Page 59 - 《精细化工》2021年第4期
P. 59

第 4 期                张文博,等:  氧化石墨烯/天然高分子复合吸附材料在水处理中的应用                                   ·693·


            [51]  LIU J J, CHU H J, WEI H L,  et al.  Facile fabrication of   [60]  BAI C L, WANG L, ZHU Z Y. Adsorption of Cr(Ⅲ) and Pb(Ⅱ) by
                 carboxymethyl cellulose sodium/graphene oxide hydrogel microparticles   graphene oxide/alginate hydrogel membrane: Characterization, adsorption
                 for water purification[J]. RSC Advances, 2016, 6(55): 50061-50069.   kinetics, isotherm and thermodynamics studies[J]. International
            [52]  YAKOUT A A, EL-SOKKARY R H, SHREADAH M  A,  et al.   Journal of Biological Macromolecules, 2020, 147: 898-910.
                 Cross-linked graphene oxide sheets via modified extracted cellulose   [61]  YI X F, SUN F L, HAN  Z H,  et al.  Graphene oxide encapsulated
                 with high metal adsorption[J]. Carbohydrate Polymers, 2017, 172: 20-27.   polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(Ⅱ)
            [53]  CHEN X, ZHOU  S K, ZHANG  L  M,  et al. Adsorption of heavy   and U(Ⅵ) removal[J]. Ecotoxicology and Environmental Safety,
                 metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea   2018, 158: 309-318.
                 aqueous solution[J]. Materials, 2016, 9(7): 582.   [62]  LIU C Y, LIU H Y, XIONG T H, et al. Graphene oxide reinforced
            [54]  HUANG T,  SHAO  Y W, ZHANG Q,  et al. Chitosan-cross-linked   alginate/PVA double network hydrogels for efficient dye removal[J].
                 graphene oxidecarboxymethyl cellulose aerogel globules  with high   Polymers, 2018, 10(8): 835.
                 structure stability in liquid and extremely high adsorption ability[J].   [63]  MOHAMMADI A, DOCTORSAFAEI A H,  ZIA K M.  Alginate/
                 ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8775-8788.   calix[4]arenes  modified graphene oxide nanocomposite beads:
            [55]  WANG S K, MA  X F, ZHENG P W. Sulfo-functional  3D porous   Preparation, characterization, and dye adsorption studies[J]. International
                 cellulose/graphene oxide composites for highly efficient removal of   Journal of Biological Macromolecules, 2018, 120: 1353-1361.
                 methylene blue and tetracycline from water[J]. International Journal   [64]  SUN Y R, ZHOU T, LI W Y, et al. Amino-functionalized alginate/
                 of Biological Macromolecules, 2019, 140: 119-128.   graphene double-network hydrogel beads for emerging contaminant
            [56]  ELTAWEIL A S, ELGARHY G S, EL-SUBRUITI G M, et al. Novel   removal from aqueous solution[J]. Chemosphere, 2020, 241: 125110.
                 carboxymethyl  cellulose/carboxylated graphene oxide composite   [65]  LI F F, WANG X L, YUAN T Q, et al. A lignosulfonate-modified
                 microbeads for efficient adsorption of cationic methylene blue dye[J].   graphene hydrogel with ultrahigh adsorption capacity for Pb(Ⅱ)
                 International Journal of Biological Macromolecules, 2020, 154:   removal[J]. Journal of Materials Chemistry A, 2016, 4(30): 11888-11896.
                 307-318.                                      [66]  ZHOU F, FENG X Z, YU J G, et al. High performance of 3D porous
            [57]  YANG  X W (杨晓武), LI Z G (李志刚), LI P Z (李培枝),  et al.   graphene/lignin/sodium alginate composite for adsorption of Cd(Ⅱ)
                                                       2+
                 Preparation of alginate gel sponge and its adsorption for Pb  and   and Pb(Ⅱ)[J]. Environmental Science and Pollution Research, 2018,
                  2+
                 Cu [J]. Fine Chemicals (精细化工), 2021, 38(1): 162-168.   25(16): 15651-15661.
            [58]  REN H X, GAO Z M, WU D J, et al. Efficient Pb(Ⅱ) removal using   [67]  YAN M F, HUANG W X, LI Z L. Chitosan cross-linked graphene
                 sodium alginate-carboxymethyl cellulose gel beads:  Preparation,   oxide/lignosulfonate composite aerogel for enhanced adsorption of
                 characterization, and adsorption mechanism[J]. Carbohydrate Polymers,   methylene blue in water[J]. International Journal of  Biological
                 2016, 137: 402-409.                               Macromolecules, 2019, 136: 927-935.
            [59]  ZHUANG Y, YU F, CHEN H, et al. Alginate/graphene double-network   [68]  WU Z J, HUANG W X, SHAN X Y, et al. Preparation of a porous
                 nanocomposite hydrogel beads with low-swelling, enhanced mechanical   graphene oxide/alkali lignin aerogel composite and its adsorption
                 properties, and enhanced adsorption capacity[J]. Journal of Materials   properties for methylene blue[J]. International Journal of Biological
                 Chemistry A, 2016, 4: 10885-10892.                Macromolecules, 2020, 143: 325-333.

