Page 28 - 《精细化工》2021年第6期
P. 28
·1090· 精细化工 FINE CHEMICALS 第 38 卷
械稳定性进行探索和研究。现有的抗冻水凝胶的电 heteronetwork organohydrogels with enhanced mechanical stability
over a wide temperature range[J]. Nature Communications, 2017, 8:
化学性能仍然有待提高,对导电聚合物或纳米颗粒 15911.
进行物理化学改性以提高其电化学性能可能是一种 [11] ZHANG X F, MA X F, HOU T, et al. Inorganic salts induce thermally
reversible and anti-freezing cellulose hydrogels[J]. Angewandte
有效的策略,实现水凝胶力学、导电和抗冻性能的 Chemie, International Edition in English, 2019, 58(22): 7366-7370.
协同调控将是重要的研究方向。 [12] WANG C, WIENER C G, SEPULVEDA-MEDINA P I, et al.
Antifreeze hydrogels from amphiphilic statistical copolymers[J].
(2)开发具有生物无毒性、生物相容性和生物 Chemistry of Materials, 2018, 31(1): 135-145.
可降解的抗冻水凝胶,实现生态环境的可持续发展。 [13] RANA H H, PARK J H, GUND G S, et al. Highly conducting,
extremely durable, phosphorylated cellulose-based ionogels for renewable
随着水凝胶在柔性电子领域的快速发展,各种柔性 flexible supercapacitors[J]. Energy Storage Materials, 2020, 25: 70-75.
电子器件大规模应用,如果器件处理不当会造成严 [14] WU J, WU Z X, HAN S J, et al. Extremely deformable, transparent,
and high-performance gas sensor based on ionic conductive hydrogel[J].
重的环境污染,通过开发无毒可降解的天然高分子 ACS Applied Materials & Interfaces, 2019, 11(2): 2364-2373.
聚合物及其衍生物来设计柔性电子器件可以有效缓 [15] LIU H Y, WANG X, CAO Y X, et al. Freezing-tolerant, highly
sensitive strain and pressure sensors assembled from ionic conductive
解这一问题。虽然基于纤维素、海藻酸钠等天然高 hydrogels with dynamic cross-links[J]. ACS Applied Materials &
分子类抗冻水凝胶已有报道,但还需要更多的研究 Interfaces, 2020, 12(22): 25334-25344.
[16] YANG Y Y, YANG Y T, CAO Y X, et al. Anti-freezing, resilient and
和探索,以实现这些环境友好型材料在柔性电子领 tough hydrogels for sensitive and large-range strain and pressure
sensors[J]. Chemical Engineering Journal, 2021, 403: 126431.
域的应用潜力。
[17] ZHOU S, GUO K C, BUKHVALOV D, et al. Cellulose hydrogels by
(3)设计优化装置的组装结构,提升器件的安 reversible ion-exchange as flexible pressure sensors[J]. Advanced
Materials Technologies, 2020, 5(9): 2000358.
全可靠性。以抗冻水凝胶为电解质集成组装的柔性
[18] ZHU M S, WANG X J, TANG H N, et al. Antifreezing hydrogel with
电子器件如超级电容器、传感器和电池,在实际使 high zinc reversibility for flexible and durable aqueous batteries by
cooperative hydrated cations[J]. Advanced Functional Materials,
用过程中不免会出现挤压弯曲,这可能导致凝胶中 2019, 30(6): 1907218.
的液体漏出,特别是当凝胶中液体为乙二醇、甘油 [19] YU H M, ROUELLE N, QIU A D, et al. Hydrogen bonding
reinforced hydrogel electrolyte for flexible, robust and all-in-one
或 DMSO 等有机溶剂时,存在一定的安全隐患,这 supercapacitor with excellent low-temperature tolerance[J]. ACS
可以通过对器件的组装封装进行结构优化来解决。 Applied Materials & Interfaces, 2020, 12(34): 37977-37985.
[20] HU X Y, FAN L D, QIN G, et al. Flexible and low temperature
(4)优化改进器件的集成制造,提高器件的输 resistant double network alkaline gel polymer electrolyte with dual-role
出稳定性。与传统的金属等电子材料不同,由于水 koh for supercapacitor[J]. Journal of Power Sources, 2019, 414: 201-209.
[21] MORELLE X P, ILLEPERUMA W R, TIAN K, et al. Highly
凝胶的模量低且含有大量的水,导致其与电子单元 stretchable and tough hydrogels below water freezing temperature[J].
