Page 24 - 《精细化工》2020年第5期
P. 24
·874· 精细化工 FINE CHEMICALS 第 37 卷
Journal of the American Chemical Society, 2009, 131(26): 9164- Microfluidic synthesis and morphology design[J]. Soft Matter, 2016,
9165. 12(14): 3425-3430.
[14] TU F, LEE D. Shape-changing and amphiphilicity-reversing Janus [36] GE X H, GENG Y H, ZHANG Q C, et al. Four reversible and
particles with pH-responsive surfactant properties[J]. Journal of the reconfigurable structures for three-phase emulsions: Extended
American Chemical Society, 2014, 136(28): 9999-10006. morphologies and applications[J]. Scientific Reports, 2017, 7: 42738.
[15] VALENCIA P M, FAROKHZAD O C, KARNIK R, et al. [37] ZHAO C X, MIDDELBERG A P. Microfluidic mass-transfer control
Microfluidic technologies for accelerating the clinical translation of for the simple formation of complex multiple emulsions[J].
nanoparticles[J]. Nature Nanotechnology, 2012, 7(10): 623-629. Angewandte Chemie International Edition, 2009, 48(39): 7208-7211.
[16] HENNEQUIN Y, PANNACCI N, DE TORRES C P, et al. Synthesizing [38] ZHANG L, CAI L H, LIENEMANN P S, et al. One-step
microcapsules with controlled geometrical and mechanical properties microfluidic fabrication of polyelectrolyte microcapsules in aqueous
with microfluidic double emulsion technology[J]. Langmuir, 2009, conditions for protein release[J]. Angewandte Chemie International
25(14): 7857-7861. Edition, 2016, 55(43): 13470-13474.
[17] LAN W J, LI S W, XU J H, et al. A one-step microfluidic approach for [39] ONO T, YAMADA M, SUZUKI Y, et al. One-step synthesis of
controllable preparation of nanoparticle-coated patchy microparticles[J]. spherical/nonspherical polymeric microparticles using non-equilibrium
Microfluidics and Nanofluidics, 2012, 13(3): 491-498. microfluidic droplets[J]. RSC Advances, 2014, 4(26): 13557-13564.
[18] LEE H, CHOI C H, ABBASPOURRAD A, et al. Fluorocarbon oil [40] LONE S, AHN J I, KIM M R, et al. Photoresponsive phase
reinforced triple emulsion drops[J]. Advanced Materials, 2016, separation of a poly(NIPAAm-co-SPO-co-fluorophore) random
28(38): 8425-8430. copolymer in W/O droplet[J]. Langmuir, 2014, 30(31): 9577-9583.
[19] ABBASPOURRADA, DATTA S S, WEITZ D A. Controlling release [41] ZARZAR L D, SRESHT V, SLETTEN E M, et al. Dynamically
from pH-responsive microcapsules[J]. Langmuir, 2013, 29(41): reconfigurable complex emulsions via tunable interfacial tensions[J].
12697-12702. Nature, 2015, 518(7540): 520-524.
[20] KIM S H, ABBASPOURRAD A, WEITZ D A. Amphiphilic [42] CHOI C H, WEITZ D A, LEE C S. One step formation of
crescent-moon- shaped microparticles formed by selective adsorption controllable complex emulsions: From functional particles to
of colloids[J]. Journal of the American Chemical Society, 2011, simultaneous encapsulation of hydrophilic and hydrophobic agents
133(14): 5516-5524. into desired position[J]. Advanced Materials, 2013, 25(18): 2536-
[21] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse 2541.
double emulsions generated from a microcapillary device[J]. Science, [43] ZHANG Q, XU M, LIU X, et al. Fabrication of Janus droplets by
2005, 308(5721): 537-541. evaporation driven liquid-liquid phase separation[J]. Chemical
[22] CHU L Y, UTADA A S, SHAH R K, et al. Controllable monodisperse Communications, 2016, 52(28): 5015-5018.
multiple emulsions[J]. Angewandte Chemie International Edition, [44] MAN J, CHEN S, LIANG S, et al. Size-dependent phase separation
2007, 46(47): 8970-8974. in emulsion droplets[J]. Chemphyschem, 2018, 19(16): 1995-1998.
[23] GENG Y H, GE X H, ZHANG S B, et al. Microfluidic preparation of [45] LEONARDI G R, SILVA S A M E, GUIMARAES C M, et al.
flexible micro-grippers with precise delivery function[J]. Lab on a Interfacial tension; a stabilizing factor for Janus emulsions of silicone
Chip, 2018, 18(13): 1838-1843. bixa orellana oils[J]. Journal of Surfactants and Detergents, 2016,
[24] CHEN A, GE X H, CHEN J, et al. Multi-functional micromotor: 19(5): 1009-1014.
Microfluidic fabrication and water treatment application[J]. Lab on a [46] KOVACH I, WON J, FRIBERG S E, et al. Completely engulfed
Chip, 2017, 17(24): 4220-4224. olive/silicone oil Janus emulsions with gelatin and chitosan[J].
