Page 101 - 《精细化工》2021年第4期
P. 101

第 4 期                鄢冬茂,等: PEG/APS-SiO 2 /O-CNTs 导热增强相变材料的制备及性能                         ·735·


            胶法合成了 PEG/APS-SiO 2 /O-CNTs 相变储能材料。                    change materials with forced-air cooling[J]. Applied Energy, 2015,
                                                                   148: 403-409.
                 PEG/APS-SiO 2 /O-CNTs 中 PEG 质量分数达到
                                                               [7]   WANG  Y M,  TANG B  T, ZHANG S F. Single-walled carbon
            82%仍然具有很好的定形稳定效果,FTIR 分析表明,                            nanotube/phase change material composites:  Sunlight-driven,
            在 PEG、APS-SiO 2 凝胶和 O-CNTs 之间只是物理上                     reversible, form-stable phase transitions for  solar  thermal energy
                                                                   storage[J]. Advanced Functional Materials, 2013, 23(35): 4354-4360.
            的复合,没有发生化学反应。XRD 分析表明,复合                           [8]   DU X S, XU J N, DENG S,  et al. Amino-functionalized  single-
            材料结晶形态未受影响。PEG 质量分数达到 82%的                             walled carbon nanotubes-integrated photothermal conversion
                                                                   efficiency and thermal conductivity[J]. Sustainable Chemistry &
            复合相变材料(CM3)具有较高的熔化焓和结晶焓,
                                                                   Engineering, 2019 7(21): 17682-17690.
            分别达到–134.2、126.6 J/g,同时材料具有很好的储                    [9]   WANG F X, LIU J, FANG X  M,  et al. Graphite nanoparticles-
            热稳定性,300 次热循环后,其熔化焓值仅变化                                dispersed  paraffin/water emulsion with enhanced thermal-physical
                                                                   property and photo-thermal performance[J]. Solar Energy Materials
            3.3%。与纯的 PEG 相比,含 O-CNTs 质量分数为                         & Solar Cells, 2016, 147: 101-107.
            0.60%的 PEG/APS-SiO 2 /O-CNTs(CM1)导热增强              [10]  WANG F X, LING Z Y, FANG X  M,  et al. Optimization on the
                                                                   photo-thermal conversion performance of graphite nanoplatelets
            率为 28.1%。热红外成像测试表明,O-CNTs 有效提
                                                                   decorated phase change material emulsions[J]. Solar Energy Materials
            高了相变材料在实际应用过程中的储能和能量释放                                 & Solar Cells, 2018, 186: 340-348.
            效率。因此,PEG/APS-SiO 2 /O-CNTs 复合相变材料                 [11]  SALUNKHE P  B, DEVANURI J K. Investigations on latent heat
                                                                   storage materials for solar water and space heating applications[J].
            的制备方法能够为相变材料在建筑储能、太阳能存                                 Journal of Energy Storage, 2017, 12: 243-260.
            储领域的应用提供理论参考。                                      [12] ZHANG  D(张迪). Preparation polyethylene glycol-based material
                                                                   and research phase change properties[D]. Qinhuangdao: Yanshan
            参考文献:                                                  University (燕山大学), 2014.
                                                               [13]  TANG B T, QIU M G, ZHANG  S F. Thermal conductivity
            [1]   ALVA G, LIN  Y  X, FANG G  Y. An overview of thermal energy   enhancement of PEG/SiO 2 composite PCM by in situ Cu doping[J].
                 storage systems[J]. Energy, 2018, 144: 341-378.     Solar Energy Materials & Solar Cells, 2012, 105: 242-248.
            [2]   KAMMEN D M, SUNTER D A. City-integrated renewable energy   [14]  LIU J, CHEN L  L, FANG X M,  et al. Preparation of graphite
                 for urban sustainability[J]. Science, 2016, 352(6288): 922-928.     nanoparticles-modified phase change  microcapsules and their
            [3]   PIELICHOWSKI K, FLEJTUCH K. Differential scanning   dispersed slurry for direct absorption solar collectors[J]. Solar Energy
                 calorimetry studies on poly (ethlene glycol) with different molecular   Materials & Solar Cells, 2017, 159: 159-166.
                 weights for thermal energy storage materials[[J]. Polymer Advanced   [15]  TANG B T, WANG Y M, QIU M G, et al. A full-band sunlight-driven
                 Technologies, 2002, 13(10/11/12): 690-696.        carbon nanotube/PEG/SiO 2 composites for solar energy  storage[J].
            [4]   ALKAN  C, SARI A, UZUN  O. Poly (ethylene glycol)/acrylic   Solar Energy Materials & Solar Cells, 2014, 123: 7-12.
                 polymer blends for latent heat thermal energy storage[J]. American   [16]  TANG B T, WU C, QIU M G, et al. PEG/SiO 2-Al 2O 3 hybrid form-
                 Institute of Chemical Engineers Journals, 2006, 52(9): 3310-3314.     stable phase change materials with enhanced thermal conductivity[J].
            [5]   AYDIN D, UTLU Z, KINCAY O. Thermal performance analysis of a   Materials Chemistry and Physics, 2014, 144(1/2): 162-167.
                 solar energy sourced latent heat storage[J]. Renewable & Sustainable   [17]  DU X S, XU J N, DENG S,  et al. Amino-functionalized  single-
                 Energy Reviews, 2015, 50: 1213-1225.              walled carbon nanotubes-integrated photothermal conversion
            [6]   LING Z Y, WANG  F  X,  FANG X  M,  et al. A hybrid thermal   efficiency and thermal conductivity[J]. ACS Sustainable Chemistry
                 management system for lithium ion batteries combining phase     & Engineering, 2019, 7(21): 17682-17690.


