器。L-谷氨酸和聚L-谷氨酸在高湿度下的NH3检测中表现出特殊的协同效应。在80%相对湿度下,复合传感器对50 μL/L NH3 的响应达到8.4,可用于检测0.5 μL/L NH3。为了制备具有适用检出限的气体传感器,LIU 等[73]利用室温下的湿度激活机制,以聚-L-天冬氨酸(PAA)和L-谷氨酸(GA)为传感材料,研制了一种环保无毒的生物质水凝胶NH3传感器,如图8 所示。在80%相对湿度(RH)的室温下,对50 μL/L NH3 的响应可达9.2%。研究中涉及到的湿活化NH3 的传感机理包括酸碱吸附、NH3溶解、电离、质子迁移和离子传导。HAO 等[39]基于聚丙烯酰胺和壳聚糖制备了具有高机械性能(伸长率>2000%)的杂化生物质基水凝胶。羧甲基纤维素的加入使该水凝胶体系具有优异的3D 打印流变性能。采用3D 打印技术制备的样品具有更大的伸长率(>1000%)和更高的弹性模量(141.99 kPa),该传感器可以应用到NH3 的气体信号传感。
图8 在NH3 和不同湿度情况下的PAA/GA 作用机制[73]
Fig.8 Proposed mechanisms in PAA/GA in the presence of NH3 and different humidities[73]
目前,大部分生物质基水凝胶气体传感器的制备原料组分单一、响应恢复时间较长、气敏材料与传感器基板的接触强度不够、制备过程(通常需要经过物理掺杂)容易产生相分离。因此,结合或研发最新的生物质基水凝胶气体传感器制备工艺以实现高精确度、高结合性能以及良好应用性能势在必行。
湿度传感是指利用湿度敏感材料将湿度变化转换成输出的电信号变化。生物质基水凝胶可以快速吸收和保留大量水[74],具有高灵敏度,在检测环境湿度方面被广泛应用。BIAN 等[75]开发了一种基于光纤和海藻酸钙水凝胶复合的新型光纤湿度传感器,对光纤芯进行刻蚀并涂上相同厚度的薄膜可使传感器的灵敏度从初始的0.0254 dBm/%RH 达到最高的0.3774 dBm/%RH。结果表明,该传感器能够适用于监测一整天(24 h)的室内环境湿度。为制备一种时速快、重复性好的湿度传感器,SOBHANIMATIN等[76]开发了一种使用蛋白石水凝胶复合材料的新型快速比色湿度传感器。该传感器在干燥状态下是透明的,相对湿度的增加会产生彩色薄膜。传感器的工作速度非常快,通过在几秒钟内(<3 s)增加相对湿度来改变其颜色,并且随着相对湿度的降低,传感器又很快变得透明。近期,FU 等[77]采用物理化学预处理法(即可回收酸性水溶助长剂处理和超声处理结合的方式),从杨树木材中提取含木质素纤维。将该木质素纤维用于通过在LiBr•3H2O 溶液中的溶解再生过程生产增强聚乙烯醇水凝胶,并将该水凝胶涂在单模光纤端面上,制成用于监测环境湿度的光纤相对湿度传感器(如图9 所示)。该湿度传感器在45%~80%的湿度范围内显示出较高的灵敏度以及良好的重复性。
图9 湿度测试系统配备了自制的湿度传感器[77]
Fig.9 Humidity test system equipped with self-made humidity sensor[77]
目前,现有的生物质基水凝胶湿度传感器一般在外部集成温度传感器进行温度补偿,水分解离和吸附速度慢,导致传感器在湿度恒定或缓慢变化的环境中能高精度、高敏感性地感知目标的物理参数,而在湿度快速变化的环境中显示出较差的传感效果。因此,对多环境条件适用性的高精度和高敏感性的生物质基水凝胶湿度传感器仍然具有迫切需求,应大力开发与应用。