            (上接第 682 页)                                        [58]  YOUSSRY M, MADEC L, SOUDAN P, et al. Non-aqueous carbon
            [50]  DENNISON C R, BEIDAGHI M, HATZELL K B, et al. Effects of   black suspensions for lithium-based redox flow batteries: Rheology
                 flow cell design on charge percolation and storage in the carbon slurry   and simultaneous  rheo-electrical behavior[J]. Physical  Chemistry
                 electrodes of electrochemical flow  capacitors[J]. Journal of Power   Chemical Physics, 2013, 15(34): 14476-14486.
                 Sources, 2014, 247: 489-496.                  [59]  WU Y Y, CAO D F, BAI X J, et al. Effects of non-ionic surfactants
            [51]  PORADA S, LEE J, WEINGARTH D, et al. Continuous operation of   on rheological, electrical and  electrochemical properties of highly
                 an electrochemical flow capacitor[J]. Electrochemistry Communications,   loaded Si suspension electrode for semi-solid flow batteries[J].
                 2014, 48: 178-181.                                ChemElectroChem, 2020, 7(17): 3623-3631.
            [52]  OLSEN T, KAMRIN K. Modeling tensorial conductivity of particle   [60]  SOLOMON B  R,  CHEN X, RAPOPORT L,  et al. Enhancing  the
                 suspension networks[J]. Soft Matter, 2015, 11(19): 3875-3883.   performance of viscous electrode-based flow batteries using lubricant-
            [53]  CHEN H, CONG G, LU Y C. Recent progress in organic redox flow   impregnated surfaces[J]. ACS Applied Energy Materials, 2018, 1(8):
                 batteries: active materials, electrolytes and membranes[J]. Journal of   3614-3621.
                 Energy Chemistry, 2018, 27(5): 1304-1325.     [61]  CHEN H N, LIU  Y, ZHANG X F,  et al. Single-component slurry
            [54]  JING X, LIANG Z J, LU Y C. Molecular crowding electrolytes for   based lithium-ion flow battery with 3d current collectors[J]. Journal
                 high-voltage aqueous  batteries[J]. Nature Materials, 2020, 19(9):   of Power Sources, 2021, 485: 229319.
                 1006-1011.                                    [62]  DENNISON C R, GOGOTSI Y, KUMBUR E C. In situ distributed
            [55]  KO S, YAMADA Y, MIYAZAKI K, et al. Lithium-salt monohydrate   diagnostics of  flowable electrode systems: Resolving spatial and
                 melt: A stable electrolyte for aqueous lithium-ion batteries[J].   temporal limitations[J]. Physical Chemistry Chemical Physics, 2014,
                 Electrochemistry Communications, 2019, 104: 106488.   16(34): 18241-18252.
            [56]  HATZELL K B, BEIDAGHI M,  CAMPOS J W,  et al. A high   [63]  SUMMER F, ZADIN V, NAKSHATHARAN S S, et al. Optimization
                 performance pseudocapacitive suspension electrode for the   of electrochemical  flow capacitor (EFC) design  via finite element
                 electrochemical flow capacitor[J]. Electrochimica Acta,  2013, 111:   modeling[J]. Journal of Energy Storage, 2020, 29: 101304.
                 888-897.                                      [64]  HELAL A, DIVOUX T, MCKINLEY G H. Simultaneous rheoelectric
            [57]  MADEC L, YOUSSRY M, CERBELAUD M,  et al. Surfactant for   measurements of strongly conductive complex fluids[J]. Physical
                 enhanced rheological, electrical, and electrochemical performance of   Review Applied, 2016, 6: 064004.
                 suspensions for semisolid redox flow batteries and supercapacitors   [65]  HAO T. Electrorheological suspensions[J]. Advances in Colloid and
                 [J]. ChemPlusChem, 2015, 80(2): 396-401.          Interface Science, 2002, 97(1): 1-35.
   54   55   56   57   58   59   60   61   62   63   64