Page 59 - 《精细化工》2021年第4期
P. 59
第 4 期 张文博,等: 氧化石墨烯/天然高分子复合吸附材料在水处理中的应用 ·693·
[51] LIU J J, CHU H J, WEI H L, et al. Facile fabrication of [60] BAI C L, WANG L, ZHU Z Y. Adsorption of Cr(Ⅲ) and Pb(Ⅱ) by
carboxymethyl cellulose sodium/graphene oxide hydrogel microparticles graphene oxide/alginate hydrogel membrane: Characterization, adsorption
for water purification[J]. RSC Advances, 2016, 6(55): 50061-50069. kinetics, isotherm and thermodynamics studies[J]. International
[52] YAKOUT A A, EL-SOKKARY R H, SHREADAH M A, et al. Journal of Biological Macromolecules, 2020, 147: 898-910.
Cross-linked graphene oxide sheets via modified extracted cellulose [61] YI X F, SUN F L, HAN Z H, et al. Graphene oxide encapsulated
with high metal adsorption[J]. Carbohydrate Polymers, 2017, 172: 20-27. polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(Ⅱ)
[53] CHEN X, ZHOU S K, ZHANG L M, et al. Adsorption of heavy and U(Ⅵ) removal[J]. Ecotoxicology and Environmental Safety,
metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea 2018, 158: 309-318.
aqueous solution[J]. Materials, 2016, 9(7): 582. [62] LIU C Y, LIU H Y, XIONG T H, et al. Graphene oxide reinforced
[54] HUANG T, SHAO Y W, ZHANG Q, et al. Chitosan-cross-linked alginate/PVA double network hydrogels for efficient dye removal[J].
graphene oxidecarboxymethyl cellulose aerogel globules with high Polymers, 2018, 10(8): 835.
structure stability in liquid and extremely high adsorption ability[J]. [63] MOHAMMADI A, DOCTORSAFAEI A H, ZIA K M. Alginate/
ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8775-8788. calix[4]arenes modified graphene oxide nanocomposite beads:
[55] WANG S K, MA X F, ZHENG P W. Sulfo-functional 3D porous Preparation, characterization, and dye adsorption studies[J]. International
cellulose/graphene oxide composites for highly efficient removal of Journal of Biological Macromolecules, 2018, 120: 1353-1361.
methylene blue and tetracycline from water[J]. International Journal [64] SUN Y R, ZHOU T, LI W Y, et al. Amino-functionalized alginate/
of Biological Macromolecules, 2019, 140: 119-128. graphene double-network hydrogel beads for emerging contaminant
[56] ELTAWEIL A S, ELGARHY G S, EL-SUBRUITI G M, et al. Novel removal from aqueous solution[J]. Chemosphere, 2020, 241: 125110.
carboxymethyl cellulose/carboxylated graphene oxide composite [65] LI F F, WANG X L, YUAN T Q, et al. A lignosulfonate-modified
microbeads for efficient adsorption of cationic methylene blue dye[J]. graphene hydrogel with ultrahigh adsorption capacity for Pb(Ⅱ)
International Journal of Biological Macromolecules, 2020, 154: removal[J]. Journal of Materials Chemistry A, 2016, 4(30): 11888-11896.
307-318. [66] ZHOU F, FENG X Z, YU J G, et al. High performance of 3D porous
[57] YANG X W (杨晓武), LI Z G (李志刚), LI P Z (李培枝), et al. graphene/lignin/sodium alginate composite for adsorption of Cd(Ⅱ)
2+
Preparation of alginate gel sponge and its adsorption for Pb and and Pb(Ⅱ)[J]. Environmental Science and Pollution Research, 2018,
2+
Cu [J]. Fine Chemicals (精细化工), 2021, 38(1): 162-168. 25(16): 15651-15661.
[58] REN H X, GAO Z M, WU D J, et al. Efficient Pb(Ⅱ) removal using [67] YAN M F, HUANG W X, LI Z L. Chitosan cross-linked graphene
sodium alginate-carboxymethyl cellulose gel beads: Preparation, oxide/lignosulfonate composite aerogel for enhanced adsorption of
characterization, and adsorption mechanism[J]. Carbohydrate Polymers, methylene blue in water[J]. International Journal of Biological
2016, 137: 402-409. Macromolecules, 2019, 136: 927-935.