温度传感是指能感受温度变化并转换成输出的电信号变化。热敏生物质基水凝胶因其独特的多敏感性在健康检测领域具有广泛的应用[78]。为了完全模仿人类皮肤,BAI 等[79]通过在甘油/水二元溶剂中整合甜菜碱、银纳米粒子和NaCl,纳米化设计了一种透明、机械坚固、环境稳定、用途广泛的天然皮肤衍生的有机水凝胶(NSD-Gel)电子皮肤(如图10 所示)。该电子皮肤表现出优异的抗拉强度(7.33 MPa)、抗穿刺性、保湿度、自我再生和抗菌性能,即使在极其极端的环境(–196~100℃)也能展现出理想的生物相容性和组织保护性。最近,LIU 等[80]基于PVA、植酸(PA)和明胶(Gel)设计了一种具有多重氢键的水凝胶,该水凝胶具有温度触发可调机制,在热敷下能够可靠地黏附皮肤并检测电生理信号,而在冷敷下则易于去除。
图10 NSD-Gel 电子皮肤的示意图:抗菌(a)、保湿(b)、抗冻(c)、应变感应(d)、温度感应(e)和湿度感应特性(f)[79]
Fig.10 Schematics illustration of NSD-Gel electronic skin:Antibacterial (a), moisture retention (b), anti-freezing(c), strain sensing (d), temperature sensing (e) and humidity sensing (f) properties[79]
随着人们对生物质基水凝胶温度传感器小型化、便携化、低成本以及应用范围需求的不断增加,基于生物质材料及其衍生物制备而成的温度传感的应用受到了较大限制。因此,未来生物质基水凝胶温度传感器将由模拟式向数字式,由集成化向智能化、网络化的方向发展。
随着全球化智能制造战略的实施,作为其发展基础要素之一的先进传感材料已成为人工智能和智能制造推进过程中的核心奠基技术,这与“中国制造2025”十大领域中的大多数产业领域紧密相关。生物质材料因其可再生性、来源丰富、可生物降解、良好的生物相容性等诸多优势已成为能源、材料、工业等领域的研究热点。因此,融合当前国家重点发展的生物技术、智能制造、新材料和新工艺等高新技术,以生物质材料为基础制备高吸水性、高强度、智能型的多功能水凝胶传感材料具有重要研究价值和应用意义。截至目前,生物质基水凝胶已被开发应用于生物传感、应变传感、气体传感、湿度传感和温度传感等方面。
基于目前研究进展,作者认为生物质基水凝胶作为功能传感材料仍然具有巨大应用潜力,但在进一步的研究中仍然会面临不少问题和挑战。
(1)当作为植入材料应用于生物体内时,部分水凝胶容易发生降解,从而导致传感性能不能长久维持且极不稳定,最终影响植入应用效果。可通过结合化学改性和结构设计对其降解性进行调解,从而促进其在药物缓释和组织工程等方面的应用;
(2)与合成高分子基水凝胶相比,单一种类生物质材料制备的水凝胶的可调节性较差。通过结合多种生物质材料如纤维素、壳聚糖、明胶和淀粉等共同构筑复合水凝胶,有望提高水凝胶的本体性能和应用优势,从而促进其在可穿戴材料和人工智能等方面的应用;
(3)功能化水凝胶普遍存在收缩过程所需时间比溶胀过程长的情况,这将不能有效阻碍刺激物的扩散,而导致传感应用响应时间过长。对于生物质基水凝胶传感器,可以通过引入功能填料和调整微观结构来实现水凝胶传感器的快速响应和有效传感。
参考文献:
[1] CHEN Q, TAN X F, LIU Y G, et al.Biomass-derived porous graphitic carbon materials for energy and environmental applications[J].Journal of Materials Chemistry A, 2020, 8(12): 5773-5811.
[2] WANG J S, ZHANG X, LI Z, et al.Recent progress of biomassderived carbon materials for supercapacitors[J].Journal of Power Sources, 2020, 451: 227794.
