{{item.text}}
董向涛,杨昊楠,卢子聪,杨家强*
(遵义医科大学 药学院,贵州 遵义 563000)
摘要:采用分子杂交策略设计合成了15 个氨基酸结构的磺酰胺衍生物,对其进行了抗菌活性评价。首先,苯磺酰氯与氨基酸反应制得了苯磺酰氨基酸(中间体Ⅰ);然后,以芳香醛、亚磷酸酯、乙酸铵和三氟甲磺酸铝为原料,一锅法制得了α-氨基膦酸酯(中间体Ⅱ);最后,中间体Ⅰ与Ⅱ缩合制得目标物。经1HNMR、13CNMR和MS 确认结构。结果表明,该类化合物对大肠杆菌(E. coli)和耐氟喹诺酮大肠杆菌(FREC)活性最为显著。其中,化合物Ⅲb〔{(2-氟苯基)[2-(苯基磺酰氨基)苯丙酰氨基]甲基}膦酸二乙酯〕、Ⅲc〔{(4-氟苯基)[2-(苯基磺酰氨基)苯丙酰氨基]甲基}膦酸二乙酯〕、Ⅲh〔{(2-氟苯基)[2-(苯基磺酰氨基)异戊酰氨基]甲基}膦酸二乙酯〕和Ⅲm〔{(苯基)[2-(苯基磺酰氨基)乙酰氨基]甲基}膦酸二乙酯〕对E. coli 的最小抑菌质量浓度(MIC)均为16 μg/L,化合物Ⅲn〔{(2-氟苯基)[2-(苯基磺酰氨基)乙酰氨基]甲基}膦酸二乙酯〕对E. coli 的MIC 为8 μg/L,抗菌活性不低于对照药苯唑西林;化合物Ⅲb、Ⅲh、Ⅲm 和Ⅲn 对FREC 的MIC 分别为32、32、32 和16 μg/L,优于对照药苯唑西林和诺氟沙星。
关键词:磺酰胺;氨基酸;膦酸酯;合成;抗菌活性;医药原料
中图分类号:R914.5;TQ463+.42
文献标识码:A
文章编号:1003-5214 (2023) 11-2516-06
收稿日期:2023-01-17; 定用日期:2023-03-14;
DOI: 10.13550/j.jxhg.20230033
基金项目:贵州省卫生健康委科学技术基金项目(gzwkj2021-444)
作者简介:董向涛(1999—),男,硕士生。联系人:杨家强(1979—),男,教授,E-mail: yjqcn@126.com。
Synthesis and biological activities of sulfonamide derivatives containing amino acid moiety
DONG Xiangtao, YANG Haonan, LU Zicong, YANG Jiaqiang*
(School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China)
Abstract: Fifteen sulfonamide derivatives containing amino acid moiety were designed and synthesized by molecular hybridization strategy, and evaluated for their antibacterial activity.Specifically, benzenesulfonyl amino acids (intermediate Ⅰ) was firstly prepared from reaction of benzenesulfonyl chloride and amino acids.α-Aminophosphonates (intermediate Ⅱ) were then synthesized from one pot reaction of aromatic aldehyde,phosphite, ammonium acetate and aluminum trifluoromethanesulfonate.Finally, the target products were obtained by condensation reaction of intermediate Ⅰ and Ⅱ.The structures of the target products obtained were confirmed by 1HNMR, 13CNMR and MS.The results showed that these compounds exhibited the most significant activities against Escherichia coli (E. coli) and fluoroquinolone-resistant Escherichia coli (FREC).Among them, the MIC of Ⅲb (diethyl{(2-fluorophenyl) [2-(phenylsulfonylamino)phenylpropanylamino]methyl}phosphonate), Ⅲc (diethyl{(4-fluorophenyl)[2-(phenylsulfonylamino)phenylpropanylamino]methyl}phosphonate), Ⅲh (diethyl{(2-fluorophenyl)[2-(phenylsulfonylamino)isovalerylamino]methyl}phosphonate)and Ⅲm (diethyl{(phenyl)[2-(phenylsulfonyl amino)acetamido]methyl}phosphonate) displayed a MIC to E. coli of 16 μg/L, while Ⅲn (diethyl{(2-fluorophenyl)[2-(phenylsulfonylamino)acetamido]methyl}phosphonate)showed a MIC against E. coli of 8 μg/L, which were no less effective when compared with control drug Oxacillin.The MIC of Ⅲb, Ⅲh, Ⅲm and Ⅲn against FREC were 32, 32, 32 and 16 μg/L, respectively,which were superior to those of control drugs Oxacillin and Norfloxacin.
