Page 101 - 《精细化工》2021年第4期
P. 101
第 4 期 鄢冬茂,等: PEG/APS-SiO 2 /O-CNTs 导热增强相变材料的制备及性能 ·735·
胶法合成了 PEG/APS-SiO 2 /O-CNTs 相变储能材料。 change materials with forced-air cooling[J]. Applied Energy, 2015,
148: 403-409.
PEG/APS-SiO 2 /O-CNTs 中 PEG 质量分数达到
[7] WANG Y M, TANG B T, ZHANG S F. Single-walled carbon
82%仍然具有很好的定形稳定效果,FTIR 分析表明, nanotube/phase change material composites: Sunlight-driven,
在 PEG、APS-SiO 2 凝胶和 O-CNTs 之间只是物理上 reversible, form-stable phase transitions for solar thermal energy
storage[J]. Advanced Functional Materials, 2013, 23(35): 4354-4360.
的复合,没有发生化学反应。XRD 分析表明,复合 [8] DU X S, XU J N, DENG S, et al. Amino-functionalized single-
材料结晶形态未受影响。PEG 质量分数达到 82%的 walled carbon nanotubes-integrated photothermal conversion
efficiency and thermal conductivity[J]. Sustainable Chemistry &
复合相变材料(CM3)具有较高的熔化焓和结晶焓,
Engineering, 2019 7(21): 17682-17690.
分别达到–134.2、126.6 J/g,同时材料具有很好的储 [9] WANG F X, LIU J, FANG X M, et al. Graphite nanoparticles-
热稳定性,300 次热循环后,其熔化焓值仅变化 dispersed paraffin/water emulsion with enhanced thermal-physical
property and photo-thermal performance[J]. Solar Energy Materials
3.3%。与纯的 PEG 相比,含 O-CNTs 质量分数为 & Solar Cells, 2016, 147: 101-107.
0.60%的 PEG/APS-SiO 2 /O-CNTs(CM1)导热增强 [10] WANG F X, LING Z Y, FANG X M, et al. Optimization on the
photo-thermal conversion performance of graphite nanoplatelets
率为 28.1%。热红外成像测试表明,O-CNTs 有效提
decorated phase change material emulsions[J]. Solar Energy Materials
高了相变材料在实际应用过程中的储能和能量释放 & Solar Cells, 2018, 186: 340-348.
效率。因此,PEG/APS-SiO 2 /O-CNTs 复合相变材料 [11] SALUNKHE P B, DEVANURI J K. Investigations on latent heat
storage materials for solar water and space heating applications[J].
的制备方法能够为相变材料在建筑储能、太阳能存 Journal of Energy Storage, 2017, 12: 243-260.
储领域的应用提供理论参考。 [12] ZHANG D(张迪). Preparation polyethylene glycol-based material
and research phase change properties[D]. Qinhuangdao: Yanshan
参考文献: University (燕山大学), 2014.
[13] TANG B T, QIU M G, ZHANG S F. Thermal conductivity
[1] ALVA G, LIN Y X, FANG G Y. An overview of thermal energy enhancement of PEG/SiO 2 composite PCM by in situ Cu doping[J].
storage systems[J]. Energy, 2018, 144: 341-378. Solar Energy Materials & Solar Cells, 2012, 105: 242-248.
[2] KAMMEN D M, SUNTER D A. City-integrated renewable energy [14] LIU J, CHEN L L, FANG X M, et al. Preparation of graphite
for urban sustainability[J]. Science, 2016, 352(6288): 922-928. nanoparticles-modified phase change microcapsules and their
[3] PIELICHOWSKI K, FLEJTUCH K. Differential scanning dispersed slurry for direct absorption solar collectors[J]. Solar Energy
calorimetry studies on poly (ethlene glycol) with different molecular Materials & Solar Cells, 2017, 159: 159-166.
weights for thermal energy storage materials[[J]. Polymer Advanced [15] TANG B T, WANG Y M, QIU M G, et al. A full-band sunlight-driven
Technologies, 2002, 13(10/11/12): 690-696. carbon nanotube/PEG/SiO 2 composites for solar energy storage[J].