[3] XU C, PAONE E, RODRÍGUEZ-PADRÓN D, et al.Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural[J].Chemical Society Reviews,2020, 49(13): 4273-4306.
[4] MU R H, LIU B, CHEN X, et al.Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection[J].Environmental Technology & Innovation, 2020, 20: 101107.
[5] SENNAKESAVAN G, MOSTAKHDEMIN M, DKHAR L, et al.Acrylic acid/acrylamide based hydrogels and its properties-A review[J].Polymer Degradation and Stability, 2020, 180: 109308.
[6] CHIMENE D, KAUNAS R, GAHARWAR A K.Hydrogel bioink reinforcement for additive manufacturing: A focused review of emerging strategies[J].Advanced Materials, 2020, 32(1): 1902026.
[7] THAKUR S, VERMA A, KUMAR V, et al.Cellulosic biomass-based sustainable hydrogels for wastewater remediation:Chemistry and prospective[J].Fuel, 2022, 309: 122114.
[8] SETHI S, SARUCHI M.Biopolymer starch-gelatin embedded with silver nanoparticle–based hydrogel composites for antibacterial application[J].Biomass Conversion and Biorefinery, 2022, 12(11):5363-5384.
[9] LI J, CHEE H L, CHONG Y T, et al.Hofmeister effect mediated strong phema-gelatin hydrogel actuator[J].ACS Applied Materials &Interfaces, 2022, 14(20): 23826-23838.
[10] BISWAS M C, JONY B, NANDY P K, et al.Recent advancement of biopolymers and their potential biomedical applications[J].Journal of Polymers and the Environment, 2021, 30(1): 51-74.
[11] OH S, KIM J, KIM Y, et al.Silk sericin-polyethyleneimine hybrid hydrogel with excellent structural stability for Cr( Ⅵ) removal[J].Macromolecular Research, 2021, 29(12): 895-904.
[12] SAEKI K, HIRAMATSU H, HORI A, et al.Sacrificial alginate-assisted microfluidic engineering of cell-supportive protein microfibers for hydrogel-based cell encapsulation[J].ACS Omega,2020, 5(34): 21641-21650.
[13] MEHRA S, NISAR S, CHAUHAN S, et al.Soy protein-based hydrogel under microwave-induced grafting of acrylic acid and 4-(4-hydroxyphenyl) butanoic acid: A potential vehicle for controlled drug delivery in oral cavity bacterial infections[J].ACS Omega, 2020,5(34): 21610-21622.
[14] KHAN E, OZALTIN K, BERNAL-BALLEN A, et al.Renewable mixed hydrogels based on polysaccharide and protein for release of agrochemicals and soil conditioning[J].Sustainability, 2021, 13(18):10439.
[15] HE X Y, JIA H, SUN N, et al.Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag+[J].International Journal of Biological Macromolecules, 2022, 213: 955-966.
[16] WANG Y F, TEBYETEKERWA M, LIU Y, et al.Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection[J].Chemical Engineering Journal, 2021, 420: 127637.
[17] HAN L, HUANG H L, LI J F, et al.A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition[J].Journal of Materials Chemistry A, 2020, 8(30): 15042-15050.
[18] BAI L, JIN Y, SHANG X, et al.Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring,antibacterial, self-healing, and anti-freezing functions[J].Journal of Materials Chemistry A, 2021, 9(42): 23916-23928.
[19] PALANTÖKEN S, BETHKE K, ZIVANOVIC V, et al.Cellulose hydrogels physically crosslinked by glycine: Synthesis,characterization, thermal and mechanical properties[J].Journal of Applied Polymer Science, 2019, 137(7): 48380.
[20] FORERO-DORIA O, POLO E, MARICAN A, et al.Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties[J].Carbohydrate Polymers, 2020, 242: 116383.
[21] KRÜGER M, OOSTERHOFF L A, VAN WOLFEREN M E, et al.Cellulose nanofibril hydrogel promotes hepatic differentiation of human liver organoids[J].Advanced Healthcare Materials, 2020, 9(6):1901658.
