Page 171 - 《精细化工》2021年第1期
P. 171
第 1 期 吴 勰,等: 共混改性的 PEO/TPU/PVDF-HFP 基聚合物电解质的制备及性能 ·161·
充电比容量达到了 164 mA·h/g,充电平台在 3.55 V 可以满足正常使用,使得 PEO/TPU/PVDF-HFP 基聚
左右,放电比容量达到了 161 mA·h/g,放电平台在 合物电解质具有良好的应用前景。
3.28 V 左右,整个充放电平台都比较平稳,说明电
参考文献:
池性能稳定。随着库伦倍率的增大,在 0.5 C、1.0 C、
[1] LI Z, XIONG Y, SUN S P, et al. Tri-layer nonwoven membrane with
2.0 C 倍率下放电比容量分别为 137、103、75 mA·h/g, shutdown property and high robustness as a high-safety lithium ion
battery separator[J]. Journal of Membrane Science, 2018, 565(1): 50-60.
没有出现比较低的比容量,说明满足正常电池使用。 [2] DING Y H, ZHANG P, LONG Z L, et al. The ionic conductivity and
图 10b 为电池的倍率性能的关系图。在不同的 mechanical property of electrospun P(VdF-HFP)/PMMA membranes
for lithium ion batteries[J]. Journal of Membrane Science, 2009, 329
库伦倍率下电池的充放电比容量不同,这是因为比容 (1): 56-59.
[3] XU Q, KONG Q S, LIU Z H, et al. Cellulose/polysulfonamide
量的变化与电池的极化有关,随着库伦倍率的增加, composite membrane as a high performance lithium-ion battery
separator[J]. ACS Sustain Chem Eng, 2014, 2(1): 194-199.
电池上的工作电流增大,电池的极化作用增强,降低 [4] PARK J H, PARK W, KIM J H, et al. Close-packed poly(methyl
methacrylate) nanoparticle arrays-coated polyethylene separators for
了锂离子的扩散速度。由图 10b 可以看出,在相同倍 high-power lithium-ion polymer batteries[J]. Journal of Power
率下,电池的充放电比容量几乎相同,说明电池具 [5] Sources, 2011, 196 (1): 7035-7038.
NAGAI N, IHARA K, ITOI A, et al. Fabrication of boehmite and
有良好的离子迁移能力;重新回到 0.2 C 倍率下,电 Al 2O 3 nonwovens from boehmite nanofibres and their potential as the
sorbent[J]. Journal of Materials Chemistry, 2012, 22(1): 21225-21231.
池的充放电比容量回到了 164 和 161 mA·h/g 左右,接 [6] CHUNG Y S, YOO S H, KIM C K. Enhancement of meltdown
temperature of the polyethylene lithium-ion battery separator via
近初始值,说明 PEO/TPU/PVDF-HFP 基 GPE 在真 surface coating with polymers having high thermal resistance[J]. Ind
Eng Chem Res, 2009, 48(1): 4346-4351.
实电池环境中具有良好的结构稳定性。 [7] FANG J, KELARAKIS A, LIN Y W, et al. Nanoparticle-coated
图 10c 为电池在 0.2 C 倍率下,电池循环 150 separators for lithium-ion batteries with advanced electrochemical
performance[J]. Physical Chemistry Chemical Physics, 2011, 13(32):
次后,电池的放电比容量和库伦效率。从图 10c 可 14457-14461.
[8] LI Y J, FAN C Y, ZHANG J P, et al. A promising PMHS/PEO blend
以看出,电池的放电比容量还能达到 152 mA·h/g 左 polymer electrolyte for all-solid-state lithium ion batteries[J]. Dalton
Transactions, 2018, 47(1): 14932-14937.
右,库伦效率(即电池放电容量与同循环过程中充电 [9] WU Q Y, LIANG H Q, GU L, et al. PVDF/PAN blend separators via
thermally induced phase separation for lithium ion batteries[J].
容量的百分比)还能保持在 97%以上,再次验证了 Polymer, 2016, 107(1): 54-60.
m(PEO)∶m(TPU)∶m(PVDF-HFP)=3∶1∶4 的 GPE [10] SHI J, YANG Y F, SHAO H X. Co-polymerization and blending
based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for
是一种优异的电池材料,组成的 LiFePO 4/GPE/Li 的 rechargeable lithium metal batteries[J]. Journal of Membrane Science,
2018, 547(1): 1-10.
