Page 62 - 《精细化工》2021年第3期
P. 62

·482·                             精细化工   FINE CHEMICALS                                 第 38 卷

                 In-vitro antimicrobial and anticancer properties of green synthesized   [53]  MANIKANDAKRISHNAN M, PALANISAMY S, VINOSHA M, et
                 gold nanoparticles  using  Anacardium occidentale leaves extract[J].   al. Facile green route synthesis of gold nanoparticles using Caulerpa
                 Saudi Journal of Biological Sciences, 2019, 26(3): 455-459.     racemosa for biomedical  applications[J]. Journal of Drug Delivery
            [36]  KHOSHNAMVAND M, ASHTIANI S, HUO C, et al. Use of Alcea   Science and Technology, 2019, 54: 101345.
                 rosea leaf extract for biomimetic synthesis of gold nanoparticles with   [54]  CHELLAPANDIAN C,  RAMKUMAR B, PUJA P,  et al. Gold
                 innate free radical  scavenging and catalytic  activities[J]. Journal of   nanoparticles using red seaweed  Gracilaria verrucosa: Green
                 Molecular Structure, 2019, 1179: 749-755.         synthesis, characterization and biocompatibility studies[J]. Process
            [37]  VERMA N. A green synthetic approach for size tunable nanoporous   Biochemistry, 2019, 80: 58-63.
                 gold nanoparticles and its glucose sensing application[J]. Applied   [55]  ANKIT K S, RATNAKAR T, VIKAS K S, et al. Green synthesis of
                 Surface Science, 2018, 462: 753-759.              gold nanoparticles from Dunaliella salina, its characterization and in
            [38]  DUTTA P P, BORDOLOI M, GOGOI K, et al. Antimalarial silver   vitro anticancer activity on breast cancer cell line[J]. Journal of Drug
                 and gold nanoparticles: Green synthesis, characterization and in vitro   Delivery Science and Technology, 2019, 51: 164-176.
                 study[J]. Biomedicine & Pharmacotherapy, 2017, 91: 567-580.     [56]  KIM D, KIM M, SHINDE S,  et al.  Cytotoxicity and antibacterial
            [39]  BARUAH D,  GOSWAMI M, YADAV R N S,  et al.  Biogenic   assessment of gallic acid capped gold nanoparticles[J]. Colloids and
                 synthesis of gold nanoparticles and their application in photocatalytic   Surfaces B: Biointerfaces, 2017, 149: 162-167.
                 degradation of toxic dyes[J]. Journal of Photochemistry and   [57]  DANANJAYA S, THAO T N, WIJERATHNA H, et al. In vitro and
                 Photobiology B: Biology, 2018, 186: 51-58.        in vivo anticandidal efficacy of green synthesized gold nanoparticles
            [40]  KANCHI S,  KUMAR G, LO A  Y,  et al.  Exploitation of de-oiled   using  Spirulina maxima polysaccharide[J]. Process Biochemistry,
                 jatropha waste for gold nanoparticles synthesis: A green approach[J].   2020, 92: 138-148.
                 Arabian Journal of Chemistry, 2018, 11(2): 247-255.     [58]  VINOSHA M, PALANISAMY S, MUTHUKRISHNAN R,  et al.
            [41]  ZHA J L, DONG  C F, WANG X J,  et al. Green synthesis and   Biogenic synthesis of gold nanoparticles from Halymenia dilatata for
                 characterization  of monodisperse gold nanoparticles using  Ginkgo   pharmaceutical  applications:  Antioxidant,  anti-cancer  and
                 Biloba leaf extract[J]. Optik, 2017, 144: 511-521.     antibacterial activities[J]. Process Biochemistry, 2019, 85: 219-229.
            [42]  HAMELIAN M,  VARMIRA K, VEISI H. Green synthesis and   [59]  DHAS T S, SOWMIYA P, KUMAR V G, et al. Antimicrobial effect
                 characterizations of  gold nanoparticles  using Thyme  and survey   of Sargassum  plagiophyllum mediated gold nanoparticles on
                 cytotoxic effect, antibacterial and antioxidant potential[J]. Journal of   Escherichia coli and Salmonella typhi[J]. Biocatalysis and Agricultural
                 Photochemistry and Photobiology B: Biology, 2018, 184: 71-79.     Biotechnology, 2020, 26: 101627.
            [43]  UMAMAHESWARI C, LAKSHMANAN A, NAGARAJAN N S.   [60]  GONZÁLEZ-BALLESTEROS  N, PRADO-LÓPEZ S,  RODRÍGUEZ-
                 Green synthesis, characterization and catalytic degradation studies of   GONZÁLEZ J B, et al. Green synthesis of gold nanoparticles using
                 gold nanoparticles against congo red and methyl orange[J]. Journal   brown algae Cystoseira baccata: Its activity in colon cancer cells[J].
                 of Photochemistry and Photobiology B: Biology, 2018, 178: 33-39.     Colloids and Surfaces B: Biointerfaces, 2017, 153: 190-198.