[25] ZHANG M Y, ZHAO H, XU J H, et al. Controlled coalescence of Colloid and Polymer Science, 2016, 294(4): 705-713.
two immiscible droplets for Janus emulsions in a microfluidic [47] LEONARDI G R, SILVA S A M E, GUIMARAES C M, et al. An
device[J]. RSC Advances, 2015, 5(41): 32768-32774. unexpected stabilization factor during destabilization of a Janus
[26] XU K, GE X H, HUANG J P, et al. A region-selective modified emulsion[J]. Colloid and Interface Science Communications, 2015,
capillary microfluidic device for fabricating water–oil Janus droplets 8: 14-16.
and hydrophilic–hydrophobic anisotropic microparticles[J]. RSC [48] KOVACH I, KOETZ J, FRIBERG S E. Janus emulsions stabilized by
Advances, 2015, 5(58): 46981-46988. phospholipids[J]. Colloids and Surfaces A: Physicochemical and
[27] WANG W T, SANG F N, XU J H, et al. The enhancement of Engineering Aspects, 2014, 441: 66-71.
liquid–liquid extraction with high phase ratio by microfluidic-based [49] HASINOVIC H, FRIBERG S E, KOVACH I, et al. Destabilization
hollow droplet[J]. RSC Advances, 2015, 5(100): 82056-82064. of a dual emulsion to form a Janus emulsion[J]. Colloid and Polymer
[28] ZHAO H, XU J H, WANG T, et al. A novel microfluidic approach for Science, 2014, 292(9): 2319-2324.
preparing chitosan-silica core-shell hybrid microspheres with [50] HASINOVIC H, BOGGS C, FRIBERG S E, et al. Janus emulsions
controlled structures and their catalytic performance[J]. Lab on a from a one-step process; optical microscopy images[J]. Journal of
Chip, 2014, 14(11): 1901-1906. Dispersion Science and Technology, 2014, 35(5): 613-618.
[29] XU X M, XU J H, WU H C, et al. Microfluidic preparation of [51] HASINOVIC H, FRIBERG S E. One-step inversion process to a
chitosan–poly(acrylic acid) composite microspheres with a porous Janus emulsion with two mutually insoluble oils[J]. Langmuir, 2011,
surface structure[J]. RSC Advances, 2014, 4(70): 37142-37147. 27(11): 6584-6588.
[30] XU K, TOSTADO C P, XU J H, et al. Direct measurement of the [52] HASINOVIC H, FRIBERG S E, KOVACH I, et al. Janus emulsion
differential pressure during drop formation in a co-flow microfluidic drops: Equilibrium calculations[J]. Journal of Dispersion Science and
device[J]. Lab on a Chip, 2014, 14(7): 1357-1366. Technology, 2013, 34(12): 1683-1689.
[31] XU J H, GE X H, CHEN R, et al. Microfluidic preparation and [53] FRIBERG S E. Selective emulsion inversion in an equilibrium Janus
structure evolution of double emulsions with two-phase cores[J]. drop. 1. Unlimited space[J]. Journal of Colloid and Interface Science,
RSC Advances, 2014, 4(4): 1900-1906. 2014, 416: 167-171.
[32] WANG W T, CHEN R, XU J H, et al. One-step microfluidic [54] LEONARDI G R, PERRECHIL F A, SILVEIRA L P, et al.
approach for controllable production of gas-in-water-in-oil (G/W/O) Silicone/vegetable oil Janus emulsion: Topological stability versus
double emulsions and hollow hydrogel microspheres[J]. RSC interfacial tensions and relative oil volumes[J]. Journal of Colloid
Advances, 2014, 4(32): 16444-16448. and Interface Science, 2015, 449: 31-37.
[33] XU J H, CHEN R, WANG Y D, et al. Controllable gas/liquid/liquid [55] GE L L, CHENG J R, WEI D, et al. Anisotropic particles templated
double emulsions in a dual-coaxial microfluidic device[J]. Lab on a by Cerberus emulsions[J]. Langmuir, 2018, 34(25): 7386-7395.
Chip, 2012, 12(11): 2029-2036. [56] GE L L, FRIBERG S E, GUO R. Recent studies of Janus emulsions
[34] CHEN R, DONG P F, XU J H, et al. Controllable microfluidic prepared by one-step vibrational mixing[J]. Current Opinion in
production of gas-in-oil-in-water emulsions for hollow microspheres Colloid & Interface Science, 2016, 25: 58-66.
with thin polymer shells[J]. Lab on a Chip, 2012, 12(20): 3858-3860. [57] GE L L, SHAO W Q, LU S H, et al. Droplet topology control of
[35] GE X H, HUANG J P, XU J H, et al. Water-oil Janus emulsions: Janus emulsion prepared in one-step high energy mixing[J]. Soft