锂离子电池具有稳定的电池性能。 [11] LI J L, ZHU L, XU J N, et al. Boosting the performance of
poly(ethylene oxide)-based solid polymer electrolytes by blending
with poly(vinylidene fluoride-co-hexafluoropropylene) for solid-state
3 结论 lithium-ion batteries[J]. International Journal of Energy Research,
2020, 44(9): 7831-7840.
[12] CHENG X Q (程晓琪), GUO X Y (郭晓艳), BAO J J (鲍俊杰),
(1)PVDF-HFP 的加入使得 PEO/TPU 基聚合物 et al. Silk/polyoxyethylene composite solid polymer electrolyte[J].
Fine Chemicals (精细化工), 2020, 37(1): 117-121, 167.
电解质的形貌变得更均匀,孔径大小更规则,同时降 [13] TAO C, GAO M H, YIN B H, et al. A promising TPU/PEO blend
polymer electrolyte for all-solid-state lithium ion batteries[J].
低了聚合物基体的结晶度,说明具有二元聚合物结构 Electrochimica Acta, 2017, 257(1): 31-39.
[14] SONG Y X (宋有信), BAO J J (鲍俊杰), XU G W (许戈文), et al.
的 PVDF-HFP 是一种优异的聚合物电解质材料。 Preparation and properties of terephthalic anhydride modified
(2)PVDF-HFP 的加入虽然降低了聚合物基体 polyurethane solid polymer electrolytes[J]. Fine Chemicals (精细化
工), 2018, 35(12): 2091-2097.
的弹性、伸缩性能,但提高了其机械性能,m(PEO)∶ [15] HU Z Y, CHEN J J, GUO Y, et al. Fire-resistant, high-performance
gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP)
m(TPU)∶m(PVDF-HFP)=3∶1∶3 和 3∶1∶4 的聚 composite membranes for lithium ion batteries[J]. Journal of
Membrane Science, 2020, 599: 117827.
合物电解质隔膜的拉伸强度达到 15 MPa 左右,较无 [16] WU H P, CAO Y, SU H P, et al. Tough gel electrolyte using double
polymer network design for the safe, stable cycling of lithium metal
PVDF-HFP 的聚合物电解质隔膜提高了 66.7%的拉 anode[J]. Angewandte Chemie (International ed. in English), 2018,
57(5): 1361-1365.
伸强度,具有更稳定的力学性能;m(PEO)∶m(TPU)∶ [17] GAO M H (高明昊). Preparation of TPU-based polymer electrolyte
m(PVDF-HFP)=3∶1∶4 的聚合物电解质隔膜在 450 ℃ for lithium-ion batteries and its structure and performance[D]. Hefei:
Anhui University (安徽大学), 2018.
还能保持 50%的质量,而无 PVDF-HFP 的聚合物电 [18] WANG Q Y (王其钰), CHU G (褚赓), ZHANG J N (张杰男), et al.
Lithium ion button battery assembly, charge and discharge
解质隔膜在 450 ℃基本热降解完,该配比的隔膜耐 measurement and data analysis[J]. Energy Storage Science and
Technology (储能科学与技术), 2018, 7(2): 327-344.
热性能十分优异。 [19] BAO J J (鲍俊杰). Preparation and performance of polyurethane-based
(3)m(PEO)∶m(TPU)∶m(PVDF-HFP)=3∶1∶ solid polymer electrolytes for all-solid-state lithium batteries[D].
Hefei: University of Science and Technology of China (中国科学技
4 的聚合物电解质的离子电导率在室温下达到了 术大学), 2018.
[20] ZHOU L, CAO Q, JING B, et al. Study of a novel porous gel
7.9 10 S/ 3 cm ,组成电池进行循环性能测试后发现 polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene
fluoride-co-hexafluoropropylene) by electrospinning technique[J].
在 0.2 C 倍率下充放电比容量均达到 160 mA·h/g 以 Journal of Power Sources, 2014, 263(1): 118-124.
[21] WANG X L, HAO X J, ZHANG H J, et al. 3D ultraviolet polymerized
上,接近初始值,在 150 次循环后,库伦效率还能 electrolyte based on PEO modified PVDF-HFP electrospun membrane
for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,
保持在 97%以上,说明该聚合物电解质组装成电池 2020, 329: 135108.