Page 52 - 《精细化工》2020年第1期
P. 52

·38·                              精细化工   FINE CHEMICALS                                  第 37 卷

                 20228-20233.                                      photocatalytic properties of six new metal-organic frameworks based
            [9]   Xiao Juanding (肖娟定), Li Dandan (李丹丹), Jiang Hailong (江海  on  aromatic  polycarboxylate  acids  and  rigid  imidazole-based
                 龙). Metal-organic frameworks for photocatalysis[J]. Scientia Sinica   synthons[J]. Crystal Growth & Design, 2009, 9(8): 3581-3589.
                 Chimica (中国科学:  化学), 2018, 48(9): 1058-1075.   [17]  Das  M  C,  Xu  H,  Wang  Z  Y,  et al.  A  Zn 4O-containing  doubly
            [10]  Li  X  Y,  Pi  Y  H,  Wu  L  Q,  et al.  Facilitation  of  the  visible  light-   interpenetrated  porous  metal-organic  framework  for  photocatalytic
                 induced  Fenton-like  excitation  of  H 2O 2  via  heterojunction  of   decomposition  of  methyl  orange[J].  Chemical  Communications,
                 g-C 3N 4/NH 2-iron  terephthalate  metal-organic  framework  for  MB   2011, 47(42): 11715-11717.
                 degradation[J].  Applied  Catalysis  B:  Environmental,  2017,  202(1):   [18]  Xamena F X L I, Corma A, Garcia H. Applications for metal-organic
                 653-663.                                          frameworks  (MOF)  as  quantum  dot  semiconductors[J].  Journal  of
            [11]  Wang  C  C,  Li  J  R,  Lv  X  L,  et al.  Photocatalytic  organic  pollutants   Physical Chemistry C, 2007, 111(1): 80-85.
                 degradation  in  metal-organic  frameworks[J].  Energy  &  Environmental   [19]  Shen  L,  Wu  W,  Liang  R,  et al.  Highly  dispersed  palladium
                 Science, 2014, 7(9): 2831-2867.                   nanoparticles  anchored  on  UiO-66  (NH 2)  metal-organic  framework
            [12]  Wu  P  Y,  He  C,  Wang  J,  et al.  Photoactive  chiral  metal-organic   as a reusable and dual functional visible-light-driven photocatalyst[J].
                 frameworks for light-driven asymmetric α-alkylation of aldehydes[J].   Nanoscale, 2013, 5(19): 9374-9382.
                 Journal  of  the  American  Chemical  Society,  2012,  134(36):  14991-   [20]  Laurier K G M,  Vermoortele F,  Ameloot  R,  et al.  Iron(Ⅲ)-based
                 14999.                                            metal-organic frameworks as visible light photocatalysts[J]. Journal
            [13]  Assi H, Pardo Pérez L C, Mouchaham G, et al. Investigating the case   of the American Chemical Society, 2013, 135(39): 14488-14491.
                 of titanium (Ⅳ) carboxyphenolate photoactive coordination polymers[J].   [21]  Jing H P, Wang C C, Zhang Y W, et al. Photocatalytic degradation of
                 Inorganic Chemistry, 2016, 55(15): 7192-7199.     methylene  blue  in  ZIF-8[J].  RSC  Advances,  2014,  4(9):  54454-
            [14]  Chi  L,  Xu  Q,  Liang  X,  Wang  J,  et al.  Iron-based  metal-organic   54462.
                 frameworks  as  catalysts  for  visible  light-driven  water  oxidation[J].   [22]  Zhang  H  F,  Zhou  W  W,  Yang  Y  P,  et al.  3D  WO 3/BiVO 4/Cobalt
                 Small, 2016, 12(10): 1351-1358.                   phosphate  composites  inverse  opal  photoanode  for  efficient
            [15]  Fu Y H, Sun D R, Chen Y J, et al. An amine-functionalized titanium   photoelectrochemical water splitting[J]. Small, 2017, 13(16): 1603840.
                 metal-organic  framework  photocatalyst  with  visible-light-induced   [23]  Canioni  R,  Roch-Marchal  C,  Secheresse  F,  et al.  Stable
                 activity  for  CO 2  reduction[J].  Angewandte  Chemie  International   polyoxometalate  insertion  within  the  mesoporous  metal  organic
                 Edition, 2012,124(14): 3420-3423.                 framework MIL-100(Fe)[J]. Journal of Materials Chemistry, 2011,
            [16]  Wen L L, Wang F, Feng J, et al. Structures, photoluminescence, and   21(4): 1226-1233.