Key words: sulfonamides; amino acids; phosphonates; synthesis; antibacterial activities; drug materials
自20 世纪30 年代发现第一种磺胺类抗菌药物百浪多息(Prontosil)后,开启了磺胺的医学新时代[1]。不同结构的磺胺类化合物表现出多种生物活性,如抗高血压[2]、抗菌[3]、抗真菌[4]、抗炎[5]、抗肿瘤[6]和碳酸酐酶抑制剂[7]等。其中,磺胺在抗菌方面的应用尤为多见,如磺胺噻唑、磺胺甲唑和柳氮磺吡啶具有抗菌谱广、疗效好、价廉等优点,广泛用于临床。
随着抗菌药物在临床上的大量使用,其耐药性是人类面临的重要威胁,因此,需要新的抗菌药效团和(或)抗菌剂来克服这一难题[8-9]。分子杂交作为一种经典的药物设计策略,旨在通过结合两种或两种以上药效结构来创建与靶标有更好作用的新杂交分子[10]。本课题组前期基于该策略,设计了不同系列的含氨基膦酸酯结构的磺酰胺衍生物(通式A,结构如下所示),结果发现,不同系列的磺酰胺和氨基膦酸酯基团组合的新杂交化合物均具有潜在的抗菌活性,且对耐药菌有抑制作用[11-13]。
氨基酸及小分子肽衍生物作为抗菌肽模拟物,生物兼容性好,易渗透到组织,具有靶向性,对宿主有选择性好、安全性高等特点[14-16],不同类型的氨基酸衍生物具有显著的抗菌活性和广谱抗菌性能,不易诱导产生耐药性,在抗菌药物设计与结构改造中应用广泛。
基于此,为了获取活性更优的抗菌化合物,本课题组在通式A 基础上,通过分子杂交策略,进一步在结构中引入氨基酸片段,设计合成了15 个新型衍生物Ⅲ,并对其进行抗菌活性研究。期望3 种药效片段组合成的小分子类肽衍生物Ⅲ能产生更好的抗菌活性或抗耐药菌活性,获取有研究前景的先导或候选化合物。
苯磺酰氯、甘氨酸、L-丙氨酸、L-亮氨酸、L-缬氨酸、L-苯丙氨酸、亚磷酸二乙酯、苯甲醛、邻氟苯甲醛、对氟苯甲醛、三氟甲磺酸铝〔Al(OTf)3〕、乙酸铵、N,N'-二环己基碳酰亚胺(DCC)、N-羟基丁二酰亚胺(NHS)、1-羟基苯并三唑(HOBT)、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCl),化学纯,百灵威化学试剂公司。石油醚(馏程60~90 ℃)、4-二甲氨基吡啶(DMAP)等其他试剂均为分析纯,成都金山化学试剂公司。标准菌株:金黄色葡萄球菌(S. aureus)、大肠杆菌(E. coli)购于青岛海博生物技术有限公司;耐药菌株:耐甲氧西林金黄色葡萄球菌(MRSA)和耐氟喹诺酮大肠杆菌(FREC),由遵义医科大学附属医院分离提供。
X-4 型数显熔点测定仪,上海精密仪器仪表有限公司;Varian 400 MHz 核磁共振波谱仪,美国Varian 技术公司;Agilent 6460 液质联用仪,美国Agilent 技术公司。
1.2.1 目标化合物的合成
目标化合物的合成路线如下所示:
1.2.1.1 中间体Ⅰ的制备
在50 mL 反应瓶中,加入含5 mmol 氨基酸的碳酸钠溶液(0.848 g 碳酸钠溶于10 mL 水),再加入4 mmol(0.51 mL)苯磺酰氯,升温至75 ℃,搅拌反应0.5 h,TLC 监测反应〔V(乙酸乙酯)∶V(石油醚)=10∶1〕,完毕,用浓盐酸(质量分数为37%)调节pH 至1,室温放置,结晶,过滤,蒸馏水洗涤,红外灯下干燥30 min,得到白色固体,即中间体Ⅰ。
1.2.1.2 中间体Ⅱ的制备
称取20 mmol(2.5405 g)亚磷酸二乙酯、25 mmol 芳香醛和20 mmol(1.5401 g)乙酸铵于50 mL反应瓶中,室温反应 10 min,再加入 0.1 mmol(0.0472 g)三氟甲磺酸铝,100 ℃搅拌反应20 min,TLC 跟踪〔V(乙酸乙酯)∶V(石油醚)=3∶1〕,反应完毕,加入5 mL 去离子水,用1 mol/L 的稀盐酸调节pH 至3~4,分别用10 mL 环己烷萃取6 次,取下层液,再分别用5 mL 乙酸乙酯萃取6 次,下层液用1 mol/L NaOH 溶液调节pH 至7~8,再分别用10 mL乙酸乙酯萃取5 次,合并有机相,并旋蒸浓缩,得中间体Ⅱ。
1.2.1.3 目标化合物Ⅲ的制备
依次取0.5 mmol 中间体Ⅰa(R1=CH2Ph)、1 mmol(0.1351 g)HOBT 和15 mL CH2Cl2 于50 mL 反应瓶中,0 ℃下加入1.5 mmol(0.2 mL)Et3N 和1 mmol(0.1917 g)EDCl,搅拌反应,并缓慢加入0.75 mmol中间体Ⅱa(R2=H),继续反应,TLC 监测〔V(乙酸乙酯)∶V(石油醚)=1∶1〕,反应完毕,旋蒸浓缩,经硅胶柱层析分离纯化〔V(乙酸乙酯)∶V(石油醚)=1∶3〕,旋蒸浓缩,得化合物Ⅲa。化合物Ⅲb~Ⅲo 按照上述方法合成得到。
