Page 24 - 《精细化工》2020年第5期
P. 24

·874·                             精细化工   FINE CHEMICALS                                 第 37 卷

                 Journal  of  the  American  Chemical  Society,  2009,  131(26):  9164-   Microfluidic synthesis and morphology design[J]. Soft Matter, 2016,
                 9165.                                             12(14): 3425-3430.
            [14]  TU  F,  LEE  D.  Shape-changing  and  amphiphilicity-reversing  Janus   [36]  GE  X  H,  GENG  Y  H,  ZHANG  Q  C,  et al.  Four  reversible  and
                 particles with pH-responsive surfactant properties[J]. Journal of the   reconfigurable  structures  for  three-phase  emulsions:  Extended
                 American Chemical Society, 2014, 136(28): 9999-10006.     morphologies and applications[J]. Scientific Reports, 2017, 7: 42738.
            [15]  VALENCIA  P  M,  FAROKHZAD  O  C,  KARNIK  R,  et al.   [37]  ZHAO C X, MIDDELBERG A P. Microfluidic mass-transfer control
                 Microfluidic  technologies  for  accelerating  the  clinical  translation  of   for  the  simple  formation  of  complex  multiple  emulsions[J].
                 nanoparticles[J]. Nature Nanotechnology, 2012, 7(10): 623-629.     Angewandte Chemie International Edition, 2009, 48(39): 7208-7211.
            [16]  HENNEQUIN Y, PANNACCI N, DE TORRES C P, et al. Synthesizing   [38]  ZHANG  L,  CAI  L  H,  LIENEMANN  P  S,  et al.  One-step
                 microcapsules with controlled geometrical and mechanical properties   microfluidic fabrication of polyelectrolyte microcapsules in aqueous
                 with  microfluidic  double  emulsion  technology[J].  Langmuir,  2009,   conditions for  protein  release[J].  Angewandte  Chemie  International
                 25(14): 7857-7861.                                Edition, 2016, 55(43): 13470-13474.
            [17]  LAN W J, LI S W, XU J H, et al. A one-step microfluidic approach for   [39]  ONO  T,  YAMADA  M,  SUZUKI  Y,  et al.  One-step  synthesis  of
                 controllable preparation of nanoparticle-coated patchy microparticles[J].   spherical/nonspherical polymeric microparticles using non-equilibrium
                 Microfluidics and Nanofluidics, 2012, 13(3): 491-498.     microfluidic droplets[J]. RSC Advances, 2014, 4(26): 13557-13564.
            [18]  LEE H, CHOI C H, ABBASPOURRAD A, et al. Fluorocarbon oil   [40]  LONE S,  AHN  J  I, KIM M  R,  et al.  Photoresponsive  phase
                 reinforced  triple  emulsion  drops[J].  Advanced  Materials,  2016,   separation  of  a  poly(NIPAAm-co-SPO-co-fluorophore)  random
                 28(38): 8425-8430.                                copolymer in W/O droplet[J]. Langmuir, 2014, 30(31): 9577-9583.
            [19]  ABBASPOURRADA, DATTA S S, WEITZ D A. Controlling release   [41]  ZARZAR  L  D,  SRESHT  V,  SLETTEN  E  M,  et al.  Dynamically
                 from  pH-responsive  microcapsules[J].  Langmuir,  2013,  29(41):   reconfigurable complex emulsions via tunable interfacial tensions[J].
                 12697-12702.                                      Nature, 2015, 518(7540): 520-524.
            [20]  KIM  S  H,  ABBASPOURRAD  A,  WEITZ  D  A.  Amphiphilic   [42]  CHOI C H,  WEITZ  D  A, LEE  C  S. One step  formation  of
                 crescent-moon- shaped microparticles formed by selective adsorption   controllable  complex  emulsions:  From  functional  particles  to
                 of  colloids[J].  Journal  of  the  American  Chemical  Society,  2011,   simultaneous  encapsulation  of  hydrophilic  and  hydrophobic  agents
                 133(14): 5516-5524.                               into  desired  position[J].  Advanced  Materials,  2013,  25(18):  2536-
            [21]  UTADA  A  S,  LORENCEAU  E,  LINK  D  R,  et al.  Monodisperse   2541.
                 double emulsions generated from a microcapillary device[J]. Science,   [43]  ZHANG Q, XU M, LIU X, et al. Fabrication of Janus droplets by
                 2005, 308(5721): 537-541.                         evaporation  driven  liquid-liquid  phase  separation[J].  Chemical
            [22]  CHU L Y, UTADA A S, SHAH R K, et al. Controllable monodisperse   Communications, 2016, 52(28): 5015-5018.
                 multiple  emulsions[J].  Angewandte  Chemie  International  Edition,   [44]  MAN J, CHEN S, LIANG S, et al. Size-dependent phase separation
                 2007, 46(47): 8970-8974.                          in emulsion droplets[J]. Chemphyschem, 2018, 19(16): 1995-1998.
            [23]  GENG Y H, GE X H, ZHANG S B, et al. Microfluidic preparation of   [45]  LEONARDI  G  R, SILVA S  A M  E,  GUIMARAES C  M,  et al.
                 flexible  micro-grippers  with  precise  delivery  function[J].  Lab  on  a   Interfacial tension; a stabilizing factor for Janus emulsions of silicone
                 Chip, 2018, 18(13): 1838-1843.                    bixa  orellana  oils[J].  Journal  of  Surfactants  and  Detergents,  2016,
            [24]  CHEN  A,  GE  X  H,  CHEN  J,  et al.  Multi-functional  micromotor:   19(5): 1009-1014.
