Page 62 - 《精细化工》2021年第3期
P. 62
·482· 精细化工 FINE CHEMICALS 第 38 卷
In-vitro antimicrobial and anticancer properties of green synthesized [53] MANIKANDAKRISHNAN M, PALANISAMY S, VINOSHA M, et
gold nanoparticles using Anacardium occidentale leaves extract[J]. al. Facile green route synthesis of gold nanoparticles using Caulerpa
Saudi Journal of Biological Sciences, 2019, 26(3): 455-459. racemosa for biomedical applications[J]. Journal of Drug Delivery
[36] KHOSHNAMVAND M, ASHTIANI S, HUO C, et al. Use of Alcea Science and Technology, 2019, 54: 101345.
rosea leaf extract for biomimetic synthesis of gold nanoparticles with [54] CHELLAPANDIAN C, RAMKUMAR B, PUJA P, et al. Gold
innate free radical scavenging and catalytic activities[J]. Journal of nanoparticles using red seaweed Gracilaria verrucosa: Green
Molecular Structure, 2019, 1179: 749-755. synthesis, characterization and biocompatibility studies[J]. Process
[37] VERMA N. A green synthetic approach for size tunable nanoporous Biochemistry, 2019, 80: 58-63.
gold nanoparticles and its glucose sensing application[J]. Applied [55] ANKIT K S, RATNAKAR T, VIKAS K S, et al. Green synthesis of
Surface Science, 2018, 462: 753-759. gold nanoparticles from Dunaliella salina, its characterization and in
[38] DUTTA P P, BORDOLOI M, GOGOI K, et al. Antimalarial silver vitro anticancer activity on breast cancer cell line[J]. Journal of Drug
and gold nanoparticles: Green synthesis, characterization and in vitro Delivery Science and Technology, 2019, 51: 164-176.
study[J]. Biomedicine & Pharmacotherapy, 2017, 91: 567-580. [56] KIM D, KIM M, SHINDE S, et al. Cytotoxicity and antibacterial
[39] BARUAH D, GOSWAMI M, YADAV R N S, et al. Biogenic assessment of gallic acid capped gold nanoparticles[J]. Colloids and
synthesis of gold nanoparticles and their application in photocatalytic Surfaces B: Biointerfaces, 2017, 149: 162-167.
degradation of toxic dyes[J]. Journal of Photochemistry and [57] DANANJAYA S, THAO T N, WIJERATHNA H, et al. In vitro and
Photobiology B: Biology, 2018, 186: 51-58. in vivo anticandidal efficacy of green synthesized gold nanoparticles
[40] KANCHI S, KUMAR G, LO A Y, et al. Exploitation of de-oiled using Spirulina maxima polysaccharide[J]. Process Biochemistry,
jatropha waste for gold nanoparticles synthesis: A green approach[J]. 2020, 92: 138-148.
Arabian Journal of Chemistry, 2018, 11(2): 247-255. [58] VINOSHA M, PALANISAMY S, MUTHUKRISHNAN R, et al.
[41] ZHA J L, DONG C F, WANG X J, et al. Green synthesis and Biogenic synthesis of gold nanoparticles from Halymenia dilatata for
characterization of monodisperse gold nanoparticles using Ginkgo pharmaceutical applications: Antioxidant, anti-cancer and
Biloba leaf extract[J]. Optik, 2017, 144: 511-521. antibacterial activities[J]. Process Biochemistry, 2019, 85: 219-229.
[42] HAMELIAN M, VARMIRA K, VEISI H. Green synthesis and [59] DHAS T S, SOWMIYA P, KUMAR V G, et al. Antimicrobial effect
characterizations of gold nanoparticles using Thyme and survey of Sargassum plagiophyllum mediated gold nanoparticles on
cytotoxic effect, antibacterial and antioxidant potential[J]. Journal of Escherichia coli and Salmonella typhi[J]. Biocatalysis and Agricultural
Photochemistry and Photobiology B: Biology, 2018, 184: 71-79. Biotechnology, 2020, 26: 101627.
[43] UMAMAHESWARI C, LAKSHMANAN A, NAGARAJAN N S. [60] GONZÁLEZ-BALLESTEROS N, PRADO-LÓPEZ S, RODRÍGUEZ-
Green synthesis, characterization and catalytic degradation studies of GONZÁLEZ J B, et al. Green synthesis of gold nanoparticles using
gold nanoparticles against congo red and methyl orange[J]. Journal brown algae Cystoseira baccata: Its activity in colon cancer cells[J].
of Photochemistry and Photobiology B: Biology, 2018, 178: 33-39. Colloids and Surfaces B: Biointerfaces, 2017, 153: 190-198.