[22] SU C Y, LI D, WANG L J, et al.Green double crosslinked starchalginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring[J].Chemical Engineering Journal, 2023, 455: 140653.
[23] JIAO Y, LU Y, LU K Y, et al.Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application[J].Journal of Colloid and Interface Science, 2021,597: 171-181.
[24] JIANG H D, ZHU Y C, YE X K, et al.Graphene hydrogel film adsorbed with redox-active molecule toward energy storage device with improved energy density and unfading superior rate capability[J].ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9896-9905.
[25] MORSHEDLOO F, KHOSHFETRAT A B, KAZEMI D, et al.Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications[J].Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(7): 2950-2960.
[26] DONG H B, LI J W, ZHAO S Y, et al.Investigation of a biomass hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries[J].ACS Applied Materials & Interfaces, 2021, 13(1): 745-754.
[27] VERMA A, THAKUR S, MAMBA G, et al.Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye[J].International Journal of Biological Macromolecules, 2020,148: 1130-1139.
[28] BIAN C, CHENG Y F, ZHU W H, et al.A novel optical fiber mach-zehnder interferometer based on the calcium alginate hydrogel film for humidity sensing[J].IEEE Sensors Journal, 2020, 20(11):5759-5765.
[29] TU T T, ZHANG S S, LI T Y, et al.Tissue-like conductive Ti3C2/sodium alginate hybrid hydrogel for electrochemical sensing[J].ACS Applied Materials & Interfaces, 2022, 14(51): 57311-57320.
[30] ALTAF F, NIAZI M B K, JAHAN Z, et al.Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications[J].Journal of Polymers and the Environment, 2020, 29(1): 156-174.
[31] YANG X, SU G H, HUANG X, et al.Noncovalent assembly enabled strong yet tough materials with room-temperature malleability and healability[J].ACS Nano, 2022, 16: 13002.
[32] QAMRUZZAMAN M, AHMED F, MONDAL M I H.An overview on starch-based sustainable hydrogels: Potential applications and aspects[J].Journal of Polymers and the Environment, 2021, 30(1):19-50.
[33] XU Y L, XIAO X, FAN X F, et al.Low cost, facile, environmentally friendly all biomass-based squid ink-starch hydrogel for efficient solar-steam generation[J].Journal of Materials Chemistry A, 2020,8(45): 24108-24116.
[34] BAMBAEERO A, BAZARGAN-LARI R.Simultaneous removal of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite[J].Chinese Journal of Chemical Engineering,2021, 33: 221-230.
[35] LI Y C, MA J L, JIN D N, et al.Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid[J].Applied Catalysis B: Environmental, 2021, 291: 120123.
[36] DETSI A, KAVETSOU E, KOSTOPOULOU I, et al.Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix[J].Pharmaceutics, 2020, 12(7): 669.
[37] HSUEH T J, WU S S.Highly sensitive Co3O4 nanoparticles/mems NO2 gas sensor with the adsorption of the Au nanoparticles[J].Sensors and Actuators B: Chemical, 2021, 329: 129201.
[38] LI C L, LIU G, WANG S, et al.Polyvinyl alcohol/quaternary ammonium chitosan hydrogel electrolyte for sensing supercapacitors with excellent performance[J].Journal of Energy Storage, 2022, 46:103918.
[39] HAO F Y, MAIMAITIYIMING X, SUN S.3D printed multifunctional self-adhesive and conductive polyacrylamide/chitosan/sodium carboxymethyl cellulose/CNT hydrogels as flexible sensors[J].Macromolecular Chemistry and Physics, 2023, 224(2): 2200272.
[40] LING Z, MA J M, ZHANG S, et al.Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application[J].International Journal of Biological Macromolecules,2022, 216: 193-202.
[41] LI L, MENG J, ZHANG M T, et al.Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors[J].Chemical Communications, 2022,58(2): 185-207.