            [44]  AHMAD  T, BUSTAM M A, IRFAN  M,  et al. Green synthesis of   [61]  PYTLIK N, KADEN J, FINGER M,  et al.  Biological synthesis  of
                 stabilized spherical shaped gold  nanoparticles using novel aqueous   gold nanoparticles  by the diatom  Stephanopyxis turris and  in vivo
                 Elaeis guineensis (oil palm) leaves extract[J]. Journal of Molecular   SERS analyses[J]. Algal Research, 2017, 28: 9-15.
                 Structure, 2018, 1159: 167-173.               [62]  ALLE M,  BHAGAVANTH R G, KIM T H,  et al. Doxorubicin-
            [45]  GANGAPURAM B  R, BANDI  R, ALLE  M,  et al.  Microwave   carboxymethyl xanthan gum capped gold nanoparticles: Microwave
                 assisted  rapid green synthesis  of  gold nanoparticles using  Annona   synthesis, characterization, and anti-cancer activity[J]. Carbohydrate
                 squamosa L. peel  extract for the efficient catalytic reduction of   Polymers, 2020, 229: 115511.
                 organic pollutants[J]. Journal of Molecular Structure, 2018, 1167:   [63]  PATIL M P, KANG M J,  NIYONIZIGIYE I,  et al.  Extracellular
                 305-315.                                          synthesis of gold nanoparticles using the marine bacterium Paracoccus
                                                                                 T
            [46]  YU J, XU D, GUAN H N, et al. Facile one-step green synthesis of   haeundaensis BC74171  and evaluation of their antioxidant activity
                 gold nanoparticles using  Citrus maxima aqueous extracts and its   and antiproliferative  effect on normal and  cancer cell lines[J].
                 catalytic activity[J]. Materials Letters, 2016, 166: 110-112.     Colloids and Surfaces B: Biointerfaces, 2019, 183: 110455.
            [47]  VIMALRAJ S,  ASHOKKUMAR T, SARAVANAN S. Biogenic   [64]  ITALIANO F, AGOSTIANO A, BELVISOO B D, et al. Interaction
                 gold nanoparticles synthesis mediated by Mangifera indica seed   between the photosynthetic anoxygenic microorganism Rhodobacter
                 aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic   sphaeroides  and soluble gold compounds. From toxicity to gold
                 properties[J]. Biomedicine & Pharmacotherapy, 2018, 105: 440-448.     nanoparticle synthesis[J]. Colloids and Surfaces B: Biointerfaces,
            [48]  DHAYALAN M,  DENISON M I J, AYYAR  M,  et al. Biogenic   2018, 172: 362-371.
                 synthesis, characterization of gold and silver nanoparticles from   [65]  FRANCIS S, NAIR K M, PAUL  N,  et al. Catalytic activities of
                 Coleus forskohlii  and their clinical importance[J]. Journal of   green synthesized silver and gold nanoparticles[J]. Materials Today:
                 Photochemistry and Photobiology B: Biology, 2018, 183: 251-257.     Proceedings, 2019, 9: 97-104.
            [49]  LATHA D, SAMPURNAM S, ARULVASU C, et al. Biosynthesis   [66]  OSMAN M S, BASHAH N A A,  AMRI N,  et al. Biosynthesis of
                 and characterization of gold nanoparticle from Justicia adhatoda and   gold nanoparticles using aqueous extracts  of Mariposa Cristia
                 its catalytic activity[J]. Materials Today: Proceedings, 2018, 5(2):   Vespertillonis: Influence of pH on its colloidal stability[J]. Materials
                 8968-8972.                                        Today: Proceedings, 2018, 5(10): 22050-22055.
            [50]  IZADIYAN Z, SHAMELI K, HARA H, et al. Cytotoxicity assay of   [67]  CLARANCE P,  LUVANKAR  B, SALES J,  et al. Green synthesis
                 biosynthesis gold nanoparticles mediated by walnut (Juglans regia)   and characterization of  gold nanoparticles using endophytic fungi
                 green husk extract[J]. Journal of Molecular Structure, 2018, 1151:   Fusarium solani and its in-vitro anticancer  and  biomedical
                 97-105.                                           applications[J]. Saudi Journal of Biological Sciences, 2020, 27(2):
            [51]  NARAGINTI S,  LI Y. Preliminary investigation of catalytic,   706-712.
                 antioxidant, anticancer and bactericidal activity of green synthesized   [68]  MANJUNATH H M,  JOSHI  C  G, DANAGOUDAR A,  et al.
                 silver and gold nanoparticles using Actinidia deliciosa[J]. Journal of   Biogenic synthesis of  gold nanoparticles by marine endophytic
                 Photochemistry and Photobiology B: Biology, 2017, 170: 225-234.     fungus-Cladosporium cladosporioides isolated from seaweed  and
            [52]  BANDEIRA M, GIOVANELA M, ROESCH-ELY M, et al. Green   evaluation of their antioxidant and antimicrobial properties[J].
                 synthesis of zinc oxide nanoparticles: A review of the synthesis   Process Biochemistry, 2017, 63: 137-144.
                 methodology and mechanism of formation[J]. Sustainable Chemistry
                 and Pharmacy, 2020, 15: 100223.                                              (下转第 553 页)
   57   58   59   60   61   62   63   64   65   66   67