Page 70 - 201902
P. 70
·236· 精细化工 FINE CHEMICALS 第 36 卷
TiO 2 -BiOI 对甲基橙的降解率变化不大;但在加入 的有效分离,半导体的导带和价带发生移动,使得
TEOA 及 BQ 后,TiO 2 -BiOI 对甲基橙的降解率大幅 禁带宽度减小。
下降。这说明·OH 不是本实验的主要活性物种,在
2
+
降解过程中起主要作用的活性物种是 O ·和 h 。光 参考文献:
[1] He R, Cao S, Yu J, et al. Microwave-assisted solvothermal synthesis
照产生的光生电子与催化剂表面吸附的溶解氧发生 of Bi 4O 5I 2 hierarchical architectures with high photocatalytic
2
+
反应,生成具有强氧化性的 O ·和空穴 h 共同作用 [2] performance[J]. Catalysis Today, 2016, 264(15): 221-228.
Cheng H, Huang B, Dai Y. Engineering BiOX (X = Cl, Br, I)
于目标降解物。为测试样品的稳定性,取具有最佳 nanostructures for highly efficient photocatalytic applications[J].
Nanoscale, 2014, 6(4): 2009-2026.
光催化性能的样品 TB-40 对其进行循环光催化降解 [3] Cui Lei ( 崔磊 ), Dong Jing ( 董晶), Yang Lijuan ( 杨丽娟 ).
Fabrication of ZnS/ZnO heterostructures and their photocatalytic
实验,结果见图 9b。由图 9b 可知,进行 5 次光催 activity[J]. Fine Chemicals (精细化工), 2018, 35(4): 580-584.
[4] Li X, Xia J, Zhu W, et al. Facile synthesis of few-layered MoS 2
化循环实验后,样品对甲基橙的降解率为 78%,这 modified BiOI with enhanced visible-light photocatalytic activity[J].
是因为异质结促进了复合材料电子-空穴分离。 Colloids and Surfaces A: Physicochemical Engineering Aspects,
2016, 511(20): 1-7.
光催化过程产生的光生电子与空穴进行迁移, [5] Mehraj O, Pirzada B M, Mir N A, et al. A highly efficient
visible-light-driven novel p-n junction Fe 2O 3/BiOI photocatalyst:
以及迁移到催化剂表面后极易发生复合,从而失去 Surface decoration of BiOI nanosheets with Fe 2O 3 nanoparticles[J].
降解能力 [2,16,21] 。BiOI 与 TiO 2 结合形成异质结结构, [6] Applie Surface Science, 2016, 387(30): 642-651.
Gao S, Guo C, Lv J, et al. A novel 3D hollow magnetic Fe 3O 4/BiOI
可以促进光生电子与空穴分离,并且减小禁带宽度。 heterojunction with enhanced photocatalytic performance for
bisphenol A degradation[J]. Chemical Engineering Journal, 2017,
e
根据公式 E VB =XE +0.5E g 、E CB =E VBE g(E VB 为半 307(1): 1055-1065.
[7] Li X, Xia J, Zhu W, et al. Facile synthesis of few-layered MoS 2
导体价带电势;E CB 为半导体导带电势;X 为半导体 modified BiOI with enhanced visible-light photocatalytic activity[J].
e
相对电负性;E 为氢原子表面电子自由能,4.5 eV; Colloids and Surfaces A: Physicochemical Engineering Aspects,
2016, 511 (20): 1-7.
E g 为半导体禁带宽度),计算可得,TiO 2 、TB-0(纯 [8] Cui Y M, Hong W S, Li H Q, et al. Photocatalytic degradation and
mechanism of BiOI/Bi 2WO 6 toward methyl orange and phenol[J].
p-BiOI)、TB-40 价带电势分别为 2.92、2.39、2.41 eV, Chinese Journal of Inorganic Chemistry, 2014, 30(2): 431-441.
[9] Luo J, Zhou L, Ma L, et al. Enhanced visible-light-driven
导带电势分别为0.22、0.59、0.58 eV。与纯 BiOI photocatalytic activity of WO 3/BiOI heterojunction photocatalysts[J].
Journal of Molecular of Catalysis Chemical, 2015, 410(15): 168-176.
相比,复合 TiO 2 后催化剂导带电势有所降低,价带 [10] Liu Y, Yao W, Liu D, et al. Enhancement of visible light
mineralization ability and photocatalytic activity of BiPO 4/BiOI[J].