{(苯基) [2-(苯基磺酰氨基)苯丙酰氨基]甲基}膦酸二乙酯(Ⅲa):白色固体,收率66%,m.p.178~180 ℃。1HNMR (400 MHz, CDCl3), δ: 8.20 (b, 1H, NH),7.49~7.54 (m, 2H, ArH), 7.28~7.39 (m, 5H, ArH),7.21~7.24 (m, 1H, ArH), 7.02~7.15 (m, 5H, ArH),6.77~6.89 (m, 2H, ArH), 6.40 (s, 1H, NH), 5.33~5.54 (m,1H, PCH), 4.04~4.19 (m, 3H, CH+OCH2), 3.85~3.93 (m,1H, OCH2), 3.60~3.71 (m, 1H, OCH2), 2.74~3.01 (m, 2H,CH2), 1.31 (t, 3H, J=15.6 Hz, CH3) 1.04 (t, 3H, J=16.0 Hz,CH3); 13CNMR (101 MHz, CDCl3), δ: 170.4, 152.2,134.5, 134.2, 132.3, 130.0, 129.7, 129.5, 129.3, 129.1,128.6, 128.3, 127.6, 127.4, 126.8, 126.7, 64.0, 63.3, 57.3,50.8, 39.3, 16.5, 16.1; ESI-MS, m/Z: [M+H]+理论值531.2,实测值531.2。
{(2-氟苯基) [2-(苯基磺酰氨基)苯丙酰氨基]甲基}膦酸二乙酯(Ⅲb):白色固体,收率64%,m.p.196~198 ℃。1HNMR (400 MHz, CDCl3), δ: 8.19 (b, 1H, NH),7.46~7.56 (m, 2H, ArH), 7.24~7.32 (m, 2H, ArH),7.03~7.16 (m, 7H, ArH), 6.77~6.89 (m, 2H, ArH), 6.41(s,1H, NH), 5.68~5.85 (m, 1H, PCH), 4.07~4.19 (m, 3H,CH+OCH2), 3.92~3.99 (m, 1H, OCH2), 3.72~3.82 (m,1H, OCH2), 2.74~3.00 (m, 2H, CH2), 1.33 (t, 3H, J=16.0 Hz, CH3) 1.07 (t, 3H, J=16.0 Hz, CH3); 13CNMR(101 MHz, CDCl3), δ: 170.3, 161.4, 139.7, 139.3, 135.7,135.4, 132.1, 130.0, 129.8, 129.5, 129.0, 128.6, 128.3,126.9, 126.6, 124.5, 122.1, 121.8, 115.4, 64.1, 63.7, 57.3,42.3, 39.1, 16.4, 16.0; ESI-MS, m/Z: [M+H]+理论值549.2,实测值549.3。
{(4-氟苯基) [2-(苯基磺酰氨基)苯丙酰氨基]甲基}膦酸二乙酯(Ⅲc):白色固体,收率67%,m.p.160~162 ℃。1HNMR (400 MHz, CDCl3), δ: 8.31 (b, 1H, NH),7.47~7.53 (m, 2H, ArH), 7.25~7.40 (m, 2H, ArH),6.95~7.18 (m, 7H, ArH), 6.77~6.90 (m, 2H, ArH), 6.38(s, 1H, NH), 5.32~5.54 (m, 1H, PCH), 4.06~4.23 (m, 3H,CH+OCH2), 3.89~3.96 (m, 1H, OCH2), 3.67~3.75 (m,1H, OCH2), 2.69~3.00 (m, 2H, CH2), 1.31 (t, 3H, J=15.2 Hz,CH3) 1.07 (t, 3H, J=16.0 Hz, CH3); 13CNMR (101 MHz,CDCl3), δ: 171.5, 163.6, 161.2, 139.7, 139.4, 135.4,135.2, 130.5, 130.1, 130.0, 129.4, 129.0, 128.7, 128.4,127.0, 126.9, 126.7, 115.7, 115.4, 64.0, 63.6, 57.4, 50.2,39.1, 16.4, 16.1; ESI-MS, m/Z: [M+H]+理论值549.2,实测值549.1。
{(苯基) [2-(苯基磺酰氨基)丙酰氨基]甲基}膦酸二乙酯(Ⅲd):白色固体, 收率55%, m.p.189~190℃。1HNMR (400 MHz, CDCl3), δ: 8.37 (b, 1H, NH),7.57~7.60 (m, 2H, ArH), 7.20~7.24 (m, 5H, ArH),6.93~7.09 (m, 3H, ArH), 5.81~5.84 (d, 1H, NH),5.26~5.42 (m, 1H, PCH), 3.99~4.08 (m, 3H,COCH+OCH2), 3.85~3.94 (m, 1H, OCH2), 3.61~3.70 (m,1H, OCH2), 1.29 (t, 3H, J=12.4 Hz, CH3), 1.20 (t, 3H,J=12.0 Hz, CH3), 1.02~1.05 (m, 3H, CH3); 13CNMR(101 MHz, CDCl3), δ: 171.6, 159.3, 140.1, 139.7, 134.2,132.2, 128.6, 128.5, 128.4, 128.3, 128.2, 126.6, 64.9,63.3, 53.2, 50.2, 20.2, 16.5, 16.1; ESI-MS, m/Z: [M+H]+理论值455.1,实测值455.2。