[44] AHMAD T, BUSTAM M A, IRFAN M, et al. Green synthesis of [61] PYTLIK N, KADEN J, FINGER M, et al. Biological synthesis of
stabilized spherical shaped gold nanoparticles using novel aqueous gold nanoparticles by the diatom Stephanopyxis turris and in vivo
Elaeis guineensis (oil palm) leaves extract[J]. Journal of Molecular SERS analyses[J]. Algal Research, 2017, 28: 9-15.
Structure, 2018, 1159: 167-173. [62] ALLE M, BHAGAVANTH R G, KIM T H, et al. Doxorubicin-
[45] GANGAPURAM B R, BANDI R, ALLE M, et al. Microwave carboxymethyl xanthan gum capped gold nanoparticles: Microwave
assisted rapid green synthesis of gold nanoparticles using Annona synthesis, characterization, and anti-cancer activity[J]. Carbohydrate
squamosa L. peel extract for the efficient catalytic reduction of Polymers, 2020, 229: 115511.
organic pollutants[J]. Journal of Molecular Structure, 2018, 1167: [63] PATIL M P, KANG M J, NIYONIZIGIYE I, et al. Extracellular
305-315. synthesis of gold nanoparticles using the marine bacterium Paracoccus
T
[46] YU J, XU D, GUAN H N, et al. Facile one-step green synthesis of haeundaensis BC74171 and evaluation of their antioxidant activity
gold nanoparticles using Citrus maxima aqueous extracts and its and antiproliferative effect on normal and cancer cell lines[J].
catalytic activity[J]. Materials Letters, 2016, 166: 110-112. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110455.
[47] VIMALRAJ S, ASHOKKUMAR T, SARAVANAN S. Biogenic [64] ITALIANO F, AGOSTIANO A, BELVISOO B D, et al. Interaction
gold nanoparticles synthesis mediated by Mangifera indica seed between the photosynthetic anoxygenic microorganism Rhodobacter
aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic sphaeroides and soluble gold compounds. From toxicity to gold
properties[J]. Biomedicine & Pharmacotherapy, 2018, 105: 440-448. nanoparticle synthesis[J]. Colloids and Surfaces B: Biointerfaces,
[48] DHAYALAN M, DENISON M I J, AYYAR M, et al. Biogenic 2018, 172: 362-371.
synthesis, characterization of gold and silver nanoparticles from [65] FRANCIS S, NAIR K M, PAUL N, et al. Catalytic activities of
Coleus forskohlii and their clinical importance[J]. Journal of green synthesized silver and gold nanoparticles[J]. Materials Today:
Photochemistry and Photobiology B: Biology, 2018, 183: 251-257. Proceedings, 2019, 9: 97-104.
[49] LATHA D, SAMPURNAM S, ARULVASU C, et al. Biosynthesis [66] OSMAN M S, BASHAH N A A, AMRI N, et al. Biosynthesis of
and characterization of gold nanoparticle from Justicia adhatoda and gold nanoparticles using aqueous extracts of Mariposa Cristia
its catalytic activity[J]. Materials Today: Proceedings, 2018, 5(2): Vespertillonis: Influence of pH on its colloidal stability[J]. Materials
8968-8972. Today: Proceedings, 2018, 5(10): 22050-22055.
[50] IZADIYAN Z, SHAMELI K, HARA H, et al. Cytotoxicity assay of [67] CLARANCE P, LUVANKAR B, SALES J, et al. Green synthesis
biosynthesis gold nanoparticles mediated by walnut (Juglans regia) and characterization of gold nanoparticles using endophytic fungi
green husk extract[J]. Journal of Molecular Structure, 2018, 1151: Fusarium solani and its in-vitro anticancer and biomedical
97-105. applications[J]. Saudi Journal of Biological Sciences, 2020, 27(2):
[51] NARAGINTI S, LI Y. Preliminary investigation of catalytic, 706-712.
antioxidant, anticancer and bactericidal activity of green synthesized [68] MANJUNATH H M, JOSHI C G, DANAGOUDAR A, et al.
silver and gold nanoparticles using Actinidia deliciosa[J]. Journal of Biogenic synthesis of gold nanoparticles by marine endophytic
Photochemistry and Photobiology B: Biology, 2017, 170: 225-234. fungus-Cladosporium cladosporioides isolated from seaweed and
[52] BANDEIRA M, GIOVANELA M, ROESCH-ELY M, et al. Green evaluation of their antioxidant and antimicrobial properties[J].
synthesis of zinc oxide nanoparticles: A review of the synthesis Process Biochemistry, 2017, 63: 137-144.
methodology and mechanism of formation[J]. Sustainable Chemistry
and Pharmacy, 2020, 15: 100223. (下转第 553 页)