电势有所升高,光催化剂禁带宽度略微变小,防止 Applied Catalysis B: Environmental, 2015, 163: 547-553.
了光生电子-空穴复合。TiO 2 -BiOI 对甲基橙的降解 [11] Zhou Jie (周杰), Guan Guofeng (管国锋), Zhu Beibei (朱蓓蓓), et al.
Preparation, characterization and photocatalytic activities of g-C 3N 4/
机理如下所示,BiOI 价带(2.39 eV)上的电子被激 ZnO composites[J]. Fine Chemicals (精细化工), 2018, 35(2): 228-266.
[12] Giordano F, Abate A, Baena J P C, et al. Enhanced electronic
发,跃迁至 BiOI 的导带(0.59 eV),由于 TiO 2 具有 properties in mesoporous TiO 2 via lithium doping for high-efficiency
perovskite solar cells[J]. Nature Communication, 2016, 7: 10379.
更低的导带电势(0.22 eV),BiOI 导带上跃迁电子 [13] Li Caolong (李曹龙), Wang Fei (王飞), Tang Yuanyuan (唐媛媛), et
很容易迁移到 TiO 2 导带,在价带上留下等量空穴, al. Synthesis and photochemical performances of morphology-
controlled TiO 2 photocatalysts for hydrogen evolution under visible
使电子和空穴有效地分离。 light[J]. Chinese Journal of Inorganic Chemistry (无机化学学报),
2016, 32(8): 1375-1382.
[14] Baldissarelli V Z, Souza T, Andrade L, et al. Preparation and
photocatalytic activity of TiO 2-exfoliated graphite oxide composite
using an ecofriendly graphite oxidation method[J]. Applied Surface
Science, 2015, 359(30): 868-874.
[15] Yang N, Liu Y, Wen H, et al. Photocatalytic properties of graphdiyne
and graphene modified TiO 2: From theory to experiment[J]. ACS
Nano, 2013, 7(2): 1504-1512.
[16] Yan T, Sun M, Liu H, et al. Fabrication of hierarchical
BiOI/Bi 2MoO 6 heterojunction for degradation of bisphenol A and
dye under visible light irradiation[J]. Journal of Alloys and
Compdounds, 2015, 634(15): 223-231.
[17] He T, Wu D, Tan Y. Fabrication of BiOI/BiVO 4 heterojunction with
efficient visible-light-induced photocatalytic activity[J]. Materials
Letters, 2016, 165(15): 227-230.
[18] Liu C, Yang Y, Li W, et al. A novel Bi 2S 3 nanowire @ TiO 2 nanorod
heterogeneous nanostructure for photoelectrochemical hydrogen
generation[J]. Chemical Engineering Journal, 2016, 302(15): 717-724.
[19] Hassan M E, Chen Y, Liu G, et al. Heterogeneous photo-Fenton
3 结论 degradation of methyl orange by Fe 2O 3/TiO 2 nanoparticles under
visible light[J]. Journal of Water Process Engineering, 2016, 12: 52-57.
[20] Zhao W, Liu Y, Wei Z, et al. Fabrication of a novel p-n
本文采用溶剂热法制备了 TiO 2 -BiOI 异质结光 heterojunction photocatalyst n-BiVO 4@p-MoS 2 with core-shell
structure and its excellent visible-light photocatalytic reduction and
催化剂,得到如下结论:(1)Ti/Bi 物质的量比为 0.4 oxidation activities[J]. Applied Catalysis B: Environmental, 2016,
185(15): 242-252.
时,TB-40 对甲基橙降解率达到 95%,在 5 次循环 [21] Dhara A, Show B, Bara A, et al. Core-shell CuO-ZnO p-n
实验后降解率仍为 78%;(2)通过活性物种捕捉实 heterojunction with high specific surface area for enhanced
photoelectrochemical(PEC) energy conversion[J]. Solid Energy,
2016, 136(15): 327-332.
验可知,TiO 2 -BiOI 在光催化过程中起主要作用的活 [22] Huang Fengping (黄凤萍), Zhang Shuang (张双), Wang Shuai (王
2
+
性物种为 O ·和 h ;(3)TiO 2 与 BiOI 之间形成了 帅 ), et al. Effects of Dy-doping on phase transition and
photocatalytic properties of nano TiO 2[J]. Materials Review (材料导
p-n 异质结结构,促进了异质结界面光生电子-空穴 报), 2015, 22: 6-12.