{(2-氟苯基) [2-(苯基磺酰氨基)丙酰氨基]甲基}膦酸二乙酯(Ⅲe):白色固体,收率42%,m.p.191~193 ℃。1HNMR (400 MHz, CDCl3), δ: 8.25 (b, 1H, NH),7.60~7.65 (m, 2H, ArH), 7.45~7.51 (m, 1H, ArH),7.26~7.35 (m, 1H, ArH), 6.98~7.16 (m, 5H, ArH), 6.86(s, 1H, NH), 5.64~5.80 (m, 1H, PCH), 3.99~4.15 (m, 3H,COCH+OCH2), 3.89~3.97 (m, 1H, OCH2), 3.72~3.81 (m,1H, OCH2), 1.30 (t, 3H, J=15.2 Hz, CH3), 1.22 (t, 3H,J=12.4 Hz, CH3), 1.03~1.07 (m, 3H, CH3); 13CNMR(101 MHz, CDCl3), δ: 171.4, 158.8, 140.1, 139.5, 129.9,129.6, 128.5, 126.7, 126.6, 124.3, 121.9, 121.8, 115.3,63.8, 63.6, 53.1, 52.0, 20.0, 16.3, 16.0; ESI-MS, m/Z:[M+H]+理论值473.1,实测值473.1。
{(4-氟苯基) [2-(苯基磺酰氨基)丙酰氨基]甲基}膦酸二乙酯(Ⅲf):白色固体,收率53%,m.p.178~179 ℃。1HNMR (400 MHz, CDCl3), δ: 8.13 (b, 1H, NH),7.52~7.57 (m, 2H, ArH), 7.30~7.40 (m, 1H, ArH),7.18~7.22 (m, 1H, ArH), 6.96~7.16 (m, 5H, ArH), 6.07(s, 1H, NH), 5.30~5.43 (m, 1H, PCH), 4.05~4.14 (m, 3H,COCH+OCH2), 3.89~3.93 (m, 1H, OCH2), 3.69~3.79 (m,1H, OCH2), 1.29 (t, 3H, J=12.8 Hz, CH3), 1.19 (t, 3H,J=15.2 Hz, CH3), 1.08~1.11 (m, 3H, CH3); 13CNMR(101 MHz, CDCl3), δ: 171.6, 161.2, 140.2, 132.3, 130.2,130.1, 129.9, 128.7, 128.6, 126.7, 115.6, 115.3, 63.8,63.6, 53.1, 52.0, 20.0, 16.3, 16.0; ESI-MS, m/Z: [M+H]+理论值473.1,实测值473.3。
{(苯基) [2-(苯基磺酰氨基)异戊酰氨基]甲基}膦酸二乙酯(Ⅲg):白色固体,收率51%,m.p.166~167 ℃。1HNMR(400 MHz, CDCl3), δ: 8.28 (b, 1H, NH), 7.55~7.59 (m,2H, ArH), 7.22~7.27 (m, 5H, ArH), 6.95~7.08 (m, 3H,ArH), 5.80~5.83 (s, 1H, NH), 5.25~5.41 (m, 1H, PCH),3.98~4.06 (m, 3H, COCH+OCH2), 3.88~3.95 (m, 1H,OCH2), 3.63~3.71 (m, 1H, OCH2), 2.16~2.21 (m, 1H,CCHC), 1.30 (t, 3H, J=12.4 Hz, CH3), 1.05 (t, 3H,J=12.4 Hz, CH3), 1.01 (d, 6H, J= 7.6 Hz, 2CH3);13CNMR (100 MHz, CDCl3), δ: 171.5, 159.1, 140.1,139.6, 134.2, 132.2, 128.6, 128.5, 128.4, 128.3, 128.2,126.6, 63.9, 63.3, 53.2, 50.2, 30.7, 18.3, 18.1, 16.4, 16.1;ESI-MS, m/Z: [M+H]+理论值483.2,实测值483.3。
{(2-氟苯基) [2-(苯基磺酰氨基)异戊酰氨基]甲基}膦酸二乙酯(Ⅲh):白色固体,收率61%,m.p.182~184 ℃。1HNMR (400 MHz, CDCl3), δ: 8.21 (b, 1H, NH),7.61~7.67 (m, 2H, ArH), 7.45~7.52 (m, 1H, ArH),7.25~7.30 (m, 1H, ArH), 6.95~7.11 (m, 5H, ArH), 6.82(s, 1H, NH), 5.69~5.78 (m, 1H, PCH), 3.97~4.14 (m, 3H,COCH+OCH2), 3.91~3.98 (m, 1H, OCH2), 3.71~3.79 (m,1H, OCH2), 2.10~2.17 (m, 1H, CCHC), 1.32 (t, 3H,J=12.0 Hz, CH3), 1.03 (t, 3H, J=12.0 Hz, CH3), 0.98 (d,6H, J= 7.2 Hz, 2CH3); 13CNMR (100 MHz, CDCl3), δ:171.4, 158.8, 140.1, 139.4, 129.8, 129.6, 128.4, 126.7,126.6, 124.3, 121.9, 121.7, 115.3, 63.7, 63.6, 53.1, 51.9,30.6, 18.4, 18.1, 16.2, 15.9; ESI-MS, m/Z: [M+H]+理论值501.2,实测值501.2。