                 Microfluidic fabrication and water treatment application[J]. Lab on a   [46]  KOVACH  I,  WON  J,  FRIBERG  S  E,  et al.  Completely  engulfed
                 Chip, 2017, 17(24): 4220-4224.                    olive/silicone  oil  Janus  emulsions  with  gelatin  and  chitosan[J].
            [25]  ZHANG M Y, ZHAO H, XU J H, et al. Controlled coalescence of   Colloid and Polymer Science, 2016, 294(4): 705-713.
                 two  immiscible  droplets  for  Janus  emulsions  in  a  microfluidic   [47]  LEONARDI G R, SILVA S A M E, GUIMARAES C M, et al. An
                 device[J]. RSC Advances, 2015, 5(41): 32768-32774.     unexpected  stabilization  factor  during  destabilization  of  a  Janus
            [26]  XU  K,  GE  X  H,  HUANG  J  P,  et al.  A  region-selective  modified   emulsion[J].  Colloid  and  Interface  Science  Communications,  2015,
                 capillary microfluidic device for fabricating water–oil Janus droplets   8: 14-16.
                 and  hydrophilic–hydrophobic  anisotropic  microparticles[J].  RSC   [48]  KOVACH I, KOETZ J, FRIBERG S E. Janus emulsions stabilized by
                 Advances, 2015, 5(58): 46981-46988.               phospholipids[J].  Colloids  and  Surfaces  A:  Physicochemical  and
            [27]  WANG  W  T,  SANG  F  N,  XU  J  H,  et al.  The  enhancement  of   Engineering Aspects, 2014, 441: 66-71.
                 liquid–liquid extraction with high phase ratio by microfluidic-based   [49]  HASINOVIC H, FRIBERG S E, KOVACH I, et al. Destabilization
                 hollow droplet[J]. RSC Advances, 2015, 5(100): 82056-82064.     of a dual emulsion to form a Janus emulsion[J]. Colloid and Polymer
            [28]  ZHAO H, XU J H, WANG T, et al. A novel microfluidic approach for   Science, 2014, 292(9): 2319-2324.
                 preparing  chitosan-silica  core-shell  hybrid  microspheres  with   [50]  HASINOVIC H, BOGGS C, FRIBERG S E, et al. Janus emulsions
                 controlled  structures  and  their  catalytic  performance[J].  Lab  on  a   from  a  one-step  process;  optical  microscopy  images[J].  Journal  of
                 Chip, 2014, 14(11): 1901-1906.                    Dispersion Science and Technology, 2014, 35(5): 613-618.
            [29]  XU  X  M,  XU  J  H,  WU  H  C,  et al.  Microfluidic  preparation  of   [51]  HASINOVIC  H,  FRIBERG  S  E.  One-step  inversion  process  to  a
                 chitosan–poly(acrylic  acid)  composite  microspheres  with  a  porous   Janus  emulsion with two mutually insoluble oils[J]. Langmuir, 2011,
                 surface structure[J]. RSC Advances, 2014, 4(70): 37142-37147.     27(11): 6584-6588.
            [30]  XU K, TOSTADO  C P, XU J H,  et al. Direct  measurement of the   [52]  HASINOVIC H, FRIBERG S E, KOVACH I, et al. Janus emulsion
                 differential pressure during drop formation in a co-flow microfluidic   drops: Equilibrium calculations[J]. Journal of Dispersion Science and
                 device[J]. Lab on a Chip, 2014, 14(7): 1357-1366.     Technology, 2013, 34(12): 1683-1689.
            [31]  XU  J  H,  GE  X  H,  CHEN  R,  et al.  Microfluidic  preparation  and   [53]  FRIBERG S E. Selective emulsion inversion in an equilibrium Janus
                 structure  evolution  of  double  emulsions  with  two-phase  cores[J].   drop. 1. Unlimited space[J]. Journal of Colloid and Interface Science,
                 RSC Advances, 2014, 4(4): 1900-1906.              2014, 416: 167-171.
            [32]  WANG  W  T,  CHEN  R,  XU  J  H,  et al.  One-step  microfluidic   [54]  LEONARDI  G  R, PERRECHIL F A,  SILVEIRA L  P,  et al.
                 approach for controllable production of gas-in-water-in-oil (G/W/O)   Silicone/vegetable  oil  Janus  emulsion:  Topological  stability  versus
                 double  emulsions  and  hollow  hydrogel  microspheres[J].  RSC   interfacial  tensions  and  relative  oil  volumes[J].  Journal  of  Colloid
                 Advances, 2014, 4(32): 16444-16448.               and Interface Science, 2015, 449: 31-37.
            [33]  XU J H, CHEN R, WANG Y D, et al. Controllable gas/liquid/liquid   [55]  GE L L, CHENG J R, WEI D, et al. Anisotropic particles templated
                 double emulsions in a dual-coaxial microfluidic device[J]. Lab on a   by Cerberus emulsions[J]. Langmuir, 2018, 34(25): 7386-7395.
                 Chip, 2012, 12(11): 2029-2036.                [56]  GE L L, FRIBERG S E, GUO R. Recent studies of Janus emulsions
            [34]  CHEN  R,  DONG  P  F,  XU  J  H,  et al.  Controllable  microfluidic   prepared  by  one-step  vibrational  mixing[J].  Current  Opinion  in
                 production of gas-in-oil-in-water emulsions for hollow microspheres   Colloid & Interface Science, 2016, 25: 58-66.
                 with thin polymer shells[J]. Lab on a Chip, 2012, 12(20): 3858-3860.     [57]  GE  L  L, SHAO W Q,  LU S H,  et al.  Droplet  topology  control  of
            [35]  GE  X  H,  HUANG  J  P,  XU  J  H,  et al.  Water-oil  Janus  emulsions:   Janus  emulsion  prepared  in  one-step  high  energy  mixing[J].  Soft
   19   20   21   22   23   24   25   26   27   28   29