间的集成容易连接不良,器件的输出性能受其界面 Advanced Materials, 2018, 30(35): 1801541.
[22] LI S H, PAN H Y, WANG Y T, et al. Polyelectrolyte complex-based
稳定性和循环使用性的影响,因此,开发电化学性 self-healing, fatigue-resistant and anti-freezing hydrogels as highly
能优异的新型电极材料并对器件的集成制造工艺进 sensitive ionic skins[J]. Journal of Materials Chemistry A, 2020,
8(7): 3667-3675.
行优化改进成为研究重点。 [23] GUAN L, YAN S, LIU X, et al. Wearable strain sensors based on
casein-driven tough, adhesive and anti-freezing hydrogels for monitoring
参考文献: human-motion[J]. Journal of Materials Chemistry B, 2019, 7(34):
5230-5236.
[1] AHMED E M. Hydrogel: Preparation, characterization, and applications: [24] WANG Z P, CHENG J L, ZHOU J W, et al. All-climate aqueous
A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. fiber-shaped supercapacitors with record areal energy density and
[2] YUK H, LU B Y, ZHAO X H. Hydrogel bioelectronics[J]. Chemical high safety[J]. Nano Energy, 2018, 50: 106-117.
Society Reviews, 2019, 48(6): 1642-1667. [25] BAI Y Y, CHEN B H, XIANG F, et al. Transparent hydrogel with
[3] YANG C H, SUO Z G. Hydrogel ionotronics[J]. Nature Reviews enhanced water retention capacity by introducing highly hydratable
Materials, 2018, 3(6): 125-142. salt[J]. Applied Physics Letters, 2014, 105(15): 151903.
[4] PAN S W, ZHANG F L, CAI P Q, et al. Mechanically interlocked [26] WATANABE M, THOMAS M L, ZHANG S G, et al. Application of
hydrogel-elastomer hybrids for on-skin electronics[J]. Advanced ionic liquids to energy storage and conversion materials and
Functional Materials, 2020, 30(29): 1909540. devices[J]. Chemical Reviews, 2017, 117(10): 7190-7239.
[5] DING H Y, XIN Z Q, YANG Y Y, et al. Ultrasensitive, low-voltage [27] GREAVES T L, DRUMMOND C J. Protic ionic liquids: Evolving
operational, and asymmetric ionic sensing hydrogel for multipurpose structure-property relationships and expanding applications[J].
applications[J]. Advanced Functional Materials, 2020, 30(12): 1909616. Chemical Reviews, 2015, 115(20): 11379-11448.
[6] KHAZAELI A, GODBILLE-CARDONA G, BARZ D P J. A novel [28] SUN J X, YUAN Y Y, LU G Q, et al. A transparent, stretchable,
flexible hybrid battery-supercapacitor based on a self-assembled stable, self-adhesive ionogel-based strain sensor for human motion
vanadium-graphene hydrogel[J]. Advanced Functional Materials, monitoring[J]. Journal of Materials Chemistry C, 2019, 7(36):
2020, 30(21): 1910738. 11244-11250.
[7] KIM C C, LEE H H, OH K H, et al. Highly stretchable, transparent [29] WANG Y, ZHANG L N, LU A. Highly stretchable, transparent
ionic touch panel[J]. Science, 2016, 353(6300): 682-687. cellulose/PVA composite hydrogel for multiple sensing and triboelectric
[8] ZHOU D, CHEN F, HANDSCHUH-WANG S, et al. Biomimetic nanogenerators[J]. Journal of Materials Chemistry A, 2020, 8(28):
extreme-temperature- and environment-adaptable hydrogels[J]. 13935-13941.
ChemPhysChem, 2019, 20(17): 2139-2154. [30] DING Y, ZHANG J J, CHANG L, et al. Preparation of high-
[9] XU Y C, RONG Q F, ZHAO T Y, et al. Anti-freezing multiphase gel performance ionogels with excellent transparency, good mechanical
materials: Bioinspired design strategies and applications[J]. Giant, strength, and high conductivity[J]. Advanced Materials, 2017, 29(47):
2020, 2: 100014. 1704253.
[10] GAO H N, ZHAO Z G, CAI Y D, et al. Adaptive and freeze-tolerant [31] XIANG S F, CHEN S S, YAO M T, et al. Strain sensor based on a