{(4-氟苯基) [2-(苯基磺酰氨基)异戊酰氨基]甲基}膦酸二乙酯(Ⅲi):白色固体,收率78%,m.p.190~191 ℃。1HNMR (400 MHz, CDCl3), δ: 8.12 (b, 1H, NH),7.51~7.58 (m, 2H, ArH), 7.35~7.44 (m, 1H, ArH),7.15~7.21 (m, 1H, ArH), 6.94~7.15 (m, 5H, ArH), 6.08(s, 1H, NH), 5.32~5.44 (m, 1H, PCH), 4.06~4.17 (m, 3H,COCH+OCH2), 3.89~3.92 (m, 1H, OCH2), 3.71~3.78 (m,1H, OCH2), 2.11~2.16 (m, 1H, CCHC), 1.29 (t, 3H,J=11.6 Hz, CH3), 1.08 (t, 3H, J=11.6 Hz, CH3) , 1.05 (d,6H, J=7.6 Hz, 2CH3); 13CNMR (100 MHz, CDCl3), δ:171.6, 161.2, 140.2, 132.3, 130.2, 130.1, 130.0, 129.8,128.7, 128.6, 126.6, 115.5, 115.3, 63.7, 63.5, 53.3, 51.9,30.7, 18.3, 18.1, 16.3, 16.0; ESI-MS, m/Z: [M+H]+理论值501.2,实测值501.1。
{(苯基) [2-(苯基磺酰氨基)异己酰氨基]甲基}膦酸二乙酯(Ⅲj):白色固体,收率72%,m.p.177~178 ℃。1HNMR(400 MHz, CDCl3), δ: 8.26 (d, 1H, J=8.8 Hz, NH),7.52~7.59 (m, 2H, ArH), 7.27~7.33 (m, 5H, ArH),6.89~7.09 (m, 3H, ArH), 5.53 (s, 1H, NH), 5.24~5.41 (m,1H, PCH), 4.11~4.19 (m, 2H, OCH2), 3.90~3.99 (m, 2H,COCH+OCH2), 3.61~3.82 (m, 1H, OCH2), 1.23~1.47 (m,5H, CH2+CH3), 1.03~1.10 (m, 3H, CH3), 0.78~0.88 (m,3H, CH3) 0.54~0.77 (m, 3H, CH3); 13CNMR (101 MHz,CDCl3), δ: 171.6, 158.7, 139.9, 139.5, 134.1, 132.0,128.7, 128.5, 128.4, 128.2, 128.1, 126.6, 126.5, 63.6,63.3, 55.0, 50.3, 24.0, 23.0, 20.6, 16.4, 15.9; ESI-MS,m/Z: [M+H]+理论值497.2,实测值497.3。
{(2-氟苯基) [2-(苯基磺酰氨基)异己酰氨基]甲基}膦酸二乙酯(Ⅲk):白色固体,收率69%,m.p.170~172 ℃。1HNMR (400 MHz, CDCl3), δ: 8.14 (d, 1H, J=10.0 Hz,NH), 7.45~7.55 (m, 3H, ArH), 7.33 (m, 1H, ArH),7.01~7.09 (m, 3H, ArH), 6.95~6.99 (m, 3H, ArH),5.63~5.80 (m, 1H, PCH), 5.51 (s, 1H, NH), 4.13~4.21 (m,2H,OCH2), 3.75~4.04 (m, 3H, COCH+OCH2), 1.31~1.47(m, 5H, CH2+CH3), 1.05~1.11 (m, 3H, CH3), 0.78~0.81(m, 3H, CH3) 0.57~0.65 (m, 3H, CH3); 13CNMR (101 MHz, CDCl3), δ: 171.4, 158.8, 141.3, 139.9, 139.4,131.9, 129.9, 128.4, 126.8, 124.4, 121.8, 115.5, 115.3,63.9, 63.6, 55.0, 50.3, 24.0, 23.0, 20.7, 16.3, 15.9;ESI-MS, m/Z: [M+H]+理论值515.2,实测值515.2。
{(4-氟苯基) [2-(苯基磺酰氨基)异己酰氨基]甲基}膦酸二乙酯(Ⅲl):白色固体,收率73%,m.p.178~179 ℃。1HNMR (400 MHz, CDCl3), δ: 8.22 (d, 1H, J=10.0 Hz,NH), 7.54~7.62 (m, 2H, ArH), 7.30~7.31 (m, 2H, ArH),7.10~7.14 (m, 3H, ArH), 6.92~7.03 (m, 3H, ArH), 5.79(s, 1H, NH), 5.26~5.43 (m, 1H, PCH), 4.07~4.17 (m, 2H,OCH2), 3.90~4.04 (m, 2H, COCH+OCH2), 3.68~3.88 (m,1H, OCH2), 1.25~1.45 (m, 5H, CH2+CH3), 1.06~1.13 (m,3H, CH3), 0.77~0.79 (m, 3H, CH3) 0.54~0.67 (m, 3H,CH3); 13CNMR (101 MHz, CDCl3), δ: 171.7, 161.2,140.1, 139.7, 132.2, 132.1, 130.3, 130.1, 128.5, 126.7,126.4, 115.5, 115.3, 64.1, 63.5, 55.0, 49.5, 23.0, 22.8,20.8, 16.4, 16.0; ESI-MS, m/Z: [M+H]+理论值515.2,实测值515.1。
