Page 28 - 《精细化工》2021年第6期
P. 28

·1090·                            精细化工   FINE CHEMICALS                                 第 38 卷

            械稳定性进行探索和研究。现有的抗冻水凝胶的电                                 heteronetwork organohydrogels with enhanced mechanical stability
                                                                   over a wide temperature range[J]. Nature Communications, 2017, 8:
            化学性能仍然有待提高,对导电聚合物或纳米颗粒                                 15911.
            进行物理化学改性以提高其电化学性能可能是一种                             [11]  ZHANG X F, MA X F, HOU T, et al. Inorganic salts induce thermally
                                                                   reversible and anti-freezing cellulose hydrogels[J]. Angewandte
            有效的策略,实现水凝胶力学、导电和抗冻性能的                                 Chemie, International Edition in English, 2019, 58(22): 7366-7370.
            协同调控将是重要的研究方向。                                     [12]  WANG  C, WIENER  C G, SEPULVEDA-MEDINA  P I,  et al.
                                                                   Antifreeze hydrogels from amphiphilic statistical copolymers[J].
                (2)开发具有生物无毒性、生物相容性和生物                              Chemistry of Materials, 2018, 31(1): 135-145.
            可降解的抗冻水凝胶,实现生态环境的可持续发展。                            [13]  RANA  H H, PARK J H, GUND G  S,  et al. Highly conducting,
                                                                   extremely durable, phosphorylated cellulose-based ionogels for renewable
            随着水凝胶在柔性电子领域的快速发展,各种柔性                                 flexible supercapacitors[J]. Energy Storage Materials, 2020, 25: 70-75.
            电子器件大规模应用,如果器件处理不当会造成严                             [14]  WU J, WU Z X, HAN S J, et al. Extremely deformable, transparent,
                                                                   and high-performance gas sensor based on ionic conductive hydrogel[J].
            重的环境污染,通过开发无毒可降解的天然高分子                                 ACS Applied Materials & Interfaces, 2019, 11(2): 2364-2373.
            聚合物及其衍生物来设计柔性电子器件可以有效缓                             [15]  LIU H Y,  WANG X, CAO  Y X,  et al. Freezing-tolerant, highly
                                                                   sensitive strain and  pressure  sensors assembled  from ionic  conductive
            解这一问题。虽然基于纤维素、海藻酸钠等天然高                                 hydrogels with dynamic cross-links[J].  ACS Applied Materials &
            分子类抗冻水凝胶已有报道,但还需要更多的研究                                 Interfaces, 2020, 12(22): 25334-25344.
                                                               [16]  YANG Y Y, YANG Y T, CAO Y X, et al. Anti-freezing, resilient and
            和探索,以实现这些环境友好型材料在柔性电子领                                 tough hydrogels for sensitive and large-range strain and pressure
                                                                   sensors[J]. Chemical Engineering Journal, 2021, 403: 126431.
            域的应用潜力。
                                                               [17]  ZHOU S, GUO K C, BUKHVALOV D, et al. Cellulose hydrogels by
                (3)设计优化装置的组装结构,提升器件的安                              reversible ion-exchange as flexible pressure sensors[J]. Advanced
                                                                   Materials Technologies, 2020, 5(9): 2000358.
            全可靠性。以抗冻水凝胶为电解质集成组装的柔性
                                                               [18]  ZHU M S, WANG X J, TANG H N, et al. Antifreezing hydrogel with
            电子器件如超级电容器、传感器和电池,在实际使                                 high zinc reversibility for flexible and durable aqueous batteries by
                                                                   cooperative hydrated cations[J]. Advanced Functional Materials,
            用过程中不免会出现挤压弯曲,这可能导致凝胶中                                 2019, 30(6): 1907218.
            的液体漏出,特别是当凝胶中液体为乙二醇、甘油                             [19]  YU  H  M, ROUELLE N, QIU  A D,  et al. Hydrogen bonding
                                                                   reinforced hydrogel electrolyte for flexible, robust and all-in-one
            或 DMSO 等有机溶剂时,存在一定的安全隐患,这                              supercapacitor with excellent low-temperature tolerance[J]. ACS
            可以通过对器件的组装封装进行结构优化来解决。                                 Applied Materials & Interfaces, 2020, 12(34): 37977-37985.
                                                               [20]  HU X Y, FAN  L  D, QIN G,  et al.  Flexible and low temperature
                (4)优化改进器件的集成制造,提高器件的输                              resistant double network alkaline gel polymer electrolyte with dual-role
            出稳定性。与传统的金属等电子材料不同,由于水                                 koh for supercapacitor[J]. Journal of Power Sources, 2019, 414: 201-209.