[42] SUGIARTO S, PONG R R, TAN Y C, et al.Advances in sustainable polymeric materials from lignocellulosic biomass[J].Materials Today Chemistry, 2022, 26: 101022.
[43] TAJIK S, OROOJI Y, GHAZANFARI Z, et al.Nanomaterials modified electrodes for electrochemical detection of SudanⅠ in food[J].Journal of Food Measurement and Characterization, 2021,15(4): 3837-3852.
[44] QIN X X, LIU J X, ZHANG Z, et al.Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives[J].TrAC Trends in Analytical Chemistry, 2021, 143: 116371.
[45] DAI L, WANG Y, ZOU X J, et al.Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials[J].Small, 2020, 16(13): 1906567.
[46] SHEN Y H, WANG Z L, WANG Y C, et al.A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection[J].Carbohydrate Polymers, 2021, 274: 118642.
[47] GUNATILAKE U B, GARCIA-REY S, OJEDA E, et al.TiO2 nanotubes alginate hydrogel scaffold for rapid sensing of sweat biomarkers: Lactate and glucose[J].ACS Applied Materials &Interfaces, 2021, 13(31): 37734-37745.
[48] KIM H S, LEE J S, KIM M I.Poly-γ-glutamic acid/chitosan hydrogel nanoparticles entrapping glucose oxidase and magnetic nanoparticles for glucose biosensing[J].Journal of Nanoscience and Nanotechnology,2020, 20(9): 5333-5337.
[49] KIM G J, KIM K O.Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning[J].Scientific Reports, 2020, 10(1): 18858.
[50] WANG Z Q, CHENG F C, CAI H C, et al.Robust versatile nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical sensing[J].Carbohydrate Polymers, 2021, 259: 117753.
[51] LIANG Z, ZHANG J Y, WU C, et al.Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring[J].Biosensors and Bioelectronics, 2020, 155: 112105.
[52] XI H Y, LI X, LIU Q Y, et al.Cationic polymer-based plasmonic sensor array that discriminates proteins[J].Analyst, 2018, 143: 5578-5582.
[53] KIM H J, CHOI W S, KIM J, et al.Highly sensitive threedimensional interdigitated microelectrode biosensors embedded with porosity tunable hydrogel for detecting proteins[J].Sensors and Actuators B: Chemical, 2020, 302: 127190.
[54] PILOTO A M L, RIBEIRO, D S M, RODRIGUES S S M, et al.Cellulose-based hydrogel on quantum dots with molecularly imprinted polymers for the detection of CA19-9 protein cancer biomarker[J].Microchimica Acta, 2022, 189: 134.
[55] SINGH N, ALI M A, RAI P, et al.Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels[J].Lab Chip, 2020, 20(4): 760-777.
[56] LIN Y N, SUN Y L, DAI Y X, et al.A "signal-on" chemiluminescence biosensor for thrombin detection based on DNA functionalized magnetic sodium alginate hydrogel and metalloporphyrinic metalorganic framework nanosheets[J].Talanta, 2020, 207: 120300.
[57] YANG L L, WANG H, LÜ H T, et al.Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microrna[J].Analytica Chimica Acta, 2020, 1124: 104-112.
[58] LANGFORD G J, RAEBURN J, FERRIER D C, et al.Morpholino oligonucleotide cross-linked hydrogels as portable optical oligonucleotide biosensors[J].ACS Sensors, 2019, 4(1): 185-191.
[59] MOHAMMADI S, MOHAMMADI S, SALIMI A.A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microrna-21 in breast cancer cells[J].Talanta, 2021, 224: 121895.
[60] YANG J, FU S L, LUO F, et al.Homogeneous photoelectrochemical biosensor for microRNA based on target-responsive hydrogel coupled with exonuclease Ⅲ and nicking endonuclease Nb.BbvCI assistant cascaded amplification strategy[J].Microchimica Acta,2021, 188(8): 267.