{(苯基) [2-(苯基磺酰氨基)乙酰氨基]甲基}膦酸二乙酯(Ⅲm):白色固体,收率60%,m.p.172~174 ℃。1HNMR(400 MHz, CDCl3), δ: 8.63 (d, 1H, J=12.0 Hz, NH),7.47~7.52 (m, 2H, ArH), 7.22~7.32 (m, 5H, ArH),7.01~7.19 (m, 3H, ArH), 6.27 (s, 1H, NH), 5.34~5.54(m,1H, PCH), 4.11~4.24 (m, 2H, OCH2), 3.87~3.92 (m, 1H,OCH2), 3.61~3.73 (m, 3H, NCH2+OCH2), 1.33 (t, 3H,J=16.0 Hz, CH3), 1.04 (m, 3H, J=16.0 Hz, CH3);13CNMR (101 MHz, CDCl3), δ: 167.6, 157.7, 139.2,132.5, 128.9, 128.6, 128.5, 128.3, 128.2, 128.1, 126.9,125.5, 94.0 , 63.5, 49.2, 45.3, 16.4, 16.1; ESI-MS, m/Z:[M+H]+理论值441.1,实测值441.0。
{(2-氟苯基) [2-(苯基磺酰氨基)乙酰氨基]甲基}膦酸二乙酯(Ⅲn):白色固体,收率76%,m.p.159~160 ℃。1HNMR (400 MHz, CDCl3), δ: 8.61 (d, 1H, J=8.4 Hz,NH), 7.69~7.71 (d, 2H, ArH), 7.47~7.50 (m, 1H, ArH),7.36~7.39 (m, 1H, ArH), 7.25~7.29 (m, 3H, ArH),7.02~7.08 (m, 2H, ArH), 6.24~6.27 (s, 1H, NH),5.76~5.84 (m, 1H, PCH), 4.08~4.19 (m, 2H, OCH2),3.87~3.96 (m, 1H, OCH2), 3.71~3.79 (m, 1H, OCH2),3.67~3.68 (t, 2H, NCH2+OCH2), 1.28 (t, 3H, J=12.4 Hz,CH3), 1.04 (t, 3H, J=13.2 Hz, CH3); 13CNMR (101 MHz,CDCl3), δ: 167.7, 158.8, 139.8, 132.6, 130.1, 130.0,129.5, 128.9, 126.9, 124.4, 122.0, 121.9, 115.4, 64.0,63.8 , 45.3, 42.3, 16.3, 16.0; ESI-MS, m/Z: [M+H]+理论值459.1,实测值459.1。
{(4-氟苯基) [2-(苯基磺酰氨基)乙酰氨基]甲基}膦酸二乙酯(Ⅲo):白色固体,收率65%,m.p.153~155 ℃。1HNMR (400 MHz, CDCl3), δ: 8.62 (d, 1H, NH),7.70~7.72 (d, 2H, ArH), 7.28~7.44 (m, 5H, ArH),6.95~6.99 (m, 2H, ArH), 6.23 (s, 1H, NH), 5.38~5.46 (m,1H, PCH), 4.05~4.15 (m, 2H, OCH2), 3.85~3.93 (m, 1H,OCH2), 3.62~3.75 (m, 3H, NCH2+OCH2), 1.26 (t, 3H,J=12.8 Hz, CH3), 1.06 (t, 3H, J=15.2 Hz, CH3); 13CNMR(101 MHz, CDCl3), δ: 167.7, 163.6, 141.0, 139.2, 132.6,130.3, 130.2, 130.0, 129.9, 128.9, 126.9, 115.6, 115.4,63.9, 63.7, 48.4, 45.3, 16.4, 16.1; ESI-MS, m/Z: [M+H]+理论值459.1,实测值459.2。
1.2.2 抗菌活性测试
参照文献[17],以苯唑西林和诺氟沙星为对照药,采用倍比稀释法,于超净化工作台上,取无菌96 孔板,设置阴性对照(左1 列)与阳性对照(右1 列),从第2 列到第11 列,依此倍比稀释法加入药液与菌液,混匀。于恒温箱中37 ℃培养24 h,观察结果,凡外观清晰者均为无菌生长,以无细菌生长的药物浓度为最低抑菌浓度(MIC)。
以Ⅲa 的合成为例,考察不同缩合剂种类对反应的影响,按照1.2.1.3 节的方法,控制反应温度为5℃,结果见表1。由表1 可知,DCC/DMAP 为缩合剂时,Ⅲa 收率为33 %,当缩合剂为EDCl/HOBT体系时,Ⅲa 收率最高,达到60%。
表1 缩合剂种类对Ⅲa 收率的影响
Table 1 Effect of condensation agent kinds on yield of Ⅲa
缩合剂 DCC/DMAP DCC/NHS EDCl/HOBTⅢa 收率/% 33 51 60
在EDCl/HOBT 体系下,进一步考察了反应温度对Ⅲa 收率的影响,结果见表2。由表2 可知,反应温度在–10 ℃时,无Ⅲa 生成;反应温度由–5 ℃升高到0 ℃时,Ⅲa 收率由29%提高至66%;而在反应温度为5 ℃时,Ⅲa 收率有所下降,为60%;反应温度为10 ℃时,Ⅲa 收率仅为47 %。表明反应温度对该缩合反应有较大影响,温度太低或太高都不利于反应的发生。因此,反应温度控制在0 ℃。