            (上接第 10 页)                                         [26]  Steinauer  A,  Butterfield  A  M,  Linden  A,  et al.  Tunable
                                                                   photochemical/redox   properties   of   (phenylthio) ncorannulenes:
            [15]  Fernández-García  J  M,  Evans  P  J,  Medina  Rivero  S,  et al.   Application  to  a  photovoltaic  device[J].  Journal  of  the  Brazilian
                 π-Extended  corannulene-based  nanographenes:  Selective  formation   Chemical Society, 2016, 27(10): 1866-1871.
                 of negative curvature[J]. Journal of the American Chemical Society,   [27]  Lee  H B, Sharp P R. Nickel and platinum σ-bonded derivatives of
                 2018, 140(49): 17188-17196.                       corannulene[J]. Organometallics, 2005, 24(21): 4875-4877.
            [16]  Zhu R, Liu Z, Chen J, et al. Preparation of thioanisole biscarbanion   [28]  Stuparu  M  C.  Rationally  designed  polymer  hosts  of  fullerene[J].
                 and  C—H  lithiation/annulation  reactions  for  the  access  of  five-   Angewandte Chemie International Edition, 2013, 52(30): 7786-7790.
                 membered heterocycles[J]. Organic Letters, 2018, 20(11): 3161-3165.     [29]  Wu  Y  T,  Bandera  D,  Maag  R,  et al.  Multiethynyl  corannulenes:
            [17]  Morita Y, Nishida S, Kobayashi T, et al. The first bowl-shaped stable   Synthesis,  structure,  and  properties[J].  Journal  of  the  American
                 neutral radical with a corannulene system: Synthesis and characterization   Chemical Society, 2008, 130(32): 10729-10739.
                 of the electronic structure[J]. Organic Letters, 2004, 6(9): 1397-1400.     [30]  Haupt A, Walter R, Loll B, et al. Tetracyanocorannulene—An easily
            [18]  Yamada M, Tashiro S, Miyake R, et al. A cyclopalladated complex of   accessible  and  strongly  electron-deficient  compound[J].  European
                 corannulene with a pyridine pendant and its columnar self-assembly   Journal of Organic Chemistry, 2018, 2018(45): 6338-6342.
                 [J]. Dalton Transactions, 2013, 42(10): 3300-3303.
            [19]  Lu R Q, Zheng Y  Q, Zhou Y N, et al. Corannulene derivatives as   [31]  Jackson E A, Steinberg B D, Bancu M, et al. Pentaindenocorannulene
                                                                   and  tetraindenocorannulene:  New  aromatic  hydrocarbon  π-systems
                 non-fullerene  acceptors  in  solution-processed  bulk  heterojunction
                 solar cells[J]. Journal of Materials Chemistry A, 2014, 2(48): 20515-   with  curvatures  surpassing  that  of  C 60[J].  Journal  of  the  American
                 20519.                                            Chemical Society, 2007, 129(3): 484-485.
                                     t
            [20]  Wang Y, Liu J, Huang L, et al. KO Bu-catalyzed lithiation of PMDTA   [32]  Furrer  F,  Linden  A,  Stuparu  M  C.  Towards  molecular  ribbons of
                 and  the  direct  functionalization  of  bridged  alkenes  under  mild   corannulene[J].  Chemistry–A  European  Journal,  2013,  19(39):
                 conditions[J]. Chemical Communications, 2017, 53(33): 4589-4592.     13199-13206.
            [21]  Barát  V,  Budanović  M,  Halilovic  D,  et al.  A  general  approach  to   [33]  Mejuto  C,  Escobar  L,  Guisado-Barrios  G,  et al.  Self-assembly  of
                 non-fullerene electron acceptors based on the corannulene motif[J].   di-N-heterocyclic  carbene-gold-adorned  corannulenes  on  C 60[J].
                 Chemical Communications, 2019, 55(21): 3113-3116.     Chemistry–A European Journal, 2017, 23(44): 10644-10651.
            [22]  Sygula  A,  Sygula  R,  Rabideau  P  W.  The  first  buckybowl  aryne   [34]  Haupt  A,  Keller  L  M,  Kutter  M,  et al.  Selective  synthesis  of
                 corannulyne: A nonplanar benzyne[J]. Organic Letters, 2005, 7(22):   perfluoroalkylated corannulenes and investigation of their structural,
                 4999-5001.                                        dynamic  and  electrochemical  behavior[J].  Chemistry–A  European
            [23]  Sygula  A,  Sygula  R,  Kobryn  L.  2-Trimethylsilylcorannulenyl   Journal, 2018, 24(42): 10756-1076.
                 trifluoromethanesulfonate:   An   efficient   precursor   for   1,   [35]  Hayama  T,  Wu  Y  T,  Linden  A,  et al.  Synthesis,  structure,  and
                 2-didehydrocorannulene[J]. Organic Letters, 2008, 10(17): 3927-3929.     isomerization  of  decapentynylcorannulene:  Enediyne  cyclization/
            [24]  Ueda A, Ogasawara K, Nishida S, et al. Air-stable curved π-radical   interconversion  of  C 40R 10  isomers[J].  Journal  of  the  American
                 based on corannulene: dynamic electronic-spin structure induced by   Chemical Society, 2007, 129(42): 12612-12613.
                 temperature-dependent conformational changes[J]. Australian Journal   [36]  Miyajima  D,  Tashiro  K,  Araoka  F,  et al.  Liquid  crystalline
                 of Chemistry, 2010, 63(12): 1627-1633.            corannulene responsive to electric field[J]. Journal of the American
            [25]  Lee  C  W,  Liu  E  C,  Wu  Y  T.  Palladium-catalyzed  reaction  of   Chemical Society, 2008, 131(1): 44-45.
                 haloarenes  with  diarylethynes:  Synthesis,  structural  analysis,  and   [37]  Pappo  D,  Mejuch  T,  Reany  O,  et al.  Diverse  functionalization  of
                 properties  of  methylene-bridged  arenes[J].  The  Journal  of  Organic   corannulene:  Easy  access  to  pentagonal  superstructure[J].  Organic
                 Chemistry, 2015, 80(21): 10446-10456.             Letters, 2009, 11(5): 1063-1066.
   47   48   49   50   51   52   53   54   55   56   57