[61] FAROOQ A, PATOARY M K, ZHANG M L, et al.Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials[J].International Journal of Biological Macromolecules, 2020, 154: 1050-1073.
[62] WANG L, GUO W, ZHU H X, et al.Preparation and properties of a dual-function cellulose nanofiber-based bionic biosensor for detecting silver ions and acetylcholinesterase[J].Journal of Hazardous Materials,2021, 403: 123921.
[63] SU C Y, LI D, WANG L J, et al.Green double crosslinked starchalginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring[J].Chemical Engineering Journal, 2023, 455: 140653.
[64] LI G, LI C L, LI G D, et al.Development of conductive hydrogels for fabricating flexible strain sensors[J].Small, 2022, 18(5): 2101518.
[65] QU X Y, ZHAO Y, CHEN Z A, et al.Thermoresponsive ligninreinforced poly(ionic liquid) hydrogel wireless strain sensor[J].Research, 2021, 2021: 9845482.
[66] ZHENG H Y, LIN N, HE Y Y, et al.Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor[J].ACS Applied Materials & Interfaces, 2021, 13(33): 40013-40031.
[67] WANG H Q, LI J C, YU X, et al.Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion[J].Carbohydr Polym, 2021, 255: 117443.
[68] LI M F, TU Q Y, LONG X, et al.Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor[J].International Journal of Biological Macromolecules, 2021,166: 1526-1534.
[69] TONG R P, CHEN G X, PAN D H, et al.Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors[J].Biomacromolecules, 2019, 20(5): 2096–2104.
[70] CHEN Z Y, YAN T, PAN Z J.Review of flexible strain sensors based on cellulose composites for multi-faceted applications[J].Cellulose,2021, 28(2): 615-645.
[71] WU J, WU Z, HAN S J, et al.Extremely deformable, transparent,and high-performance gas sensor based on ionic conductive hydrogel[J].ACS Applied Materials & Interface, 2019, 11(2): 2364-2373.
[72] LIU L C, FEI T, GUAN X, et al.Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels[J].Sensors and Actuators B: Chemical, 2020, 320: 128318.
[73] LIU L C, FEI T, GUAN X, et al.Humidity-activated ammonia sensor with excellent selectivity for exhaled breath analysis[J].Sensors and Actuators B: Chemical, 2021, 334: 129625.
[74] PENG Z Y, YU C Y, ZHONG W B.Facile preparation of a 3D porous aligned graphene-based wall network architecture by confined self-assembly with shape memory for artificial muscle, pressure sensor, and flexible supercapacitor[J].ACS Applied Materials &Interfaces, 2022, 14(15): 17739-17753.
[75] BIAN C, WANG J, BAI X H, et al.Optical fiber based on humidity sensor with improved sensitivity for monitoring applications[J].Optics & Laser Technology, 2020, 130: 106342.
[76] SOBHANIMATIN M B, POURMAHDIAN S, TEHRANCHI M M.Colorimetric monitoring of humidity by opal photonic hydrogel[J].Polymer Testing, 2021, 98: 106999.
[77] FU X T, JI H R, LIU X H, et al.Lignin-containing fibers extraction and hydrogel preparation for fiber-optic relative humidity sensor fabrication[J].Industrial Crops and Products, 2021, 173: 114112.
[78] WANG L R, XU T L, ZHANG X J.Multifunctional conductive hydrogel-based flexible wearable sensors[J].TrAC Trends in Analytical Chemistry, 2021, 134: 116130.
[79] BAI Z X, WANG X C, ZHENG M H, et al.Mechanically robust and transparent organohydrogel-based e-skin nanoengineered from natural skin[J].Advanced Functional Materials, 2023, 33: 2212856.
[80] LIU W, XIE R J, ZHU J Y, et al.A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors[J].NPJ Flexible Electronics, 2022, 6(1): 68.
{{item.text}}
纸刊出版日期:{{page.publishDates[1]}}
收稿日期:{{page.publishDates[0]}}
{{aff.text}}
{{item}}