                                                               [21]  MORELLE  X P,  ILLEPERUMA W R, TIAN  K,  et al. Highly
            凝胶的模量低且含有大量的水,导致其与电子单元                                 stretchable and tough hydrogels below water freezing temperature[J].
            间的集成容易连接不良,器件的输出性能受其界面                                 Advanced Materials, 2018, 30(35): 1801541.
                                                               [22]  LI S H, PAN H Y, WANG Y T, et al. Polyelectrolyte complex-based
            稳定性和循环使用性的影响,因此,开发电化学性                                 self-healing, fatigue-resistant and anti-freezing hydrogels as highly
            能优异的新型电极材料并对器件的集成制造工艺进                                 sensitive ionic skins[J]. Journal of  Materials Chemistry A, 2020,
                                                                   8(7): 3667-3675.
            行优化改进成为研究重点。                                       [23]  GUAN  L, YAN S,  LIU X,  et al. Wearable strain sensors based on
                                                                   casein-driven tough, adhesive and anti-freezing hydrogels for monitoring
            参考文献:                                                  human-motion[J]. Journal of Materials Chemistry B, 2019, 7(34):
                                                                   5230-5236.
            [1]   AHMED E M. Hydrogel: Preparation, characterization, and applications:   [24]  WANG Z P, CHENG J L, ZHOU J W,  et al. All-climate  aqueous
                 A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121.   fiber-shaped supercapacitors with record areal energy density and
            [2]   YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chemical   high safety[J]. Nano Energy, 2018, 50: 106-117.
                 Society Reviews, 2019, 48(6): 1642-1667.      [25]  BAI Y Y, CHEN B H, XIANG F, et al. Transparent hydrogel with
            [3]   YANG C H, SUO Z  G.  Hydrogel ionotronics[J]. Nature Reviews   enhanced water retention capacity by introducing highly hydratable
                 Materials, 2018, 3(6): 125-142.                   salt[J]. Applied Physics Letters, 2014, 105(15): 151903.
            [4]   PAN S W, ZHANG F L, CAI P Q, et al. Mechanically interlocked   [26]  WATANABE M, THOMAS M L, ZHANG S G, et al. Application of
                 hydrogel-elastomer hybrids for  on-skin electronics[J]. Advanced   ionic liquids to energy storage and conversion materials and
                 Functional Materials, 2020, 30(29): 1909540.      devices[J]. Chemical Reviews, 2017, 117(10): 7190-7239.
            [5]   DING H Y, XIN Z Q, YANG Y Y, et al. Ultrasensitive, low-voltage   [27]  GREAVES T  L,  DRUMMOND  C J.  Protic ionic liquids: Evolving
                 operational, and asymmetric ionic sensing hydrogel for multipurpose   structure-property  relationships and expanding applications[J].
                 applications[J]. Advanced Functional Materials, 2020, 30(12): 1909616.   Chemical Reviews, 2015, 115(20): 11379-11448.
            [6]   KHAZAELI A, GODBILLE-CARDONA G, BARZ D P J. A novel   [28]  SUN J X, YUAN Y  Y,  LU G  Q,  et al. A transparent, stretchable,
                 flexible hybrid battery-supercapacitor based on a self-assembled   stable,  self-adhesive ionogel-based strain sensor for human motion
                 vanadium-graphene hydrogel[J]. Advanced Functional  Materials,   monitoring[J]. Journal of Materials  Chemistry C, 2019, 7(36):
                 2020, 30(21): 1910738.                            11244-11250.
            [7]   KIM C C, LEE H H, OH K H, et al. Highly stretchable, transparent   [29]  WANG Y, ZHANG L N,  LU  A. Highly stretchable, transparent
                 ionic touch panel[J]. Science, 2016, 353(6300): 682-687.   cellulose/PVA composite hydrogel for multiple sensing and triboelectric
            [8]   ZHOU D,  CHEN F, HANDSCHUH-WANG S,  et al. Biomimetic   nanogenerators[J]. Journal of Materials Chemistry A, 2020, 8(28):
                 extreme-temperature- and environment-adaptable hydrogels[J].   13935-13941.
                 ChemPhysChem, 2019, 20(17): 2139-2154.        [30]  DING  Y, ZHANG J J, CHANG L,  et al. Preparation of  high-
            [9]   XU Y C, RONG Q F, ZHAO T Y, et al. Anti-freezing multiphase gel   performance ionogels with excellent transparency, good mechanical
                 materials: Bioinspired design strategies and applications[J]. Giant,   strength, and  high conductivity[J]. Advanced Materials, 2017, 29(47):
                 2020, 2: 100014.                                  1704253.
            [10]  GAO H N, ZHAO Z G, CAI Y D, et al. Adaptive and freeze-tolerant   [31]  XIANG S F, CHEN S S, YAO M T, et al. Strain sensor based on a
   23   24   25   26   27   28   29   30   31   32   33