[59] ZHUANG Y, YU F, CHEN H, et al. Alginate/graphene double-network [68] WU Z J, HUANG W X, SHAN X Y, et al. Preparation of a porous
nanocomposite hydrogel beads with low-swelling, enhanced mechanical graphene oxide/alkali lignin aerogel composite and its adsorption
properties, and enhanced adsorption capacity[J]. Journal of Materials properties for methylene blue[J]. International Journal of Biological
Chemistry A, 2016, 4: 10885-10892. Macromolecules, 2020, 143: 325-333.
(上接第 682 页) [58] YOUSSRY M, MADEC L, SOUDAN P, et al. Non-aqueous carbon
[50] DENNISON C R, BEIDAGHI M, HATZELL K B, et al. Effects of black suspensions for lithium-based redox flow batteries: Rheology
flow cell design on charge percolation and storage in the carbon slurry and simultaneous rheo-electrical behavior[J]. Physical Chemistry
electrodes of electrochemical flow capacitors[J]. Journal of Power Chemical Physics, 2013, 15(34): 14476-14486.
Sources, 2014, 247: 489-496. [59] WU Y Y, CAO D F, BAI X J, et al. Effects of non-ionic surfactants
[51] PORADA S, LEE J, WEINGARTH D, et al. Continuous operation of on rheological, electrical and electrochemical properties of highly
an electrochemical flow capacitor[J]. Electrochemistry Communications, loaded Si suspension electrode for semi-solid flow batteries[J].
2014, 48: 178-181. ChemElectroChem, 2020, 7(17): 3623-3631.
[52] OLSEN T, KAMRIN K. Modeling tensorial conductivity of particle [60] SOLOMON B R, CHEN X, RAPOPORT L, et al. Enhancing the
suspension networks[J]. Soft Matter, 2015, 11(19): 3875-3883. performance of viscous electrode-based flow batteries using lubricant-
[53] CHEN H, CONG G, LU Y C. Recent progress in organic redox flow impregnated surfaces[J]. ACS Applied Energy Materials, 2018, 1(8):
batteries: active materials, electrolytes and membranes[J]. Journal of 3614-3621.
Energy Chemistry, 2018, 27(5): 1304-1325. [61] CHEN H N, LIU Y, ZHANG X F, et al. Single-component slurry
[54] JING X, LIANG Z J, LU Y C. Molecular crowding electrolytes for based lithium-ion flow battery with 3d current collectors[J]. Journal
high-voltage aqueous batteries[J]. Nature Materials, 2020, 19(9): of Power Sources, 2021, 485: 229319.
1006-1011. [62] DENNISON C R, GOGOTSI Y, KUMBUR E C. In situ distributed
[55] KO S, YAMADA Y, MIYAZAKI K, et al. Lithium-salt monohydrate diagnostics of flowable electrode systems: Resolving spatial and
melt: A stable electrolyte for aqueous lithium-ion batteries[J]. temporal limitations[J]. Physical Chemistry Chemical Physics, 2014,
Electrochemistry Communications, 2019, 104: 106488. 16(34): 18241-18252.
[56] HATZELL K B, BEIDAGHI M, CAMPOS J W, et al. A high [63] SUMMER F, ZADIN V, NAKSHATHARAN S S, et al. Optimization
performance pseudocapacitive suspension electrode for the of electrochemical flow capacitor (EFC) design via finite element
electrochemical flow capacitor[J]. Electrochimica Acta, 2013, 111: modeling[J]. Journal of Energy Storage, 2020, 29: 101304.
888-897. [64] HELAL A, DIVOUX T, MCKINLEY G H. Simultaneous rheoelectric
[57] MADEC L, YOUSSRY M, CERBELAUD M, et al. Surfactant for measurements of strongly conductive complex fluids[J]. Physical
enhanced rheological, electrical, and electrochemical performance of Review Applied, 2016, 6: 064004.
suspensions for semisolid redox flow batteries and supercapacitors [65] HAO T. Electrorheological suspensions[J]. Advances in Colloid and
[J]. ChemPlusChem, 2015, 80(2): 396-401. Interface Science, 2002, 97(1): 1-35.