            (上接第 720 页)                                            2019-03-29.
                                                               [46]  NICOLE L K T, SAGE M S, JULIE L P J. Quantifying UV/EB dual
            [41]  JENS B, ANNA G I, ZHANG Y F, et al. Thermal post-curing as an   cure for successful  mitigation of oxygen inhibition and light
                 efficient strategy to eliminate process parameter sensitivity in the   attenuation[J]. Progress in Organic Coatings, 2020, 138: 105378.
                 mechanical properties of two-photon polymerized  materials[J].   [47]  ZHANG J Q (张金泉), HANG Z S (杭祖圣), HUAI X (怀旭), et al.
                 Optics Express, 2020, 28(14): 20362-20371.        Modified g-C 3N 4 activator for UV-EB radiation curing:
            [42]  ABD G F, HAMZAH K, MOHAMED N H, et al. Modification of   CN108752989A[P]. 2018-11-06.
                 PTFE flat sheet film  via radiation induced grafting polymerization   [48]  LIU M Y (刘敏渊), SUN S Y (孙思严), LOU Y (娄研). Ultraviolet
                 with acrylic acid[J]. Sains Malaysiana, 2020, 49(1): 169-178.     or moisture cured silicone adhesive: CN110819300A[P]. 2019-11-01.
            [43]  CHAUDHARY N, SINGH A, ASWAL D K. Electron beam induced   [49]  ZHENG N,  ZHANG X, MIN  X,  et al. Design  of robust
                 modifications of  polyaniline silve nano-composite films: Electrical   superhydrophobic coatings using a novel fluorinated polysiloxane
                 conductivity and H 2S gas sensing studies[J]. Radiation Physics and   with UV/moisture dual cure system[J]. Reactive  and Functional
                 Chemistry, 2018, 153: 131-139.                    Polymers, 2019, 143:104329.
            [44]  GAO Y T, CHEN Y, YANG L M, et al. Effect of two different RAFT   [50]  ZHU X T (朱旭彤), ZHANG M (张敏), WU F  (吴飞),  et al.
                 reactions on grafting MMA from pre-irradiated PP film[J]. Radiation   UV-moisture dual curable silica gel and preparation method thereof:
                 Physics and Chemistry, 2019, 159: 222-230.        CN108395516A[P]. 2018-02-09.
            [45]  CHEN C H (陈川红), LUO H W (罗洪文), JIANG H (江华), et al.   [51] YU Y (余越), ZHANG Y H (张银华), CHENG J C (程建超), et al.
                 Special packaging  glue for EB curing, preparation method thereof,   Preparing method of UV moisture dual-cured resin: CN110105530A[P].
                 and method for packaging thin film  capacitor: CN109536120A[P].   2019-08-09.
   96   97   98   99   100   101   102   103   104   105   106