表2 反应温度对Ⅲa 收率的影响
Table 2 Effect of reaction temperature on yield of Ⅲa
温度/℃–10 –5 0 5 10Ⅲa 收率/% 0 29 66 60 47
表3 为目标化合物的MIC。由表3 可知,目标物对S. aureus、E. coli、MRSA 和FREC 有不同程度的抑制活性。其中,化合物Ⅲb、Ⅲc、Ⅲh、Ⅲi、Ⅲn和Ⅲo 对S. aureus 有较好的抑制作用,MIC 分别为32、64、64、64、32 和64 μg/mL;化合物Ⅲa、Ⅲb、Ⅲc、Ⅲh、Ⅲi、Ⅲm、Ⅲn 和Ⅲo 对E. coli 的抗菌活性较好,MIC 分别为64、16、16、16、64、16、8和32 μg/mL。同时,从表3 中还可看出,目标化合物抗MRSA 活性较弱,仅化合物Ⅲb、Ⅲn 和Ⅲo 对MRSA 有一定的抑制作用;但该类衍生物对FREC的活性较显著,化合物Ⅲb、Ⅲc、Ⅲh、Ⅲm、Ⅲn和Ⅲo 对FREC 的MIC 分别为32、64、32、32、16和64 μg/mL。该类衍生物对革兰氏阴性菌(E. coli和FREC)的活性显著,化合物Ⅲb、Ⅲc、Ⅲh 和Ⅲm对E. coli 的活性与对照药苯唑西林一致,化合物Ⅲn的抗E. coli 活性优于苯唑西林,接近对照药诺氟沙星;化合物Ⅲc 和Ⅲo 对FREC 的活性与苯唑西林一致,化合物Ⅲb、Ⅲh、Ⅲm 和Ⅲn 对FREC 的活性优于苯唑西林,且远远优于诺氟沙星(氟喹诺酮药物)。另外,该类化合物对革兰氏阳性菌(金葡菌和耐甲氧西林金葡菌)的活性不够显著,仅化合物Ⅲb、Ⅲn 和Ⅲo 的抗MRSA 活性与对照药相当或较优。综上,化合物Ⅲb 和Ⅲn 的抗菌活性最为显著,前者对S. aureus、E. coli、MRSA 和FREC 的MIC值分别为32、16、256 和32 μg/mL,后者对S. aureus、E. coli、MRSA 和FREC 的MIC 值分别为32、8、128 和16 μg/mL。
表3 目标化合物的MIC
Table 3 MIC of target compounds
MIC/(μg/mL)化合物 R1 R2 S. aureus E. coli MRSA FRECⅢa CH2Ph H 128 64 1028 128Ⅲb CH2Ph 2-F 32 16 256 32Ⅲc CH2Ph 4-F 64 16 1024 64Ⅲd CH3 H >1024 >1024 >1024 >1024Ⅲe CH3 2-F 512 1024 >1024 >1024Ⅲf CH3 4-F 1024 1024 >1024 >1024Ⅲg CH(CH3)2 H 512 128 1028 128Ⅲh CH(CH3)2 2-F 64 16 512 32Ⅲi CH(CH3)2 4-F 64 64 >1024 256Ⅲj CH2CH(CH3)2 H >1024 1024 >1024 >1024Ⅲk CH2CH(CH3)2 2-F 1024 512 >1024 512Ⅲl CH2CH(CH3)2 4-F 512 1024 >1024 1024Ⅲm H H 128 16 512 32Ⅲn H 2-F 32 8 128 16Ⅲo H 4-F 64 32 256 64苯唑西林 0.5 16 256 64诺氟沙星 1 4 128 >1024
由表3 进一步分析该类衍生物的构效关系,得出如下结论:(1)含苯丙氨酸、缬氨酸和甘氨酸的衍生物抗菌活性更好,含丙氨酸和亮氨酸的目标物抗菌活性不显著,表明不同氨基酸结构和抗菌活性强弱有直接关系,有可能与靶标的结合有关。(2)大多氟取代的目标化合物的抗菌活性更优,如MIC:Ⅲb、Ⅲc < Ⅲa,对所测细菌的抑制作用:Ⅲk、Ⅲl≥Ⅲj。(3)大多邻氟取代的目标物抗菌活性更显著,如抗菌活性:Ⅲn >Ⅲo,Ⅲb≥Ⅲc,Ⅲh≥Ⅲi,有可能是邻位的空间效应所致。(4)大多抗菌活性化合物对所测耐药菌有较显著的抑制作用,不产生耐药性。(5)部分化合物的抗E. coli 和FREC 活性优于前期设计合成的不含氨基酸结构的衍生物[11-13],如化合物Ⅲb、Ⅲc、Ⅲi、Ⅲm 和Ⅲn,表明功能氨基酸的引入对提高目标物的抗菌活性有重要影响,具体原因有待进一步研究。
依据分子杂交策略设计合成的含氨基酸结构的磺酰胺衍生物有较好的抗菌活性,对E. coli 和FREC的抑制作用最为显著,尤其是化合物Ⅲb、Ⅲc、Ⅲm 和Ⅲn 对两者的抗菌活性不低于对照药苯唑西林。同时,含不同氨基酸结构的目标物对抗菌活性有明显影响,后续有必要拓展氨基酸的种类进行研究。另外,氨基膦酸酯结构中苯环取代基的不同也影响该类衍生物的活性,也值得后续进一步深入研究。
参考文献:
[1] GADAD A K, MAHAJANSHETTI C S, NIMBALKAR S, et al.Synthesis and antibacterial activity of some 5-guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3,4-thiadiazole-2-sulfonamide derivatives[J].European Journal of Medicinal Chemistry, 2000, 35:853-857.