[4] ALKAN C, SARI A, UZUN O. Poly (ethylene glycol)/acrylic Solar Energy Materials & Solar Cells, 2014, 123: 7-12.
polymer blends for latent heat thermal energy storage[J]. American [16] TANG B T, WU C, QIU M G, et al. PEG/SiO 2-Al 2O 3 hybrid form-
Institute of Chemical Engineers Journals, 2006, 52(9): 3310-3314. stable phase change materials with enhanced thermal conductivity[J].
[5] AYDIN D, UTLU Z, KINCAY O. Thermal performance analysis of a Materials Chemistry and Physics, 2014, 144(1/2): 162-167.
solar energy sourced latent heat storage[J]. Renewable & Sustainable [17] DU X S, XU J N, DENG S, et al. Amino-functionalized single-
Energy Reviews, 2015, 50: 1213-1225. walled carbon nanotubes-integrated photothermal conversion
[6] LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal efficiency and thermal conductivity[J]. ACS Sustainable Chemistry
management system for lithium ion batteries combining phase & Engineering, 2019, 7(21): 17682-17690.
(上接第 720 页) 2019-03-29.
[46] NICOLE L K T, SAGE M S, JULIE L P J. Quantifying UV/EB dual
[41] JENS B, ANNA G I, ZHANG Y F, et al. Thermal post-curing as an cure for successful mitigation of oxygen inhibition and light
efficient strategy to eliminate process parameter sensitivity in the attenuation[J]. Progress in Organic Coatings, 2020, 138: 105378.
mechanical properties of two-photon polymerized materials[J]. [47] ZHANG J Q (张金泉), HANG Z S (杭祖圣), HUAI X (怀旭), et al.
Optics Express, 2020, 28(14): 20362-20371. Modified g-C 3N 4 activator for UV-EB radiation curing:
[42] ABD G F, HAMZAH K, MOHAMED N H, et al. Modification of CN108752989A[P]. 2018-11-06.
PTFE flat sheet film via radiation induced grafting polymerization [48] LIU M Y (刘敏渊), SUN S Y (孙思严), LOU Y (娄研). Ultraviolet
with acrylic acid[J]. Sains Malaysiana, 2020, 49(1): 169-178. or moisture cured silicone adhesive: CN110819300A[P]. 2019-11-01.
[43] CHAUDHARY N, SINGH A, ASWAL D K. Electron beam induced [49] ZHENG N, ZHANG X, MIN X, et al. Design of robust
modifications of polyaniline silve nano-composite films: Electrical superhydrophobic coatings using a novel fluorinated polysiloxane
conductivity and H 2S gas sensing studies[J]. Radiation Physics and with UV/moisture dual cure system[J]. Reactive and Functional
Chemistry, 2018, 153: 131-139. Polymers, 2019, 143:104329.
[44] GAO Y T, CHEN Y, YANG L M, et al. Effect of two different RAFT [50] ZHU X T (朱旭彤), ZHANG M (张敏), WU F (吴飞), et al.
reactions on grafting MMA from pre-irradiated PP film[J]. Radiation UV-moisture dual curable silica gel and preparation method thereof:
Physics and Chemistry, 2019, 159: 222-230. CN108395516A[P]. 2018-02-09.
[45] CHEN C H (陈川红), LUO H W (罗洪文), JIANG H (江华), et al. [51] YU Y (余越), ZHANG Y H (张银华), CHENG J C (程建超), et al.
Special packaging glue for EB curing, preparation method thereof, Preparing method of UV moisture dual-cured resin: CN110105530A[P].
and method for packaging thin film capacitor: CN109536120A[P]. 2019-08-09.