[2] AJEET A, MISHRA A K, KUMAR A.Recent advances in development of sulfonamide derivatives and their pharmacological effects-A review[J].Journal of Pharmacological Sciences, 2015, 3(1): 18-24.
[3] KANDA Y, KAWANISHI Y, ODA K, et al.Synthesis and structureactivity relationships of potent and orally active sulfonamide ETB selective antagonists[J].Bioorganic & Medicinal Chemistry, 2001,9(4): 897-907.
[4] WAN Y C, FANG G Q, CHEN H J, et al.Sulfonamide derivatives as potential anticancer agents and their SARs elucidation[J].European Journal of Medicinal Chemistry, 2021, 226: 113837.
[5] ABDEL-AZIZ A M, ANGELI A, EL-AZAB A S, et al.Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/ carbonic anhydrase inhibitory actions[J].Bioorganic Chemistry, 2019, 84: 260-268.
[6] LU Y J (卢言菊), ZHAO Z D (赵振东), CHEN Y X (陈玉湘), et al.Synthesis and antitumor activity of isopimaric heterocyclic sulfonamides derivatives [J].Fine Chemicals (精细化工), 2021, 38(3): 578-584.
[7] BONARDI A, NOCENTINI A, BUA S, et al.Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: Improving ligand/isoform matching and selectivity of action[J].Journal of Medicinal Chemistry, 2020, 63: 7422-7444.
[8] KONAKLIEVA M I.Addressing antimicrobial resistance through new medicinal and synthetic chemistry strategies[J].Slas Discovery,2019, 24(4): 419-439.
[9] JACKSON N, CZAPLEWSKI L, PIDDOCK L J V.Discovery and development of new antibacterial drugs: Learning from experience[J].Journal of Antimicrobial Chemotherapy, 2018, 73(6):1452-1459.
[10] BERUBE G.An overview of molecular hybrids in drug discovery[J].Expert Opinion on Drug Discovery, 2016, 11(3): 281-305.
[11] YANG J Q (杨家强), DENG L (邓玲), AN J L (安家丽), et al.Synthesis and antibacterial activity of sulfanilamide derivatives containing phosphonate moiety[J].Fine Chemicals (精细化工),2019, 36(9): 1869-1873.
[12] YANG J Q (杨家强), LEI Y Y (雷延燕), YANG H (杨红), et al.Synthesis and bioactivity of novel phosphonate derivatives containing thiophene and sulfonamide group[J].Chinese Pharmaceutical Journal(中国药学杂志), 2019, 54(24): 2055-2059.
[13] YANG J Q (杨家强), WANG Y (王越), ZHOU X R (周绪容), et al.Synthesis and antibacterial activities of novel sulfonamide derivatives containing a fused-ring[J].Acta Pharmaceutica Sinica (药学学报),2021, 56(3): 835-840.
[14] JIN X P (金学平), TANG Q M (唐启明), YU L (余磊), et al.Amino acid derivatives-A kind of antibacterial agent with high safety[J].Chemistry & Bioengineering (化学与生物工程), 2019, 36(11): 8-11.
[15] LI T (李涛), NIU Y H (牛有红), YE X S (叶新山), et al.Recent advances on non-peptide or small molecule mimics of antimicrobial peptides[J].Chinese Journal of Medicinal Chemistry (中国药物化学杂志), 2020, 30(3): 160-176.
[16] TAN P, FU H Y, MA X.Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications[J].Nano Today, 2021, 39: 101229.
[17] SHEN G X (沈关心).Microbiology and lmmunology[M].Beijing:People's Medical Publishing House (人民卫生出版社), 2007:326-328.
{{item.text}}
纸刊出版日期:{{page.publishDates[1]}}
收稿日期:{{page.publishDates[0]}}
{{aff.text}}
{{item}}